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a b s t r a c t

The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradi-
cated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass
vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by acci-
dental or deliberate release of variola virus has stimulated new research for second-generation vaccine
development based on attenuated VV strains. Considering the closely related animal poxviruses that also
arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer
and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that
cannot replicate in mammals should improve the safety of conventional vaccines, and protect from
zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP)
recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix,
respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by
electroporation, and boosted with 4FPmix applied intranasally. The lethal VVIHD-J strain was then
administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of
the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular
immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and
IFNg-producing T lymphocytes were measured in the blood and spleen of the protected mice, as
compared to controls. VVIHD-J neutralizing antibodies in sera from the protected mice suggest that the
prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to
induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal
administration routes contributed to effective immune responses and mouse survival.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

New infectious diseases are continuously emerging, and the lack
of efficient immune prevention requires development of novel
vaccines and vaccination strategies. Due to successful eradication of
smallpox worldwide, the use of the vaccinia virus (VV) vaccine that
was administered by scarification was discontinued or was
replaced by VV-derived cultured immunogens (Weltzin et al.,
2003). However, serious side effects can result from the tradi-
tional vaccine (Ferrier-Rembert et al., 2008), especially in immu-
nocompromised people (Jacobson et al., 2008; Lane and Goldstein,
2003) and in patients with skin diseases (Schulze et al., 2007). Thus,
a new generation of attenuated vaccines has been developed to
decrease undesired effects, and to face the potential re-emergence
in the humanpopulation through accidental or deliberate release of
orthopoxviruses (OPXVs) (Megid et al., 2012; Vogel et al., 2012;
Whitley, 2003). In this regard, although not as lethal as the vari-
ola virus, the monkeypox virus (MPXV) also represents a threat to
public health, as it causes mortality in underdeveloped countries
(Reed et al., 2004) and can become a potential bioweapon if
adapted to grow and spread in humans (Lewis-Jones, 2004).

Previous studies have demonstrated that, after the conventional
vaccination, neutralizing antibodies were mainly raised against
surface proteins of both the VV extracellular virions (e.g., A33, B5)
and the intracellular mature virions released after cell lysis (e.g., L1,
A27) (Moss, 2011; Roberts and Smith, 2008; Smith et al., 2002).
Therefore, subunit vaccines have been designed based on plasmids
that express the VV L1R, A27L, A33R, and B5R genes. These have
been shown to be protective in mice after intranasal (i.n.) VVIHD-J
challenge, and in monkeys after intravenous MPXV inoculation
(Buchman et al., 2010; Fogg et al., 2007; Hirao et al., 2011).

Attenuated avipoxviruses, and in particular canarypox and
fowlpox (FP) viruses, have also been developed as novel vectors for
the construction of recombinant vaccines against several human
infectious diseases (Radaelli et al., 1994; Zanotto et al., 2010). These
vectors are naturally restricted to avian species for their replication,
although they are permissive for entry and transgene expression in
most mammalian cells. In these cells, they undergo abortive
replication and express early and late viral products, but no mature
infectious viruses (Somogyi et al., 1993). Moreover, because of the
absence of cross-reactivity with VV, avipoxviruses can also escape
neutralization by vector-generated antibodies in smallpox-vaccine-
experienced humans (Baxby and Paoletti, 1992).

Previous studies have also shown that systemic delivery of FP-
based vaccines in humans is safe and does not cause adverse ef-
fects (Skinner et al., 2005). More recently, it was demonstrated that
FP is an excellent mucosal delivery vector, compared to recombi-
nant DNA or VV (Ranasinghe et al., 2011; Trivedi et al., 2014), and
that mucosal immunization induces better protective efficacy
against HIV-1, compared to systemic vaccination (Belyakov et al.,
2006; Ranasinghe et al., 2007).

Althoughmost pathogens enter the body throughmucosal sites,
most vaccines are administered by the parenteral route, and only a
few mucosal vaccines have been approved for human use. Vacci-
nation via intramuscular (i.m.) and subcutaneous routes also leads
to stimulation of systemic immune responses, but poorly promotes
immune protection at mucosal membranes (Riese et al., 2014).
Conversely, i.n. mucosal immunization can trigger humoral and
cell-mediated immunity both at mucosal sites and systemically
(Brandtzaeg, 2010; Holmgren and Czerkinsky, 2005). The presence
of high levels of IgAs in nasal lymphoid tissue and in the lungs,
which are the respiratory pathways through which OPVXs infect
animals and humans, can be fundamental for inhibition of viral
attachment to the mucosal epithelium, and provide protection
from infection (Pierantoni et al., 2015). Finally, i.n. vaccination is
more practical than the i.m. route (Lycke, 2012), and should facili-
tate mass vaccination campaigns. The development of live-
attenuated or inactivated mucosal vaccines should therefore meet
the needs for better protection against pathogens that penetrate
through mucosal membranes (Neutra and Kozlowski, 2006).

