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Abstract

Background: With the advent of primary human papillomavirus testing followed by cytology for cervical cancer screening,
visual interpretation of cytology slides remains the last subjective analysis step and suffers from low sensitivity and
reproducibility. Methods: We developed a cloud-based whole-slide imaging platform with a deep-learning classifier for p16/
Ki-67 dual-stained (DS) slides trained on biopsy-based gold standards. We compared it with conventional Pap and manual DS
in 3 epidemiological studies of cervical and anal precancers from Kaiser Permanente Northern California and the University
of Oklahoma comprising 4253 patients. All statistical tests were 2-sided. Results: In independent validation at Kaiser
Permanente Northern California, artificial intelligence (AI)-based DS had lower positivity than cytology (P< .001) and manual
DS (P< .001) with equal sensitivity and substantially higher specificity compared with both Pap (P< .001) and manual DS
(P< .001), respectively. Compared with Pap, AI-based DS reduced referral to colposcopy by one-third (41.9% vs 60.1%, P< .001).
At a higher cutoff, AI-based DS had similar performance to high-grade squamous intraepithelial lesions cytology, indicating a
risk high enough to allow for immediate treatment. The classifier was robust, showing comparable performance in 2 cytology
systems and in anal cytology. Conclusions: Automated DS evaluation removes the remaining subjective component from
cervical cancer screening and delivers consistent quality for providers and patients. Moving from Pap to automated DS
substantially reduces the number of colposcopies and also achieves excellent performance in a simulated fully vaccinated
population. Through cloud-based implementation, this approach is globally accessible. Our results demonstrate that AI not
only provides automation and objectivity but also delivers a substantial benefit for women by reduction of unnecessary
colposcopies.

Advances in digital imaging and machine learning can revolu-
tionize cancer screening, diagnosis, and treatment by improving
accuracy and reproducibility of image assessment and stream-
lining clinical workflow (1–4). With its requirement for high
throughput and fast turnaround and its dependence on micro-
scopic and visual technologies, automation can play a major
role in improving the efficiency of cervical cancer screening.
Many countries are currently switching from Pap cytology to

high-risk human papillomavirus (HPV) screening (5–7).
Although a negative HPV test provides great reassurance of low
cervical cancer risk over the next decade (8–10), only a small
subset of women with a positive HPV test require further evalu-
ation. To avoid overburdening the system with HPV-positive
women, additional triage is required for colposcopy referral (11,
12). Current triage strategies include partial HPV genotyping
and Pap cytology (7, 13). The limited sensitivity and
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reproducibility of cytology require laborious quality control pro-
cedures and frequent retesting (14, 15). Improving the efficiency
of cervical cancer screening is particularly important for vacci-
nated populations due to lower disease prevalence and higher
demands for screening test performance.

A promising triage strategy is concomitant detection of p16
and Ki-67 in the same cell (p16/Ki-67 dual stain [DS]), 2 markers
that are closely linked to cervical carcinogenesis and HPV onco-
protein actions. The HPV oncoprotein E7 interrupts cell cycle
control by releasing E2F, activating p16 expression. The coex-
pression of p16 and Ki-67, a cell proliferation marker, in the
same cell is specific to HPV-related carcinogenesis. DS has
shown greater accuracy for detection of HPV-related precancers
compared with cytology (16–21). Currently, artificial intelligence
(AI) algorithms mostly try to match manual reading accuracy to
improve automation but do not offer a substantial improve-
ment for patients. Automated scanning and deep-learning eval-
uation of DS slides can improve throughput, reproducibility,
and accuracy of the assay for better risk stratification and a di-
rect benefit to women (8, 22, 23). To achieve this, we developed
the CYTOREADER system that combines whole-slide scanning
with automated evaluation of DS cytology slides. Cloud-based
evaluation provides ample computational capacity and storage
space and can provide diagnostic procedures where sufficient
personnel, expertise, or infrastructure is lacking. We evaluated
the clinical performance of CTYOREADER in 4253 slides from 3
epidemiological studies of HPV-positive cervical and anal
precancers.

