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a b s t r a c t

Potato cyst nematodes caused by Globodera rostochiensis, are quarantine-restricted pests causing signif-
icant yield losses to potato growers. The phytohormone ethylene play significant roles in various plant-
pathogen interactions, however, the molecular knowledge of how ethylene influences potato–nematode
interaction is still lacking. Precise detection of potato-induced genes is essential for recognizing plant-
induced systemic resistance (ISR). Candidate genes or PR- proteins with putative functions in modulating
the response to potato cyst nematode stress were selected and functionally characterized. Using real-
time polymerase chain reaction (RT-PCR), we measured the quantified expression of four
pathogenesis-related (PR) genes, PR2, PR3, peroxidase, and polyphenol oxidase. The activation of these
genes is intermediate during the ISR signaling in the root tissues. Using different ethylene concentrations
could detect and induce defense genes in infected potato roots compared to the control treatment. The
observed differences in the gene expression of treated infected plants are because of different concentra-
tions of ethylene treatment and pathogenicity. Besides, the overexpressed or suppressed of defense-
related genes during developmental stages and pathogen infection. We concluded that ethylene treat-
ments positively affected potato defensive genes expression levels against cyst nematode infection.
The results emphasize the necessity of studying molecular signaling pathways controlling biotic stress
responses. Understanding such mechanisms will be critical for the development of broad-spectrum
and stress-tolerant crops in the future.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cyst nematodes (Heteroderidae; Globodera rostochiens) is caus-
ing a loss of approximately US $125 billion annually worldwide, as
major root parasitic nematodes (Chitwood, 2003; Fouda et al.,
2020; Kumar et al., 2021; Ochola et al., 2021). Crops, such as wheat,
soybean, potato, and rice, have been destroyed because of cyst
nematode species. Nematodes are obligate and sedentary endopar-
asites that interact with their host plants (Cotton et al., 2014). They
feed on their host roots where parasitic cells within or around the
central cylinder and plant tissues are damaged due to nematode
invasion and feeding (Holbein et al., 2016).
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Significant variations in host gene expression are induced
owing to the interaction between plants and pathogens. Ethylene
is a crucial plant hormone with broad range of biological functions,
including plant growth and development, promoting root initia-
tion, inhibiting root elongation, stimulating fruit ripening, promot-
ing seed germination, inducing leaf abscission, and activating the
production of other phytohormones (Kang et al., 2010; Kour
et al., 2019). Ethylene plays a vital role as an inducer for plant roots
infected with Globodera rostochiensis and has an indirect impact on
pre-injected plants so that it might result from altered plant
defense and significantly elevated ethylene (ET) concentrations.
Although ET plays an essential role in the cyst nematode attraction,
its repression in the syncytia signals a rather negative assignment
for nematode’s evolution last stages (Ali et al., 2013; Mazarei et al.,
2003).

The Jasmonate (JA), ethylene (ET) and salicylic (SA)-dependent
induced systemic resistance (ISR) pathway and systemic-acquired
resistance (SAR) pathway act independently and enhance protec-
tion against the pathogen. SAR is an induced defense mechanism
that provides long-lasting protection against a wide range of
microbes. SAR also needs salicylic acid (SA) as a signal molecule
and is linked with pathogenesis-related proteins accumulation,
which are involved in resistance. Moreover, SAR provokes a rapid
local reaction, where the pathogen is confined to a small area of
the infection site. SAR is a defense mechanism plants employ
against pathogen attack; this appears as resistance and protection
of distal tissues (Sanz-Alférez et al., 2008; Abdelsalam et al., 2021).
The beginning of this enhanced resistance is associated with a local
and systemic improvement in plant hormone SA levels (Malamy
et al., 1990; Métraux et al., 1990; Liu et al. 2022). Posteriorly,
SAR genes, including those that encode PR (pathogen-related) pro-
teins, are upregulated (Slavokhotova et al., 2021; Yu et al., 2022a).
Systemic resistance induced in plants by pathogens can be
occurred as a result of insect herbivory or due to root colonization
by certain mutualistic microorganisms in rhizosphere. It enhances
the plant’s defense systems by the conformation of defensive com-
pounds; therefore, ISR is critical in plant immune system. Both SAR
and ISR allow differential defense against various pathogens (Ton
et al., 2002; Yu et al., 2022b). The pathogen can induce resistance
by activating the ET pathway (Siddiqui and Shaukat, 2005;
Contreras-Cornejo et al., 2011).