Several studies have demonstrated that combined systemic and
mucosal prime/boost immunization can enhance both the humoral
and cellular arms of immune responses (Ranasinghe et al., 2006;
Srivastava et al., 2008), and different immune outcomes have
resulted from combinations of poxvirus vectors using prime/boost
vaccination regimens (Ranasinghe et al., 2006; Wijesundara et al.,
2014). Moreover, vaccinations in which DNA priming is followed
by a recombinant viral vaccine boost can elicit greater immunity
when compared to the use of single immunogens (Lu, 2009;
Radaelli et al., 2003, 2007; Wang et al., 2008). Combined vaccines
can also elicit improved antigen-specific antibody responses (Vaine
et al., 2010).

In the present study, genetic vaccines were administered using
in-vivo electroporation (e.p.) followed by i.n. administration of FP
recombinants. After determination of the optimal schedules for
these e.p. and i.n. immunizations, the mice were primed with a mix
of four different DNA plasmids that carried the VV L1R, A27L, A33R,
and B5R genes (4DNAmix) (Pacchioni et al., 2013), and then boosted
with FP recombinants that carried the same VV genes (4FPmix). All
of the mice primed with 4DNAmix and boosted with 4FPmix were
protected after a challenge with the highly pathogenic VVHID-J,
which correlated with a neutralizing titer against the VV A27 en-
velope protein.

2. Materials and methods

2.1. Cells

Primary fibroblasts were prepared from specific-pathogen-free
chick embryos (Charles River Laboratories, Wilmington, MA, USA)
and grown in Dulbecco's modified Eagle's medium (DMEM) sup-
plemented with 5% heat-inactivated calf serum (Gibco Life Tech-
nologies, Grand Island, NY, USA), 5% Tryptose Phosphate Broth
(Difco Laboratories, Detroit, MI, USA), 100 U/ml penicillin and
100 mg/ml streptomycin. Green monkey kidney (Vero) cells
(American Type Culture Collection, Rockville, MD, USA)were grown
in DMEM supplemented with 10% heat-inactivated calf serum, 100
U/ml penicillin and 100 mg/ml streptomycin. Splenocytes from
BALB/c mice were grown in RPMI with glutamine, 10% heat-
inactivated foetal calf serum, and 100 U/ml penicillin and
100 mg/ml streptomycin (complete medium) and frozen in 90%
foetal calf serum and 10% dimethylsulfoxide.

2.2. Viruses

The highly pathogenic IHD-J strain of VV (VVIHD-J) was supplied
by S. Dales (University of Western Ontario, London, Canada)
(Wilton et al., 1986), and it was used as the challenging virus
(1 � 107 PFU/mouse, i.e., 5-fold the LD50), with i.n. administration.
VVIHD-J was grown in Vero cells, then amplified, purified on
discontinuous sucrose density gradient, and titrated, as described
previously (Pacchioni et al., 2013). The 4FP recombinants, FPL1R,
FPA27L, FPA33R, and FPB5R, that expressed the VV L1, A27, A33, and B5
proteins, respectively, were generated in our laboratory by in-vivo
homologous recombination (Pozzi et al., 2009). They were then
amplified in chick embryo fibroblasts and purified on discontin-
uous sucrose gradients, as described previously (Soprana et al.,
2011). Gene insertion was performed downstream of the VV H6
early/late promoter (Rosel et al., 1986), inside the 3-b-hydroxyste-
roid dehydrogenase 5-delta 4 isomerase gene, which was
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interrupted by a multiple cloning site.