Methods

General Approach

CYTOREADER uses whole-slide scanners (Hamamatsu
Nanozoomers HT, XR, and S360) for imaging of ThinPrep
(Hologic) or SurePath (Becton Dickinson, BD) slides, 2 widely
used liquid-based cytology technologies. CYTOREADER is a
cloud-based system (Google Cloud Platform) that can also run
as a local installation. Training of deep-learning algorithms for
automated DS evaluation was performed using small areas
(tiles) from whole slides containing individual or small numbers
of epithelial cells. For training of the deep-learning algorithms,
tiles from training slides were manually evaluated for DS-
positive cells by 3 observers (Supplementary Figure 1, available
online).

Deep Learning

Two deep-learning approaches (Convolutional Neural Network
with 4 layers [CNN4] and Inception-v3 with 48 layers [IncV3])
were developed sequentially as shown in Figure 1 and described
in Supplementary Methods (available online). The algorithms
determine the number of DS-positive cells on a slide by detect-
ing the number of tiles above a certain likelihood threshold. A
slide is considered positive if the number of DS-positive cells on
a slide exceeds a certain cutoff. Training and validation were
conducted on the tile level and the slide level. First, a training
set from 450 patients was selected for which the clinical end-
point cervical intraepithelial neoplasia grade 3 or greater
(CIN3þ) was unblinded. Tiles were selected for initial training
(80%) and validation (20%) of the algorithm. The deep-learning
network provides a likelihood for each tile above which it is con-
sidered positive (0.5 for CNN4 and 0.4 for IncV3). The resulting

candidate CNN was applied on the slide level on training slides.
A cutoff of positive tiles is used to determine slide positivity (�3
tiles per cell for CNN4 and �2 tiles per cell for IncV3). From mis-
classified slides, false-positive or false-negative tiles were
extracted and fed back into the original CNN training to opti-
mize classification accuracy of the CNN. A final locked CNN was
applied on the patient level on the blinded validation set com-
prising 3803 slides. CNN4 showed good performance in
Thinprep slides but not in Surepath slides. Subsequently, a sec-
ond algorithm (IncV3) was trained specifically for Surepath
slides (Supplementary Methods, available online). We published
a GitHub repository and created a web page at https://github.
com/stcmedhub/dual_stain_dl with a source code description of
the models and the installation instructions.

Study Populations

The Biopsy Study is a population-based study of women aged
18 years or older referred to colposcopy at the University of
Oklahoma Health Sciences Center between 2009 and 2011 (24).
We included DS slides from 602 women as previously described
(19). The study population was split into a representative train-
ing set (193 slides with 741 DS-positive and 953 DS-negative
tiles) and a validation set of 409 slides (Figure 1). This study was
approved by the University of Oklahoma and National Cancer
Institute (NCI) institutional review boards (IRB); written in-
formed consent was obtained from all participants before study
enrollment.

The Anal Cancer Screening Study (ACSS) was based at the
San Francisco Kaiser Permanente Northern California (KPNC)
Anal Cancer Screening Clinic. HIV-positive men who have sex
with men 18 years or older were enrolled at KPNC between 2009
and 2010. DS slides from 318 men were generated as previously
described (25). From 19 training slides, 445 DS-positive and 532
DS-negative tiles were used for training (Figure 1). This study
was approved by the KPNC and NCI IRBs; written informed con-
sent was obtained from all participants before study
enrollment.

At KPNC, DS was evaluated for triage of HPV-positive women
between 2012 and 2015 in a population of women aged 25 years
and older who were undergoing routine cervical cancer screen-
ing (16). From a screening population of more than 300 000
women in a year, 3333 slides from HPV-positive women were in-
cluded. From 238 training slides, 8215 DS-positive and 9739 DS-
negative tiles were used for training (Figure 1). The study was
approved by the KPNC IRB and was exempted from institutional
review at the NCI by the Office of Human Subjects Research.
Patient consent was waived because deidentified discarded
specimens were used in this study.