Phytohormone crosstalk is critical for plants’ defense response
to insects and pathogens in which SA, ET, and jasmonic acid (JA)
are all essential. However, pathogens have developed strategies
to control the signalling network to intensify virulence on host
plants. Evidence has shown that components from the pathways
of ET-, JA-, and SA-dependent defense can influence each other’s
signaling. For example, SA and its functional analogs such as INA
and BTH inhibit JA-dependent defense gene expression, possibly
by inhibiting JA biosynthesis and action (Pieterse et al., 2001; Ab
Rahman et al., 2018; Elnahal et al., 2022). ET, SA, and JA are neces-
sary signals for induced plant resistance against insects that are
triggered when insects are fed, including two levels of defense.
The first is a direct defense, including production of secondary
chemicals like feeding deterrents or toxins. While, the second level
refer to the indirect defense, producing a volatiles mixture to
entice enemies to their hosts (Pieterse et al., 2001; Meisrimler
et al., 2021).

Real-time PCR (RT-PCR) is an accurate and rapid assay for recog-
nizing and quantifying G. rostochiensis from various nematode pop-
ulations (Toyota et al., 2008; Yan et al., 2012). The objectives of this
study are the quantitative detection of induced systemic resistance
genes of potato roots upon ethylene treatment and G. arostochiensis
infection during plant–nematode interactions. The expression
levels of potato defensive genes, such as pathogenesis-related
(PR) genes, were investigated upon ET treatments either before
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infection with cyst nematodes, as a plant hormone, or after infec-
tion, as elicitor signal molecules, compared with the control. The
current study aims at understanding the molecular signalling path-
ways controlling biotic stress responses of potato against cyst
nematodes upon ET treatments.
2. Materials and methods

2.1. Induction of potato root genes

Healthy potato tubers ‘‘spunta” were cultivated in 25-cm plastic
pots (1:3 mixture of an autoclaved sand and loam). Potato plants
were cultivated in a greenhouse treated after three weeks of plant-
ing, where the plants had two true expanded leaves. Four ethylene
concentrations, 0.1, 0.5, 1.0, and 5.0 mM, were used for treatment
(Fujimoto et al., 2011). All plant leaves were sprayed equally with
four concentrations using an atomizer. At 1, 24, 48, and 72 h after
ethylene treatment, the roots of treated potato plants were col-
lected to examine the defensin genes before nematode infection.
After, pathogenicity assay was done for G. rostochiensis, which
was isolated and identified (Elkobrosy et al., 2018, 2020); 60 cysts
of G. rostochiensis for each pot were inoculated on potato roots. The
cyst nematode was inserted into the soil near the roots. The roots
of treated infected plants have been collected at intervals after
inoculation; 12, 24, 48 h, and 7, 14, 21, 28, and 35 dpi (day post-
infection) treatment to compare with the treated ones (Fujimoto
et al., 2011).