2.3. Plasmids

The expression plasmids pcDNA3.1A27L, pcDNA3L1R, pcDNA3A33R,
and pcDNA3B5R were constructed by insertion of the same genes
used for the generation of the 4FP recombinants, as described
previously (Bissa et al., 2013). These were used to excise the genes
to be inserted into the pVAX expression plasmid (Invitrogen Corp.,
San Diego, CA, USA) that contained the kanamicin resistance gene,
and generated the pVAXA27L, pVAXL1R, pVAXA33R, and pVAXB5R,
respectively, before their amplification. Here, pcDNA3L1R,
pcDNA3A33R, and pcDNA3B5R were cut with HindIII/XhoI, whereas
pcDNA3.1A27L was cut with HindIII/NotI, with all inserted into the
same sites of the previously cut pVAX. Transformation was per-
formed using DH5a competent bacteria. Bacterial selection was
performed using the forward L1R V210 (50 GGG GGG ATC CCA TTT
AGTATC CTA AAATTGAAT TGTAAT TAT CGATAATAA ATGGGT GCC
GCA GCA 30) and reverse V211 (50 GGG GCT CGA GAG AAA AAC GAG
ATT TTC AGT TTT GCA T 30) primers, the forward A33R V186 (50 GGG
AAG CTT TAT CAT GAT GAC ACC AGA AAA CGA CGA 30), and reverse
V212 (50 GGG GTC GAC AAT ATT AGT TCA TTG TTT TAA CAC AAA 30)
primers; the forward B5R V206 (50 GGG GGT CGA CCA TTT AGT ATC
CTA AAATTGAAT TGTAAT TAT CGA TAATAA ATGAAA ACGATT TCC
30) and reverse V207 (50 GGG GAA GCT TAG AAA AAG GAG ATA TTT
ACG GTA GCA A 30) primers, and the forward A27L V208 (50 GGG
GAG ATC TCA TTT AGT ATC CTA AAA TTG AAT TGT AAT TAT CGA TAA
TAA ATG GAC GGA ACT CTT 30) and reverse V209 (50 GGG GGT CGA
CAG AAA AAG GAG ATA TTT ACT CAT ATG G 30) primers. Amplifi-
cations were performed as described previously (Zanotto et al.,
2011), using 2.5 mM MgCl2 and 2 mM MgSO4, with annealing at
57 �C for 30 s (for A33R, B5R) or 61 �C for 30 s (for L1R, A27L), and
extension at 72 �C for 45 s (for L1R, A33R, A27L) or 1 min (for B5R).
The mixture of equal concentrations of the four recombinants was
then prepared (4DNAmix). PcDNA3gagpolwas used as an irrelevant
negative control, and is called DNAgagpol (Zanotto et al., 2010).
Both pcDNA3 and pVAX contain the human CMV promoter, but
only pVAX has been approved for use in humans.

2.4. Immunization protocols

Five groups of 8-week-old BALB/c female mice were used
(Charles River Laboratories, Wilmington, MA, USA), as seven mice/
group. Before each immunization, the mice were anaesthetized by
i.m. injection of 30-ml of a mixture of 3.5 ml Rompun (stock, 20 mg/
ml; Bayer SpA, Milan, Italy) plus 5.7 ml Zoletil 100 (Virbac Srl, Milan,
Italy) and 35.7 ml phosphate-buffered salinewithout Ca2þ andMg2þ

(PBS�). The vaccination course consisted of priming with two e.p.
administrations of the plasmid recombinants (i.m. injections fol-
lowed by electroporation), and the boost with two i.n. adminis-
trations of the FP recombinants. Briefly, for the e.p., two 25-ms
transcutaneous low-voltage electric pulses were administered
(amplitude, 150 V; interval, 300 ms) at the injection site via a
multiple-needle electrode connected to the e.p. apparatus (Clin-
iporator™; IGEA Srl, Carpi, Italy). Each immunization was per-
formed at two-week intervals. Two weeks after the last
immunization, the mice were i.n. challenged with a lethal dose of
VVIHD-J.

Five different immunization protocols were followed (Fig. 1)
using: (i) DNAgagpol plasmid (40 mg/mouse), followed by FPgagpol
recombinant (4 � 106 PFU/mouse; G1); (ii) DNAgagpol plasmid (40
mg/mouse), followed by 4FPmix recombinants (1 � 106 PFU of each
recombinant/mouse; G2); (iii) 4DNAmix (10 mg of each recombi-
nant/mouse), followed by FPgagpol recombinant (4 � 106 PFU/
mouse; G3); (iv) 4DNAmix (10 mg of each recombinant/mouse),
followed by 4FPmix recombinants (1 � 106 PFU of each recombi-
nant/mouse; G4); (v) 4FPmix recombinants (1 � 106 PFU of each
recombinant/mouse), with no DNA priming; G5). Bleeding was
performed from the retro-orbital eye plexus before the first im-
munization (Fig. 1, T0), before each of the first and second FP boosts
(Fig. 1, T1, T2), and just before the challenge (Fig. 1, T3). The plasma
fraction was aliquoted and frozen at �80 �C.