Clinical Endpoints

All studies followed routine clinical practice at the respective
institutions. Cytology was classified by the Bethesda System:
negative for intraepithelial lesions or malignancy, atypical
squamous cells of undetermined significance, low-grade squa-
mous intraepithelial lesions, and high-grade squamous intrae-
pithelial lesions (HSIL) (26). Final diagnosis was established by
histopathology classified according to the cervical intraepithe-
lial neoplasia (CIN) scale for cervical endpoints, which indicates
the extent of dysplastic cells in the cervical epithelium: no indi-
cation for biopsy, normal CIN, grade 1 (CIN1), grade 2 (CIN2),
grade 3 (CIN3), and cancer. We grouped adenocarcinoma in situ
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with CIN3. For anal disease endpoints, the comparable anal
intraepithelial neoplasia nomenclature (AIN) was used.

p16/Ki-67 Staining and Evaluation

For the Biopsy Study and ACSS, slides were prepared from resid-
ual PreservCyt material using a T2000 processor (Hologic,
Bedford, MA). For the KPNC study, slides were prepared from re-
sidual SurePath tubes according to the manufacturer’s instruc-
tions (BD, Sparks, MD). Immunostaining of cervical cytology
slides for p16/Ki-67 was performed using the CINtec Plus Kit
(Roche, Tucson, AZ) according to the manufacturer’s instruc-
tions. DS-trained cytotechnologists reviewed all slides; a slide
was considered positive if 1 or more cervical epithelial cell(s)
stained both with a brown cytoplasmic stain (p16) and a red nu-
clear (Ki-67) irrespective of morphologic abnormalities. Slides
from the Biopsy Study and ACSS were stained and evaluated at
Roche mtm laboratories AG, Heidelberg, Germany, whereas
slides from the Kaiser DS study were stained and evaluated at
KPNC. HPV testing with partial genotyping (HPV16 and HPV18)
at KPNC was based on the cobas assay (Roche, Pleasanton, CA).

Statistical Analysis

We created boxplots and calculated medians to show the distri-
bution of DS-positive cells in cytology and histology categories.
We compared differences in DS cell counts in ordinal cytology
and histology categories using 1-way analysis of variance. The
primary endpoint for the Biopsy Study and the Kaiser Study was
CIN3 or greater (CIN3þ). For ACSS, the primary endpoint was
AIN2 or AIN3 (AIN2þ). Receiver operator characteristics curve
analysis was conducted for the number of DS-positive cells
against the primary endpoints, and the area under the curve

(AUC) was calculated. Sensitivity and specificity coordinates for
manual DS evaluation and cytology were plotted on the receiver
operator characteristics curve for comparison. We calculated
percentage positivity, sensitivity, specificity, and Youden’s in-
dex in the Biopsy Study and ACSS for the cutoff determined by
CNN4 and for manual DS evaluation. In the Kaiser Study, with a
representative population of women who underwent routine
screening, we calculated percentage positivity, sensitivity, spe-
cificity, and positive and negative predictive values for auto-
mated and manual DS. Differences in positivity, sensitivity, and
specificity were evaluated using an exact McNemar’s v2, and dif-
ferences in predictive values were evaluated using the R pack-
age DTComPair, using the generalized score statistic (27). To
evaluate clinical efficiency of each strategy, we estimated the
number of CIN3þ detected for different cutoffs of DS-positive
cells and the ratio of the number of tests and colposcopies per
case of CIN3þ detected. We also evaluated the theoretical per-
formance of automated DS in a fully vaccinated population by
excluding all women who were positive for HPV16 and/or
HPV18 from the analysis. Analyses were performed in SPSS,
Stata, and R. All statistical tests were 2-sided and P less than .05
was considered statistically significant.

Results

Automated Detection of DS-Positive Cells in Colposcopy
and Anoscopy Populations

We developed a deep-learning algorithm for automated detec-
tion of DS-positive cells on ThinPrep slides from 2 referral popu-
lations (Biopsy Study and ACSS), including 212 training slides
with 1186 DS-positive and 1485 DS-negative tiles (Figure 1). We
evaluated the algorithm in independent validation slides from
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Figure 1. Study design. AI ¼ artificial intelligence; CNN ¼ convolutional neural network; CIN3þ ¼ cervical intraepithelial neoplasia grade 3 or worse; DS ¼ dual stain.

A
R

T
IC

LE

74 | JNCI J Natl Cancer Inst, 2021, Vol. 113, No. 1



both studies (Figure 1). In both studies, we observed an increase
in the number of DS-positive cells by increasing severity of cy-
tology and histology, with higher absolute DS-positive cell num-
bers in ACSS (P< .001 for all comparison; Supplementary Figure
2, available online).