2.2. RNA extraction and RT-PCR assay

According to the manufacturer’s protocol, total RNA extraction
from the treated infected potato roots and control ones is accom-
plished using an RNA isolation kit (TRIzol-Invitrogen, USA). First,
reverse transcriptase (RT) first strand reactions were applied using
mRNAs templates, reverse transcriptase enzyme and the dNTPs.
The components were then mixed with the primer DNA in the
reverse transcriptase buffer for 1 h at 42 �C. Finally, the obtained
cDNA was used as a template for the next amplification by PCR.
The components of RT-PCR assay performed in a total volume of
20 ml for each reaction mixture comprise 1 ml of 2 mg/ml total
RNA, 5 ml of 10 pmol oligo dT primer (Clontech INC, USA), 2 ml of
10 � reaction buffer (Enzynomics, Korea), 1 ml of 2 mM dNTPs
(SibEnzyme, Russia), 0.5 ml of 0.5 U M-MLV reverse transcriptase
enzyme (Enzynomics, Korea), 0.5 ml of 40 U RNAase inhibitor,
and 10 ml sterile distilled water. The RT-PCR assay was performed
using a Thermocycler Gene Amp 9700 (Applied Biosystems (ABI),
USA), programmed at 42 �C for 1 h and at 95 �C for 5 min to inac-
tivate the reaction. The final step was at 4 �C for 10 min.

2.3. Quantitative detection using real-time PCR (qRT-PCR)

The prepared samples were quantified using a NanoDrop 2000
spectrophotometer (Thermo, USA) at 260 and 280 nm using 1 ll
of each RNA sample extracted from treated infected potato roots
to determine the quality and quantity of RNA. The RNA samples
were quantified in a single-step assay after the normalization of
certain concentrations using 2 � SYBER GreenqRT-PCR Master
Mix kit (Applied Biotechnology, Egypt). Four primers were used
in the qRT-PCR technique: b-1,3-glucanase (PR2), chitinase (PR3),
peroxidase (PR9), and polyphenol oxidase (PPO) to detect induced
genes of potato roots treated with ethylene and infected with cyst
nematode. The sequences of these primers are shown in Table 1. b-
actin was used as a reference or housekeeping gene for normaliz-
ing RNA levels of the target defense genes. Amplification reactions
were performed using a Thermo Rotor-Gene Q 560-system (Qia-



Table 1
The pathogenesis-related (PRs) protein primers used in RT-PCR.

Primer Type Primer sequence 50 ? 30

b-Actin Forward GTG GGC CGC TCT AGG CAC CAA
Reverse CTC TTT GAT GTC ACG CAC GAT TTC

b-1,3-glucanases (PR2) Forward TCC GGG GTA TGT TAT GGA AGA
Reverse GGC CAT CCA CTC TCA GAC ACA

Chitinase (PR3) Forward CGG TGG TAC TCC TCC TGG ACC C
Reverse CGG CGC CAC GGT CGG CGT CTG A

Peroxidase (PR9) Forward GCT TTG TCA GGG GTT GTG AT
Reverse TGC ATC TCT AGC AAC CAA CG

Polyphenol oxidase (PPO) Forward CAT GCT CTT GAT GA GGC GTA
Reverse CCA TCT ATG GAA CGG GAA GA
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gen, Germany), and 1.5 ll (0.1 mM) of each primer (forward and
reverse) (Metabion International AG, Germany), 1 ll (10 ng) tem-
plate RNA, 8.5-ll distilled sterile water, and 12.5-ll qPCR SYBER
Green Master Mix (2�) (Applied Biotechnology, Egypt) were added
to make a final volume of 25 ml. Amplification reactions were per-
formed in a 36-well Thermo Rotor-Gene Q qRT-PCR system. The
manufacturer’s recommended universal thermal protocol used
includes 3 min activation of thermo-start at 95 �C followed by
15 s at 95 �C for initial template denaturation, 45 cycles of 60 �C
for 30 s each, and combined annealing/extension phase of 72 �C
for 30 s. Biological repetition of qRT-PCR samples was performed
twice.
2.4. Data analysis

The amplification curves of each reaction were created using
sequence detection software. Also, an automatic setting of the
baseline calculated the threshold cycle number (Ct). A disassocia-
tion curve was created after each reaction to distinguish treatment
amplicons. Delta–delta threshold cycle (DDCq) expression values
were calculated for RNA samples of each treatment to determine
gene expressions using b-actin (reference gene) and other defense
genes.