All of themiceweremaintained according to the Italian National
Guidelines and the EU Directive 2010/63/EU for animal experi-
ments. They were observed for signs of disease, weighed daily, and
provided with food and water ad libitum. Every effort was made to
minimize their suffering, and based on the predetermined criterion
of loss of >30% body weight, they were euthanized. Approval for
this study was granted by the Ethical Committee of the University
of Milan.

2.5. ELISA

The mouse plasma samples were tested for antibodies against
the VV-specific L1, A27, A33, and B5 proteins. Mixtures of these L1,
A27, A33, and B5 proteins (NIH Biodefense and Emerging Infections
Research Resources Repository, NIAID), or alternatively, the indi-
vidual proteins, were plated as 100 ng of each protein/well in 96-
well microtiter plates (MaxiSorp; Nunc, Naperville, IL, USA) in
0.05 M carbonate-bicarbonate buffer, pH 9.6, and incubated over-
night at 4 �C. ELISAs were performed in triplicate, essentially as
described previously (Radaelli et al., 2010), using the pooled sera of
each group of mice from T0, T1, T2, and T3 (see Fig. 1). For the protein
mixtures, the serawere diluted 1:500; for the single L1, A33, and B5
proteins, the sera dilutions were 1:100; for the A27 protein, the sera
dilutions were 1:500.

The reactions were revealed using a 1:2000 dilution of goat anti-
mouse horseradish-peroxidase-conjugated serum (DakoCytoma-
tion, Glostrup, Denmark) and tetramethylbenzidine substrate
(Sigma). The pre-immunization mouse sera (Fig. 1, T0) were used as
negative controls. The absorbance of each well was read at 450 nm
using a Microplate Reader 550 (Bio-Rad, Hercules, CA, USA).

2.6. Splenocyte preparation

Two out of the seven mice per group were sacrificed by neck
dislocation two weeks after the last vaccination and their spleen
was removed; an exception was for G3, where only one mouse was
used, as two in this group died before the challenge for nonex-
perimental reasons. Briefly, the spleen was laid on a 40-mm nylon
cell strainer (Corning Incorporated, NY, USA) and mechanically
disrupted for 2 min with a flat plastic piston. The cells were passed
through the filter using 6 ml RPMI complete medium. After
centrifugation at 400 � g for 10 min at 4 �C, the supernatant was
removed, and the pelleted cells were aliquoted at 2 � 106/vial for
the interferon-g (IFNg) ELISPOT assay.

2.7. ELISPOT assay

Splenocytes from the immunized mice (1 � 106) were plated in
triplicate into nitrocellulose 96-well plates (HTS IP; Millipore,
Bedford, MA, USA) that had been pre-coated with 5 mg/ml rat anti-
mouse IFNg antibody (clone R4e6A2; BD Biosciences Pharmingen,
San Diego, CA, USA). The cells were stimulated for 48 h at 37 �C in
RPMI complete medium containing 10 mg/ml of each of the A27,
A33, B5, and L1 proteins individually. Unstimulated cells were used
as the negative control, and 2 mg/ml concanavalin A (Sigma-
Aldrich) as the positive control. The plates were developed ac-
cording to the manufacturer instructions (BD™ ELISPOT; BD Bio-
sciences). The specific spots were enumerated using a reader
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Fig. 1. Immunization protocols. Five different regimens (G1-G5) were followed using 7 mice per group. The four genetic recombinants expressing the VV L1R, A27L, A33R, and B5R
genes (4DNAmix) were used for priming, and the viral recombinants expressing the same four genes (4FPmix) were used for the boost. DNAgagpol and FPgagpol recombinants
containing HIV-1 gagpol genes were used as irrelevant immunogens. Each plasmid was administered in vivo by e.p. (10 mg/recombinant/mouse), and each virus was administered i.n.
(1 � 106 PFU/recombinant/mouse). The VVIHD-J challenge virus was administered i.n. at 1 � 107 PFU/mouse (i.e. 5-fold the LD50 determined for FPgagpol). Mice were bled before the
first immunization (T0), before the first and second FP boosts (T1, T2) and just before the VVIHD-J challenge (T3).
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(Transtec 1300 ELISPOT Reader; AMI Bioline, Buttigliera Alta, Turin,
Italy), and analyzed using the ImmunoSpot image analysis software
(A.EL.VIS GmbH, Hannover, Germany). IFNg-secreting spot-forming
cells (SFCs) were counted, as the mean numbers per million
assessed, including subtraction of the number of SFCs in the
absence of stimulation.
2.8. Determination of VVIHD-J LD50 for mice i.n. challenge