In the Biopsy Study validation set with 53 CIN3þ, the AUC
for detecting CIN3þ based on automated DS using CNN4 was
0.74 (Figure 2). At a cutoff of 3 DS-positive cells, the CNN4 algo-
rithm had marginally lower positivity (58% vs 63%, respectively,
P¼ .06) with comparable sensitivity (P¼ 1.0) and marginally
higher specificity compared with manual DS (40.6% vs 45.7%, re-
spectively, P¼ .07) (Table 1).

In the ACSS validation set with 69 AIN2þ, the AUC for detect-
ing AIN2þ based on automated evaluation of DS slides with
CNN4 was 0.77 (Figure 2). At a cutoff of 3 DS-positive cells, the
positivity of the CNN4 algorithm was lower (63% vs 71%, respec-
tively, P¼ .001) with comparable sensitivity (P¼ 1.0) and higher

specificity compared with manual DS (36.1% vs 46.1%, respec-
tively, P¼ .001) (Table 1).

Automated Detection of DS-Positive Cells in an HPV
Screening Population

We developed the deep-learning algorithm for SurePath slides
using a training set of 238 slides from the Kaiser study with
8215 DS-positive and 9739 DS-negative tiles and applied it in an
independent validation set of slides from 3095 women. We ob-
served an increase of DS-positive cells with increasing severity
of cytology and histology (Supplementary Figure 3, available
online).

In the Kaiser validation study including 218 CIN3þ, the AUC
for detecting CIN3þ based on automated evaluation of DS slides
was 0.82 (Figure 3). At a cutoff of 2 cells, the positivity of the

Figure 2. Receiver operating curve characteristics analysis of number of dual stain (DS)-positive cells detected by CYTOREADER for detection of cervical precancer in

the Biopsy Study and anal precancer in the Anal Cancer Screening Study. AUC ¼ area under the curve; AIN2þ ¼ anal intraepithelial neoplasia grade 2 or worse; CIN3þ
¼ cervical intraepithelial neoplasia grade 3 or worse.

Table 1. Accuracy for cervical and anal precancer based on manual and automated detection of DS-positive cells on ThinPrep slides in a col-
poscopy population (Biopsy Study, N¼ 409) and an anoscopy population (ACSS, N¼ 299)

Evaluation

Positive

AUC

Sensitivity Specificity

Youden’s index% Pa % (95% CI) Pa % (95% CI) Pa

Biopsy Study validation set (CIN3þ)
Manual 63.1 Ref 87.0 (75.6 to 93.6) Ref 40.5 (35.6 to 45.7) Ref 0.27
CNN4 57.9 .06 0.74 87.0 (75.6 to 93.6) 1.0 45.6 (40.5 to 50.8) .07 0.33

ACSS validation set (AIN2þ)
Manual 71.0 Ref 92.8 (82.2 to 96.5) Ref 36.1 (30.3 to 42.4) Ref 0.29
CNN4b 62.9 <.001 0.77 91.3 (80.2 to 95.4) 1.0 46.1 (40.0 to 52.6) <.001 0.37

aTwo-sided McNemar’s test. ACCSS ¼ Anal Cancer Screening Study; AIN2þ ¼ anal intraepithelial neoplasia grade 2 or worse; AUC ¼ area under the curve; CIN3þ ¼ cer-

vical intraepithelial neoplasia grade 3 or worse; DS ¼ dual stain; CNN ¼ convolutional neural network; Ref ¼ referent.

bCNN4 cutoff for Biopsy: 3 or more cells; CNN4 cutoff for Anal: 3 or more cells.
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algorithm was statistically significantly lower (42% vs 50%, re-
spectively, P< .001) with equal sensitivity (P¼ .4) but statistically
significantly higher specificity (61.5% vs 52.6%, respectively,
P< .001) compared with the manual DS. At a cutoff of 100 cells,
accuracy approached HSIL cytology that allows for immediate

treatment according to current management guidelines
(Figure 3). Automated DS provided better risk stratification com-
pared with Pap cytology and manual DS (Figure 4): more women
were reassured of a lower risk compared with the other strate-
gies (58% for automated DS vs 50% for manual DS and 40% for
cytology), and risk among positives was higher.