D Cq = Cq – reference gene.
DD Cq = D Cq – control.
DD Cq expression = 2 (�DD Cq).
The equations show the mathematical model of the relative

expression ratio for the RT-PCR (Schmittgen and Livak, 2008).
Additionally, it expressed the ratio of the targeted gene in samples
vs. control compared with the housekeeping gene included in each
experiment with RT-PCR.
3. Results

3.1. Influence of Globodera rostochiensis on potato plants
morphologically

The field symptoms of ethylene treatment and nematode infec-
tion include leaf wilting and discoloration, growth retardation, and
reduced root system, which was abnormally branched, direct dam-
age to the roots in a case of high population densities, dwarfing,
and early senescence of plants because of nutrient deficiencies
and stress (Figs. 1 and 2).
3.2. Quantitative detection using qRT- PCR

The mRNAs of healthy potato roots and those infected with G.
rostochiensis and treated with different ethylene concentrations
were extracted. RT-PCR was used to detect the precise amounts
of mRNA for some genes of potato roots infected with G. rostochien-
sis and treated with four ethylene concentrations (0.1, 0.5, 1.0, and
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5.0 mM). These pathogen-related genes are PR2, PR3, PR9, and PPO,
while b-actin gene was used as a reference gene.

The uppermost expression of b-1,3-glucanase gene signified
after 24 h of root treatment with 0.1 mM ethylene before infection
with G. rostochiensis compared with the controls (Fig. 3A). Also,
gene expression was highly upregulated in response to 0.1 mM
ethylene root treatment after 72, 48, and 1 h before infection with
G. rostochiensis compared with the controls. The elevated expres-
sion was after 1 and 48 h of root treatment with 0.5 mM ethylene;
also, after 24 and 72 h of 67 root treatments with 0.5 mM ethylene
compared with the control before infection with cyst nematodes.
Additionally, results revealed that after 14 d after infection with
G. rostochiensis, gene expression was high for infected treated roots
with 0.5% ethylene (Fig. 3B). Furthermore, it showed a high expres-
sion (see Fig. 3C) after 1, 24, 48, and 72 h of root treatment with
1 mM ethylene compared with the control before infection with
cyst nematodes. There is only one uppermost expression of b-
1,3-glucanase gene signified after 48 h of infection with G. ros-
tochiensis for infected treated roots with 1 mM ethylene. Fig. 3D;
showed that the gene expression of b-1,3-glucanase elevated at
24, 48, 1, and 72 h of root treatment with 5 mM ethylene compared
with the controls before infection with cyst nematodes. Addition-
ally, after 14 d of infection with G. rostochiensis, the gene expres-
sion was high for infected treated roots with 5 mM ethylene and
relatively after 21 d of infection compared with the control.

In contrast, according to Fig. 4A, quantitative detection of chiti-
nase gene expression revealed that the elevated expression was
after 12 h of infection with G. rostochiensis for the infected treated
roots with 0.1 mM ethylene compared with the control. The high-
est level of chitinase gene expression was after 72 h of root treat-
ment with 0.5 mM ethylene before infection with G. rostochiensis
compared with the control (Fig. 4B). The quantitative estimation
of chitinase gene expression showed that the uppermost expres-
sion was after 24 h of root treatment with 1 mM ethylene, which
was before infection with G. rostochiensis compared with the con-
trol (Fig. 4C). Also, after 7 d of infection with G. rostochiensis, the
gene expression for infected treated roots with the same concen-
tration (1 mM) ethylene was compared with the control. However,
Fig. 4D; showed that all treatments recorded a low expression,
except for three, where the elevated expression was after 48 h of
root treatment with 5 mM ethylene before infection with G. ros-
tochiensis, subsequently after 14 d of infection with G. rostochiensis
for treated roots with 5 mM.