Preliminary tests were performed with female BALB/c mice to
evaluate the VVIHD-J LD50 after administration of different concen-
trations of the DNAgagpol and FPgagpol recombinants, carrying the
irrelevant gagpol gene of HIV-1 (Table 1, LD50 tests 1e4). The
immunization protocols were followed by challenges with different
amounts of VVIHD-J, to evaluate the lowest dose that killed 50% of
the mice (i.e., LD50). The VVIHD-J challenge virus was administered
i.n. in 30 ml PBS� through a plastic pipette tip after anesthetizing the
mice, as described previously (Bissa et al., 2013). All of the mice
were followed daily, with measurements of their weight, and
monitoring for disease symptoms.
2.9. Virus neutralization assays

The neutralizing activities of the mice sera obtained before the
challenge were determined by measuring the extent of in-vitro
inhibition of VVIHD-J infectivity. The assays were performed by pre-
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incubation of an equal volume of VVIHD-J with heat-inactivated
mouse serum, used at different dilutions in 48-well plates, for
1 h at 37 �C. The viral titer was adjusted to provide approximately
4 � 102 PFU VVIHD-J/ml in the assays. The infection was performed
in duplicate on Vero cells, and was allowed to proceed for 1 h at
37 �C. The same amount of virus incubated with DMEMwas used as
the control. Three days later, 1.5% neutral red was added, and the
plaques were counted the next day, as described previously
(Pacchioni et al., 2013). In the preliminary assays, sera from the T3
bleeding were pooled to perform the neutralization tests for each
group. For the sera from G2 and G4, inwhich some or all of themice
were protected, these were also tested individually. Neutralization
was expressed as the percentage of inhibition of infectivity
compared to the control, where the virus was incubated with
DMEM only.

2.10. Statistical analysis

Statistical analysis was performed using one-way ANOVA
parametric tests and Bonferroni analysis of variance, with the
GraphPad Prism software, version 2.0. The statistical significance
was set as p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

3. Results

3.1. Specific humoral and cellular immunity is elicited in mice
primed with 4DNAmix and boosted with 4FPmix

With the aim to develop a protective vaccination strategy
against OPXV infections, five different immunization protocols
were compared for their ability to induce antibodies against the VV
L1, A27, A33, and B5 proteins expressed by DNA or FP recombinants
administered alone or in combination. The specific humoral re-
sponses were measured by ELISA, using pooled sera from immu-
nized mice and either a mix of all of these proteins (Fig. 2A) or the
individual proteins (Fig. 2B) as the plate-bound antigens. As ex-
pected, the control mice of G1 did not show any specific antibody
response against any of the proteins tested (Fig. 2A). In contrast, the
mice vaccinated with 4DNAmix plus 4FPmix (G4) showed signifi-
cantly higher antibody titer against the pooled VV proteins, as
compared to the other experimental groups at all of the bleeding
times (p < 0.001). Interestingly, a significant increase in antibody
titers was observed after the FP boost (i.e., T2 and T3 vs. T1;
p < 0.001). The single antigens were then plated to test the speci-
ficity of the antibodies for each protein that were induced by these
vaccinations (Fig. 2B). None of the groups showed humoral re-
sponses against L1. In contrast, both G3 and G4 showed humoral
responses against A27, which was significantly greater for G4 (G4
vs. G3; p < 0.001), where a further significant increase was also
observed after the FP boosts (i.e., T2 and T3 vs. T1; p < 0.001). For
A33, with G2 and G4, humoral responses were measurable only at
T3, which were significantly greater for G2 than the other groups
(p < 0.001), although it never reached the level attained with A27.
Against B5, there was a significantly greater response only at T3
Table 1
Determination of LD50 by inoculation of different doses of VVIHD-J in immunized mice.

LD50 test Immunogen Route of administration Conc

1 Prime 4DNAmixa e.p. 40 m
Boost 4FPmixa i.n. 4 �

2 DNAgagpol e.p. 40 m
3 FPgagpol i.n. 1 �
4 FPgagpol i.n. 4 �
a Mix comprising equal amounts of each of the four components (VV L1R, A27L, A33R,
after the second FP boost for G2, G4, and G5 (p < 0.001).
To determine the vaccine-induced cell-mediated immunity, the

secretion of IFNg by splenocytes from mice that were immunized
following the different immunization regimens was assessed using
the IFNg-ELISPOT assay. Following the stimulation with A27, the
immunized mice from G2, G3, G4, and G5 showed significantly
greater numbers of SFCs (Fig. 3), as compared to those observed
using splenocytes from the control mice (G1). Interestingly, the
number of SFCs was significantly greater in the mice immunized
with 4DNAmix þ 4FPmix (G4 vs. G2; p < 0.05). Conversely, stim-
ulation with A33, B5, and L1 did not result in any significant in-
crease in the numbers of SFCs in any of these experimental groups
(data not shown).