Clinical Efficiency of Automated DS Evaluation

We compared the clinical efficiency of Pap cytology, manual DS,
and automated DS at 2 cutoffs (2 or more cells and 1 or more
cells) for triage of HPV-positive women (Table 2). All DS strate-
gies achieved equal or better sensitivity for detection of CIN3þ
compared with Pap cytology while reducing unnecessary colpo-
scopic referrals. Automated DS reduced overall referral to col-
poscopy by one-third for the primary automated cutoff of 2 cells
(41.9% for automated DS vs 60.1% for cytology, P< .001).
Automated DS at a cutoff of 2 or more cells had similar sensitiv-
ity but statistically significantly higher specificity compared
with manual DS evaluation (61.5% vs 52.6%, P< .001).
Automated DS detection at a cutoff of 1 or more cells achieved
the highest sensitivity of all strategies, with statistically signifi-
cantly higher specificity and lower colposcopy referral com-
pared with Pap cytology. Automated DS at a cutoff of 2 or more
cells had the most favorable ratio of colposcopies per CIN3þ
detected compared with the least favorable ratio for the current
standard, Pap cytology (6.8 vs 9.9, respectively). Extrapolating
this to the full Kaiser screening population, out of 300 000
women screened annually, approximately 30 000 would test
HPV-positive and more than 18 000 would be referred to colpos-
copy using the current approach with Pap cytology, while only
12 570 would be referred to colposcopy using automated DS. We
also estimated the performance of automated DS in a fully vac-
cinated population. Similar to the overall evaluation, automated

Figure 3. Receiver operating curve characteristics analysis of number of dual

stain (DS)-positive cells detected by CYTOREADER for detection of cervical pre-

cancer in a human papillomavirus screening population in Kaiser Permanente

Northern California. ASC-US ¼ Atypical Squamous Cells of Undetermined

Significance; AUC ¼ area under the curve; HSIL ¼ high-grade squamous intraepi-

thelial lesions.

Figure 4. Absolute risk of precancer for Pap cytology, manual dual stain (DS), and automated DS. ASCUSþ¼ positive for Atypical Squamous Cells of Undetermined

Significance or greater cytology results. The dotted lines show clinical action risk thresholds for colposcopy referral (4% risk) and immediate treatment (50% risk).
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DS showed equal sensitivity and lower colposcopy referral com-
pared with Pap cytology with even higher specificity
(Supplementary Table 1, available online).

Discussion

Using a rigorous study design, we developed a novel deep-learn-
ing–based image analysis platform for automated evaluation of
DS cytology. In a large population of women undergoing HPV-
based cervical cancer screening, we show that automated eval-
uation of DS slides dramatically increases the efficiency of cer-
vical cancer screening by substantially reducing unnecessary
colposcopies compared with current standards and similarly
achieves excellent performance in a simulated fully vaccinated
population. Thus, CYTOREADER exceeds human diagnostic ac-
curacy and serves as an example of AI achieving improvements
beyond the automation of a human standard.

Our results demonstrate how automation and machine
learning can transform cervical cancer screening that is cur-
rently undergoing major changes. HPV testing for cervical can-
cer screening is an objective and reliable approach directly
linked to the carcinogenic process (28). HPV-negative women
are at very low risk of developing precancer or cancer over the
next decade and screening intervals can be extended (8–10). Yet
most HPV infections are transient, and women require addi-
tional tests to decide who needs further evaluation or treatment
(11, 12). Pap cytology is recommended and approved for triage
of HPV-positive women but suffers from subjectivity, lack of re-
producibility, and relatively low sensitivity (14). Our previous
study comparing manual DS to cytology together with the cur-
rent results demonstrates that automated DS evaluation can
supplant and improve the role of Pap cytology for triage of HPV-
positive women and should also be evaluated for postcolpo-
scopy and posttreatment surveillance (16). Compared with Pap
cytology, manual DS has higher accuracy and can provide lon-
ger reassurance against disease when a test is negative, while
the risks to patients do not differ from Pap cytology, because
the same sample type is used (17, 21). We previously showed
that the few DS-negative CIN3s are more likely to have no
HPV16/18 and no high-grade cytology, suggesting that these
cases are less likely to progress (16). Automated DS evaluation
can provide a completely objective cervical cancer–screening
approach, improving efficiency and reducing harms and cost re-
lated to false-positive screening results. Furthermore, by dem-
onstrating that AI-based DS detection works for anal cytology,
we show the robustness of the imaging and analysis platform.
Importantly, our approach is also suited for vaccinated popula-
tions, where it may achieve even higher specificity and counter-
balance the lower disease prevalence in vaccinated women (29).