The quantitative detection of peroxidase gene expression
showed high expression after 24 and 12 h of infection with G. ros-
tochiensis for treated roots infected with 0.1 mM ethylene com-
pared with the control (Fig. 5A). Additionally, results showed
that all root treatments with 0.1-mM ethylene signified and high
expressed before the 68 infections of cyst nematodes, beginning
with 1 h of root treatment until 72 h after treatment. According
to Fig. 5B; the high level of gene expression was after 12 and
24 h of infection with G. rostochiensis for infected roots treated
with 0.5-mM ethylene compared with the control, whereas the
gene expression of root treatment with 0.5-mM ethylene was rel-
atively high after 72 h before cyst nematode infection. Fig. 5C;
shows the quantitative estimation for peroxidase gene expression
in potato roots treated with 1-mM ethylene after 14 and 21 d of
infection with G. rostochiensis. Also, the gene expression of root
treatment with 1-mM ethylene was relatively raised after 72 h
before cyst nematode infection compared with the controls. In con-
trast, Fig. 5D; revealed that it estimated only high expression after
1 h of root treatment with 5-mM ethylene before cyst nematode
infection. Also, the gene expression of roots infected with G. ros-
tochiensis and treated with 5-mM ethylene was low, except for
one treatment, which was relatively elevated after 12 h of infection
compared with the control.



Fig. 1. Representing; control roots (a), potato roots infected with G. rostochiensis and treated with 0.1-mM ethylene (b), potato roots infected with G. rostochiensis and treated
with 0.5-mM ethylene (c), potato roots infected with G. rostochiensis and treated with 1.0-mM ethylene (d), and potato roots infected with G. rostochiensis and treated with
5.0-mM ethylene (e).

Fig. 2. Representing; control shoots (a), shoots of potato infected with G. rostochiensis and treated with 0.1-mM ethylene (b), shoots of potato infected with G. rostochiensis
and treated with 0.5-mM ethylene (c), shoots of potato infected with G. rostochiensis and treated with 1.0-mM ethylene (d), and shoots of potato infected with G. rostochiensis
and treated with 5.0-mM ethylene (e).
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The gene expression of polyphenol oxidase was high in only one
treatment after 1 h of root treatment with 0.1-mM ethylene before
cyst nematode infection compared with the controls (Fig. 6A). Also,
there was a raise after 72 h of root treatment with the same con-
centration (0.1 mM) ethylene before infection. The results of
Fig. 6B indicated that the uppermost gene expression of polyphe-
nol oxidase was after 1 h of root treatment with 0.5-mM ethylene
before cyst nematode infection compared with the control. Also,
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after 24 h of root treatment with 0.5-mM ethylene, the gene
expression of polyphenol oxidase was elevated before the infec-
tion. The high expression of polyphenol oxidase was shown in
Fig. 6C after 1 and 48 h of root treatment with 1-mM ethylene
compared with the controls before infection with the cyst nema-
todes. There is only one relatively raised expression of polyphenol
oxidase gene after 12 h of infection with G. rostochiensis for treated
roots infected with 1-mM ethylene. Results in Fig. 6D; showed that



Fig. 3. Histogram of quantitative estimation for PR2 gene expression in roots of potato ‘‘Spunta” cultivar treated with (A) 0.1 mM, (B) 0.5 mM, (C) 1.0 mM, and (D) 5 mM of
ethylene before infection with G. rostochiensis; healthy plants as controls at 1, 24, 48, and 72 h after infection with G. rostochiensis; healthy plants as control at 12, 24, 48 h, and
7, 14, 21, 28, and 35 d.

Fig. 4. Histogram of the quantitative estimation for PR3gene expression in potato roots ‘‘Spunta” cultivar treated with (A) 0.1 mM, (B) 0.5 mM, (C) 1.0 mM, and (D) 5 mM of
ethylene before infection with G. rostochiensis; healthy plants as control at 1, 24, 48, and 72 h after infection with G. rostochiensis; healthy plants as control at 12, 24, and 48 h
and 7, 14, 21, 28, and 35 d.
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the quantitative estimation of polyphenol oxidase gene expression
was high after 1 and 72 h of root treatment with 5-mM ethylene
compared with the control before infection with the cyst nema-
todes. Additionally, the polyphenol oxidase gene expression was
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raised after 24 h and 28 d of infection with G. rostochiensis for trea-
ted roots infected with 5-mM ethylene compared with the controls
and elevated after 21 d of infection with G. rostochiensis for treated
roots infected with the same concentration (5 mM) ethylene.