3.2. The VVIHD-J challenge shows higher LD50 when the FP
vaccination is performed i.n

As previous data from our laboratory were obtained from BALB/
c mice immunized i.m. and subcutaneously, preliminary challenge
tests were performed to determine the VVIHD-J LD50 when admin-
istered i.n. To determine whether the DNA e.p. and the FP i.n.
administration routes affect the LD50 of VVIHD-J, two groups of
BALB/c mice were vaccinated twice with the irrelevant DNAgagpol
or FPgagpol (e.p., i.n., respectively) and challenged with increasing
VVIHD-J doses. Here, the LD50 remained unvaried at 2 � 105 VVIHD-J
PFU/mouse when using either the previously determined i.m. im-
munization with 100 mg of each recombinant DNA (Bissa et al.,
2013) or the e.p. immunization with 40 mg of the DNAgagpol re-
combinant (Table 1, LD50 test 2). Conversely, in mice immunized i.n.
with FPgagpol (1 � 107 PFU), the LD50 increased to 5 � 106 PFU/
mouse (Table 1, LD50 test 3), 25-fold greater compared to the LD50
observed by immunization with the same FP recombinants given
i.m. (Bissa et al., 2013). To reduce the amount of the VVIHD-J chal-
lenge, other tests were performed by reducing the titer of the
FPgagpol immunogen from 1� 107 PFU to 4� 106 PFU (Table 1, LD50
test 4). Using this FPgagpol dose, the LD50 was reduced from
5 � 106 PFU/mouse to 2 � 106 PFU/mouse. The challenge for the
different immunization protocols was then performed using 5-fold
the LD50 determined for FP (i.e., 1 � 107 VVIHD-J PFU/mouse).

3.3. Priming with 4DNAmix and boosting with 4FPmix protects all
of the mice from the challenge

To determine the protective efficacy of the vaccine-induced
immune responses, the mice of G1 to G5 that were not sacrificed
for spleen removal were taken beyond T3 to the challenge with
VVIHD-J, after which they were monitored for weight loss and sur-
vival. Soon after the experimental challenge, all of the mice pro-
gressively lost 25%e30% of their weight, up to days 4e5 post
challenge (p.c.) (Fig. 4A). This weight loss progressed with no
relevant differences among G1, G3, and G5, and all of the mice of
these three groups died between day 4 p.c. and day 14 p.c.
Conversely,100% of themice in G4, and 20% of those in G2, regained
weight after day 3 p.c. and day 5 p.c., respectively, and thus
entration VVIHD-J i.n. challenge (PFU/mouse) Survival %

g 1 � 106 100
107 PFU/mouse
g 2 � 105 50
107 PFU/mouse 5 � 106 50
106 PFU/mouse 2 � 106 50

B5R).
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Fig. 2. Analysis of specific humoral responses by ELISA. The sera of the mice of the
different groups were examined at different times post immunization as the pooled
sera diluted 1:500 for the protein mixture (A) and the sera diluted 1:100 for the in-
dividual L1, A33, and B5 proteins and 1:500 for the individual A27 protein (B). (A) Anti-
L1, -A27, -A33 and -B5 antibody levels were determined using a mixture of all of the
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survived the i.n. challenge with a 5-fold increase in the LD50
(Fig. 4B). These data demonstrate that DNA priming and FP boost-
ing is the most effective way to induce effective for these mice
against VVIHD-J.

3.4. Pre-challenge neutralizing activity against VVIHD-J correlates
with post-challenge mouse survival

To determine the putative pre-challenge immune correlates of
this protection against VVIHD-J, viral neutralization assays were
performed using the sera from T0 and T3 (Fig. 5). This included both
pooled sera from the mice of each experimental group and the sera
from each mouse of the G2 and G4 protocols, where protectionwas
obtained for 20% and 100% of the mice, respectively.