Automated DS evaluation immediately quantifies the num-
ber of DS-positive cells on a slide, allowing tailoring positivity
cutoffs for specific clinical decisions. Current guidelines give an
option for immediate treatment in women with HSIL cytology,
who have a very high probability of having underlying CIN3þ
(30). A higher cutoff of DS-positive cells could be used to guide
treatment decisions. Moving forward, additional criteria can be
developed to expand slide assessment; for example, the pres-
ence of abnormal glandular cells to identify adenocarcinoma
precursors, which is a particular challenge for Pap cytology (31).

Digitization of glass slides paired with automated evaluation
in the cloud can provide high-throughput triage of HPV-positive
women with inherent objectivity. Furthermore, the functional-
ity of CYTOREADER can provide an assisted diagnostics modeT

ab
le

2.
A

cc
u

ra
cy

fo
r

ce
rv

ic
al

p
re

ca
n

ce
r

ba
se

d
o

n
Pa

p
cy

to
lo

gy
an

d
m

an
u

al
an

d
au

to
m

at
ed

d
et

ec
ti

o
n

o
f

D
S-

p
o

si
ti

ve
ce

ll
s

o
n

Su
re

Pa
th

sl
id

es
in

th
e

K
ai

se
r

V
al

id
at

io
n

St
u

d
y

(N
¼

30
95

)

Ev
al

u
at

io
n

C
o

lp
o

sc
o

p
y

re
fe

rr
al

,N
o

.(
%

)
Pa

(c
yt

o
lo

gy
/

m
an

u
al

D
S)

Se
n

si
ti

vi
ty

,
%

(9
5%

C
I)

Pa
(c

yt
o

lo
gy

/m
an

u
al

D
S)

Sp
ec

if
ic

it
y,

%
(9

5%
C

I)
Pa

(c
yt

o
lo

gy
/m

an
u

al
D

S)
PP

V
,%

(9
5%

C
I)

Pb
(c

yt
o

lo
gy

/
m

an
u

al
D

S)
N

PV
,%

(9
5%

C
I)

Pb
(c

yt
o

lo
gy

/m
an

u
al

D
S)

C
o

lp
o

sc
o

p
ie

s
p

er
C

IN
3þ

d
et

ec
te

d
,

N
o

.(
95

%
C

I)

Pa
p

cy
to

lo
gy

(1
88

C
IN

3þ
)

18
60

(6
0.

1)
R

ef
85

.8
(8

1.
2

to
90

.5
)

R
ef

41
.9

(4
0.

1
to

43
.7

)
R

ef
10

.1
(8

.7
to

11
.5

)
R

ef
97

.5
(9

6.
6

to
98

.3
)

R
ef

9.
9

(8
.7

to
11

.3
)

M
an

u
al

D
S

(1
97

C
IN

3þ
)

15
36

(4
9.

6)
<

.0
01

/
R

ef
90

.0
(8

6.
0

to
93

.9
)

.2
/R

ef
52

.6
(5

0.
8

to
54

.5
)

<
.0

01
/

R
ef

12
.6

(1
1.

0
to

14
.3

)
<

.0
01

/
R

ef
98

.6
(9

8.
0

to
99

.2
)

.0
2/

R
ef

7.
8

(6
.8

to
8.

9)
A

u
to

m
at

ed
D

S
(2

ce
ll

s)
(1

92
C

IN
3þ

)
12

98
(4

1.
9)

<
.0

01
/
<

.0
01

88
.1

(8
2.

5
to

91
.7

)
.6

/.
4

61
.5

(5
9.

7
to

63
.3

)
<

.0
01

/
<

.0
01

14
.8

(1
2.

9
to

16
.8

)
<

.0
01

/
<

.0
01

98
.5

(9
7.

8
to

99
.0

)
.0

3/
.8

6.
8

(5
.9

to
7.