Fig. 5. Histogram of quantitative estimation for peroxidase gene expression in roots of potato ‘‘Spunta” cultivar treated with (A) 0.1 mM, (B) 0.5 mM, (C) 1.0 mM, and (D)
5 mM of ethylene before infection with G. rostochiensis; healthy plants as control at 1, 24, 48, and 72 h after infection with G. rostochiensis; healthy plants as control at 12, 24,
and 48 h and 7, 14, 21, 28, and 35 d.

Fig. 6. Histogram of the quantitative estimation for polyphenol oxidase gene expression in roots of potato ‘‘Spunta” cultivar treated with (A) 0.1 mM, (B) 0.5 mM, (C) 1.0 mM,
and (D) 5 mM of ethylene before infection with G. rostochiensis; healthy plants as control at 1, 24, 48, and 72 h after infection with G. rostochiensis; healthy plants as control at
12, 24, and 48 h and 7, 14, 21, 28, and 35 d.
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4. Discussion

The gene expression levels were high upon ethylene treatment
in potato roots (the control tissue is most scarce) by qRT- PCR. Sim-
ilar studies confirmed that most cyst nematodes were more
attracted to the ethylene-treated plants’ root exudates than
untreated control plants. Furthermore, the attractiveness of the
treated plants was much higher than that of the untreated ones
according to the triggers of Heterodera schachtii, which induced
an elevated expression of ethylene-related genes in the arabidopsis
roots (Abdelsalam et al., 2019a; Kammerhofer et al., 2015).

The qRT-PCR experiments for potato roots treated with differ-
ent ethylene concentrations were accomplished, and they con-
firmed their roles in regulating gene expression. For example, the
high concentration of ethylene treatments (5 mM) revealed low
gene expression levels for the roots infected with cyst nematodes.
Similar results confirmed that using several hormones on arabidop-
sis roots showed high concentrations of certain hormones, which
might alter the gene expressions, indicating that root tissue con-
tains the transcripts of shoot-specific genes (Abdelsalam et al.,
2019b; Wieczorek et al., 2006; Zhao et al., 2020).

The gene expression levels were high upon ethylene treatment
in potato roots (the control tissue is most scarce) by qRT-PCR. Sim-
ilar studies confirmed that most cyst nematodes were higher
attracted to ethylene-treated plants’ root exudates than those of
untreated control. Furthermore, these treated plants exhibited a
significantly higher attractiveness than untreated ones, as seen in
the triggers of Heterodera schachtii, which induced an elevated
expression of ethylene-related genes in the arabidopsis roots
(Abdelsalam et al., 2020; Kammerhofer et al., 2015; Zhao et al.,
2021).

Plants commonly activate the ethylene production and sig-
nalling pathway in response to pathogen attack, resulting in the
development of ethylene-dependent defensive signalling
(Broekaert et al., 2006). Studies showed that ET-insensitive
mutants to the exogenous ET application on tomato and Medicago
truncatula were found to be more susceptible to M. javanica, M.
hapla, and M. incognita (Hu et al., 2017; Čepulytė et al., 2018;
Costa et al., 2020). While, ET-insensitive Arabidopsis mutants were
more attractive to M. hapla juveniles, whereas ET-overproducing
plants were less attractive (Fudali et al., 2013). Similarly, the exter-
nal ET application in rice decreased M. graminicola infection (Nahar
et al., 2011; Sikder et al., 2021). In a research by Wubben et al.
(2001), five ethylene insensitive mutants of A. thaliana – etr1-1,
ein2-1, ein3-1, eir1-1, and axr2 were shown to be less vulnerable
to the nematode H. schachtii than wild type plants (Gutierrez
et al., 2009). Consequently, the diverse roles of ethylene in plant–
nematode interactions appear to be substantially influenced by
host plant, nematode species and infection stage (Piya et al., 2019).