For the pooled sera, inhibition of viral infectivity was generally
higher in the pre-immune serum (T0) than after the third immu-
nization (T3), except for G4, where the mice were all seen to be
protected. The sera from these G4 mice showed low, although
significant, inhibition of infectivity at T3 at 1:40 dilution (T3 vs. T0;
p < 0.05) (Fig. 5A). As one of the five challenged mice from G2 was
also protected, the sera from both G2 and G4 were separately
analyzed at T0 and T3 for each of the five challenged mice of these
groups, to define any correlation between the pre-challenge viral
neutralizing activity and the p.c. mice survival (Fig. 5B). The pre-
immune sera of all of the mice of G2 showed higher neutralizing
activity at T0 than T3, except for mouse no. 1, which was the only
one that survived the challenge, and showed significantly higher
viral inhibition at 1:50 dilution (T3 vs. T0, p < 0.001). Conversely,
most of the challenged mice of G4 showed higher inhibition of
infectivity at T3 than T0 with the exception of mouse no. 5 (Fig. 5B).

4. Discussion

The lack of preventive vaccines against some infectious diseases
and the emergence of new pathogens underlines the need for new
and more effective immunogens. In particular, safer vaccines
against OPXV infection of animals and humans are still an impor-
tant issue, as a result of the reduction in the ‘herd immunity’
following discontinuation of the smallpox vaccination campaign. At
present, the development of safer vaccines against OPXV
(Artenstein, 2008; Poland, 2005; Wiser et al., 2007) has also been
encouraged by increased human MPXV zoonotic infections (Hutin
et al., 2012) or by problems that might arise if there is a delib-
erate release of variola virus for terrorist purposes.

It has already been shown that different viral vectors and their
combinations can significantly influence vaccine efficacy
(Ranasinghe et al., 2011) and enhance immune responses,
depending on inoculation site and recruitment of antigen-
presenting cells (Hervouet et al., 2014; Trivedi et al., 2014). Local
administration of vaccines to mucosal tissues can indeed elicit IgAs
and cytotoxic T lymphocytes, which can have pivotal roles in
neutralizing viruses at their natural port of entry (Brandtzaeg,
2007), and in elimination of infected cells.

In the present study, the four DNA and four FP recombinants all
proteins (L1 þ A27 þ A33 þ B5) as plate-bound antigens. Data are means of the animal
sera for each group. G4 mice showed significant increases in specific antibody titers
from T1. (B) The individual proteins were used as plate-bound antigens. None of the
groups showed humoral responses against L1. For A27, the humoral response was
significantly greater for G4 (G4 vs. G3; p < 0.001) and significantly increased over time
(G4: T2 and T3 vs. T1; p < 0.001). For A33, the humoral response was significantly
greater for G2 than the other groups (p < 0.001). For B5, the humoral response was
significantly greater only at T3 for G2, G4, and G5 (G2, G4, G5 vs. G3; p < 0.001).
Statistical differences are shown (one-way ANOVA parametric tests, Bonferroni anal-
ysis of variance): ***, p < 0.001.
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all of the groups of mice, only those from G4 showed significant inhibition of infec-
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Statistical differences are shown (one-way ANOVA parametric tests, Bonferroni anal-
ysis of variance): *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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contained the VV L1R, A27L, A33R, and B5R genes and were
administered following e.p. (for DNA) and i.n. (for FP recombinants)
routes and heterologous prime/boost immunization regimens. Our
aimwas to compare different vaccination protocols and to evaluate
the humoral and cell-mediated responses, as well as protection for
mice challenged with the highly pathogenic VVIHD-J. Here, we have
demonstrated that: (i) the specific humoral response correlates
with protection; (ii) only protected mice show specific VVIHD-J
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neutralizing antibodies; (iii) after i.n. FP vaccination, mice are
protected against higher VVIHD-J challenges; (iv) the putative pro-
tective role of the cellular immune response appears to be ascribed
to only the A27 protein; and (v) all of themicewere protectedwhen
primed with 4DNAmix and boosted with 4FPmix.

Although still controversial, the critical role of the antigen-
specific humoral response against OPXV has already been
described (Edghill-Smith et al., 2005; Panchanathan et al., 2006),
and passive transfer of VV-specific sera was shown to confer pro-
tection in both mice and monkeys (Golden et al., 2011). In the
present study, although the magnitude of the humoral response
was highly variable, a correlation with mice survival was shown
soon after the first immunization. In particular, the A27 antigenwas
the most immunogenic, as also demonstrated previously for the
MPXV A29 ortholog of VV A27 (Heraud et al., 2006), whereas no
response was elicited by L1 for all of the protocols used here.

The protective efficacy of genetic immunization was demon-
strated previously both in mice and nonhuman primates (Hooper
et al., 2003, 2007). However, in the present study, 4DNAmix of G3
and 4FPmix of G5 elicited antibodies against A33 and B5, although
they did not protect the mice. Surprisingly, irrelevant DNA in G2
increased the 4FPmix antibody response against A33, which was
not shown in G5, when only 4FPmix was used.