7)

A
u

to
m

at
ed

D
S

(1
ce

ll
)(

20
1

C
IN

3þ
)

17
41

(5
6.

3)
.0

07
/
<

.0
01

91
.8

(8
7.

3
to

95
.1

)
.0

5/
.5

46
.5

(4
4.

6
to

48
.3

)
.0

6/
<

.0
01

11
.5

(1
0.

1
to

13
.1

)
.0

02
/
<

.0
01

98
.7

(9
7.

9
to

99
.2

)
.0

1/
.5

8.
7

(7
.6

to
9.

9)

a
T

w
o

-s
id

ed
M

cN
em

ar
’s

te
st

.C
IN

3þ
¼

ce
rv

ic
al

in
tr

ae
p

it
h

el
ia

ln
eo

p
la

si
a

gr
ad

e
3

o
r

w
o

rs
e;

D
S
¼

d
u

al
st

ai
n

;N
PV
¼

n
eg

at
iv

e
p

re
d

ic
ti

ve
va

lu
e;

PP
V
¼

p
o

si
ti

ve
p

re
d

ic
ti

ve
va

lu
e;

R
ef
¼

re
fe

re
n

t.
b
T

w
o

-s
id

ed
ge

n
er

al
iz

ed
sc

o
re

st
at

is
ti

c.

A
R

T
IC

LE

N. Wentzensen et al. | 77



for evaluating DS slides. The automatic algorithm can be used
for presenting all DS-positive cells found on a slide ranked by
the likelihood that a cell is DS-positive to accelerate slide evalu-
ation. Similarly, CYTOREADER can be used for quality control of
a program that is based on manual DS evaluation.

Successful implementation of CYTOREADER requires an in-
frastructure for high-quality staining, full-slide scanning, and
running the machine-learning algorithm. However, slide prepa-
ration, scanning, and slide evaluation can be geographically
separated, providing high-quality cervical cancer screening and
triage in locations that currently do not have infrastructure and
training to achieve reliable DS evaluation given a reliable cou-
rier system is available. Compared with manual evaluation of
DS slides, the automated evaluation requires access to scanning
infrastructure but may require a smaller cytotechnology work-
force. Scanners are increasingly available in pathology laborato-
ries and can process large batches of slides with limited need
for a skilled operator (22, 23). Studies are warranted to evaluate
if DS is amenable to self-collected specimens, a sampling strat-
egy that is important for low-resource settings. Future efforts
also need to evaluate how long a negative automated DS result
provides reassurance against precancer and how automated DS
can be used in women undergoing surveillance.

We conducted a large, well-powered study to evaluate perfor-
mance of automated DS for triage of HPV-positive women.
However, some limitations should be noted. In contrast to the
large KPNC study on HPV triage based on SurePath slides, 2 studies
using ThinPrep slides were comparably small, and they were con-
ducted in colposcopy/anoscopy populations. Future studies need
to evaluate automated DS in larger HPV screening populations us-
ing ThinPrep slides. Also, the positivity and sensitivity of cytology
at KPNC is much higher compared with other settings, which may
affect the comparison of clinical efficiency estimates.

Our approach to train and validate both on the tile level and
the slide level with ground truth disease endpoints sets our
work apart from other deep-learning approaches in digital pa-
thology that focus on replicating a subjective evaluation. We
recognize that there is substantial subjectivity underlying histo-
logic endpoints of cervical disease (15). In our study, we mini-
mized the impact by relying on the most reproducible correlate
of cervical precancer, CIN3, as our primary endpoint for evalua-
tion of triage of HPV-positive women. Our work also emphasizes
the importance of integrating epidemiology and AI with the
availability of population bases studies to improve medical
diagnostics beyond automation. It has been proposed for a long
time that “digital pathology” will become an important corner-
stone of future health care. Despite this vision, image analysis
currently does not contribute substantially to routine clinical
practice and to the benefit of the patient. The automated evalu-
ation of DS cytology slides has substantially improved accuracy
and efficiency compared with Pap cytology and serves as an im-
portant example for introducing digital pathology and deep
learning into clinical practice. This approach has the potential
to substantially improve screening program performance, po-
tentially affecting millions of women testing HPV-positive in
cervical cancer screening each year.
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