Exogenous application of ethylene was also found to be efficient
in improving the baseline defensive responses of sugar beet against
cyst nematode and significant reduction of plant infection (Ghaemi
et al., 2020). Likewise, ethylene influences cyst nematode attrac-
tion to the root in Arabidopsis (Kammerhofer et al., 2015). The
overexpression of the ET transcription factor RAP2.6 improved
plant resistance toward H. schachtii, which was associated with
the activation of JA-dependent defensive genes and the increase
of callose deposition in the syncytium (Ali et al., 2013). As well
as ET has also been shown to have a function in syncytium forma-
tion (Wubben et al., 2001).

Moreover, the expression of genes encoding for the enzymes 1-
aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and
oxidase (ACO), involved in ET-signalling and ET-biosynthesis, is
usually thought to have a role in plant defense against endopara-
sitic sedentary nematodes (Li et al., 2015; Leonetti et al., 2017).
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Three ET-responsive genes such as one APETALA2/ethylene-
responsive transcription factor (AP2/ERF) gene were down-
regulated in the infected roots at 10 dpi (Ghaemi et al., 2020).
Besides, another two ET-defensive genes were up-regulated, EIL1
and ERF1, which have been implicated in ISR signalling and reduc-
tion of disease vulnerability (Nakano et al., 2006; Spence et al.,
2014). Transcriptomic analysis identified genes putatively impli-
cated in host resistance, for example genes involved in phenyl-
propanoid pathway and genes encoding F-box proteins, chitinase,
CYSTM domain-containing proteins, CASP-like protein and
galactono-1,4-lactone dehydrogenase (Ghaemi et al., 2020). The
synthesis of chitinase enzymes leads to the lysis of chitin-rich cell
walls of a variety of pathogens and pests, such as pathogenic fungi,
insects, and plant parasitic nematodes (Sharp, 2013; Subbanna
et al., 2018).

Cross-talk with other phytohormones such as JA (Nahar et al.,
2011), cytokinin or SA (Piya et al., 2019) and AUX (Strader et al.,
2010) might affect the outcome of ET–nematode interactions. For
example, Plants that have been treated with ET Activated many
genes in the JA signalling pathway, which result in increased
defensin synthesis and activation of several PR-proteins (Nahar
et al., 2011; Sikder et al. 2021). Also, the ET-responsive genes
EIL1 and EIN3 have been demonstrated to engage synergistically
with JA to regulate defense responses against Botrytis cinerea, but
they interact adversely with SA to regulate host defensive response
against Pseudomonas syringae (Chen et al., 2009; Zhu et al., 2011;
Piya et al., 2019). This study offers new molecular insights into
plant-nematode interactions, which can be exploited to develop
new management techniques for the potato cyst nematodes.
5. Conclusion

Unraveling plant-nematode interactions is essential for under-
standing their harmful effects on plants. The use of molecular tech-
niques can provide a better and more comprehensive knowledge of
various effects and microbial interactions. The current study
focused on enhancing potato resistance against cyst nematodes,
G. rostochiensis using different ethylene concentrations. Addition-
ally, we are tracking the quantification of the expressed genes
due to plant-nematode interactions, elucidating the molecular
mechanisms associated with disease resistance. Interestingly, high
levels of PR proteins, which are involved in the induced systemic
resistance of plants, were found, confirming the ethylene role in
the development of potato resistance against cyst nematode. This
may not only lead to a better understanding of the role of phyto-
hormones such as ethylene in potato-cyst nematode interactions
but also improve the potential to find sustainable agriculture solu-
tions and novel agrochemicals. This study extend knowledge about
plant-nematode interactions and can be used for breeding pro-
grams targeting cyst nematode resistance in potato plants. Finally,
our findings will pave the way for the implementation of novel
management approaches to maximize stress tolerance of agro-
ecosystems, which will produce value for the world’s growing pop-
ulation, for both food production and consumption.
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