Neutralization of infectivity generally correlates with the level of
antibodies against the viral surface antigens, and is usually a direct
indication of vaccine efficacy and protection. In the present study,
natural in-vitro virus-neutralizing antibodies were present before
immunization, and these might be a characteristic of this animal
species. However, although we cannot provide a reason for this
neutralizing activity by pre-immune sera, only the protected mice
showed increased neutralization titers before the challenge.

When 10 mg DNA of each antigen was administered e.p., this
appeared to be as efficient as 100 mg DNA administered i.m. (Bissa
et al., 2013), as the VVIHD-J challenge dose remained unvaried. In
contrast, an increase in the dose of the VVIHD-J challenge was
necessary after i.n. immunizationwith FP recombinants, which also
provided an advantageous reduction in the amount of immunogen.
Indeed, although the 2 � 106 PFU VVIHD-J challenge was previously
found to be lethal after i.m. immunization with all of the FP
recombinants, i.n. administration of the same immunogens raised
the LD50 here by 25-fold, which indicates that the efficacy of FP
vaccines can increase remarkably when administered by this route.
This might be due to the same i.n. administration used for both the
vaccine and the challenge virus, which would indicate that this i.n.
vaccine can induce prominent mucosal immunity that is effective
against the incoming VVIHD-J. It has already been shown that,
compared to modified vaccinia Ankara and VV, FP recombinants
can better promote recruitment of dendritic cells and induce CD8þ

T-cellemediated immunity. Their i.n. delivery can recruit unique
antigen-presenting cells to the lung mucosa, when compared to
other recombinant poxvirus vectors (Trivedi et al., 2014), by even-
tually conferring a different T-cell functionality (Furuhashi et al.,
2012). Similarly, canarypox recombinants can elicit qualitatively
distinct cytokine and chemokine profiles compared to attenuated
VV vectors in rhesus macaques (Teigler et al., 2014). Moreover, viral
interference and competition for penetration cannot be excluded,
as FP-based recombinants might bind to the same poxvirus re-
ceptors and hamper VVIHD-J penetration through the airway mu-
cosa (Laliberte and Moss, 2014).

The protective role of the cytotoxic T-lymphocyte response after
OPXV vaccination is still debated (Buchman et al., 2010), although
vaccines that target T-cell epitopes also appear to be protective
(Goulding et al., 2013; Moise et al., 2011; Snyder et al., 2004).
Moreover, vaccination with VV was also effective when there was
dysfunction in the humoral response, although not in patients with
T-cellerelated immunodeficiencies (Golden and Hooper, 2013). Our
data also confirm the efficacy of both DNA and FP recombinants for
stimulation of CD8/IFNg cell-mediated immunity, with high spe-
cific response induced by the A27 antigen. In particular, cellular
immunity induced by recombinant genetic and viral vaccines
administered alone was lower than that observed when these
vaccines were administered in combination, and the cellular im-
mune responses against A27 shown here for G2, G3, and G5 were
not significantly different from that of G1. In contrast, significantly
greater numbers of IFNg-producing SFCs were measured for the G4
mice, which were all protected. This survival was also found to be
inversely correlated with the weight decrease, which was initially
similar in all of the groups after the VVIHD-J challenge, but all of the
G4 mice recovered their weight, as also for the only protected
mouse of G2.

Overall, this protection appears to have beenmainly determined
by the humoral response, whichwas endowedwith a specific virus-
neutralizing activity. This was the case for all of the mice immu-
nized with 4DNAmix followed by 4FPmix, thus showing the effi-
ciency of this prime/boost vaccination regimen, and the
fundamental contribution of 4FPmix. As our antibody determina-
tion was performed on peripheral blood, it could not have
discriminated among the different IgG, IgM, and IgA isotypes to
estimate the contribution of the mucosal IgAs. This isotype is
mainly present at the i.n. inoculation site, and it might have been
the main effector of this protection, considering that both the
4FPmix boost and the VVIHD-J challenge were performed using the
same administration route.

This combined use of the L1 and A27 envelope proteins of the
intracellular mature virions and the A33 and B5 proteins of the
extracellular virions has already been shown to protect mice better
than the same proteins administered alone (Hooper et al., 2003).
However, in the present study, the humoral, neutralizing, and
cellular responses were mainly raised against the A27 surface
protein, and thus it would be interesting to determine whether
protection can also be obtained by administration of only DNAA27

followed by FPA27, using this prime/boost immunization protocol.
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