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This is a prospective, single center study aimed to evaluate the predictive power of
peritumor and intratumor radiomics features assessed using T2 weight image (T2WI) of
baseline magnetic resonance imaging (MRI) in evaluating pathological good response to
NAC in patients with LARC (including Tany N+ or T3/4a Nany but not T4b). In total, 137
patients with LARC received NAC between April 2014 and August 2020. All patients were
undergoing contrast-enhanced MRI and 129 patients contained small field of view (sFOV)
sequence which were performed prior to treatment. The tumor regression grade standard
was based on pathological response. The training and validation sets (n=91 vs. n=46)
were established by random allocation of the patients. Receiver operating characteristic
curve (ROC) analysis was applied to estimate the performance of different models based
on clinical characteristics and radiomics features obtained from MRI, including peritumor
and intratumor features, in predicting treatment response; these effects were calculated
using the area under the curve (AUC). The performance and agreement of the nomogram
were estimated using calibration plots. In total, 24 patients (17.52%) achieved a complete
or near-complete response. For the individual radiomics model in the validation set, the
performance of peritumor radiomics model in predicting treatment response yield an AUC
of 0.838, while that of intratumor radiomics model is 0.805, which show no statically
significant difference between then(P>0.05). The traditional and selective clinical features
model shows a poor predictive ability in treatment response (AUC=0.596 and 0.521) in
validation set. The AUC of combined radiomics model was improved compared to that of
the individual radiomics models in the validation sets (AUC=0.844). The combined clinic-
radiomics model yield the highest AUC (0.871) in the validation set, although it did not
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improve the performance of the radiomics model for predicting treatment response
statically (P>0.05). Good agreement and discrimination were observed in the
nomogram predictions. Both peritumor and intratumor radiomics features performed
similarly in predicting a good response to NAC in patients with LARC. The clinic-radiomics
model showed the best performance in predicting treatment response.
Keywords: rectal cancer, treatment response, neoadjuvant chemotherapy, nomogram, magnetic resonance
imaging radiomics
INTRODUCTION

Rectal cancer is one of the most common malignant neoplasms
and the second leading cancer-related cause of death worldwide
(1). Locally advanced rectal cancer (LARC) accounts for
approximately 70% of newly diagnosed rectal cancer cases
annually, which is defined as T3-4Nany or TanyN+, regardless
the status of the CRM (2). Following neoadjuvant fluorouracil-
based chemoradiotherapy (CRT), total mesorectal excision
(TME) and adjuvant chemotherapy are the recommended
standard treatments for LARC before. However, several large
prospective trials, including RAPIDO (3), PRODIGE 23 (4) have
brought neoadjuvant chemotherapy to the fore as a new standard
to LARC. Furthermore, recent results indicated that, compared
to nCRT, neoadjuvant chemotherapy (NAC) showed no
statistically significant difference in terms of 3-year local
recurrence (8.3% vs 7.0%~ 8.0%), disease-free survival (DFS)
(73.5% vs 72.9%~77.2%), and overall survival (OS) (90.7% vs
89.1%~91.3%) between the three arms (5). Even Habr-Gama and
colleagues suggest the ‘wait and watch’ strategy for patients with
LARC with a clinical complete response (cCR) after neoadjuvant
chemoradiotherapy (nCRT) (5). Although the rate of
pathological complete response (pCR) in the CRT group was
higher than that in the NAC group, higher toxicity and more
postoperative complications were observed in patients who
received only radiotherapy (6, 7). Predicting patients who
could achieved CR undervent NAC before operation is of great
clinically meaning. It may indicates that the specific patients
could avoid the unnecessary radiotherapy (8).

However, pCR (pathology complete response) can only be
confirmed in the resected specimens after surgery.Magnetic
resonance imaging (MRI) has merged as a dominant method of
pelvic imaging in rectal cancer for its superb soft tissue contrast
between tumor and other soft tissue (9). Besides, MRI is particular
accurate in assessing the distance between the tumor and the
mesorectal fascia with sensitivity and specificity up to 94% and
76% respectively (10). Furthermore, 3.0T MRI scanner perform
better than the 1.5T MRI in the visual assessment of the complete
response patients of rectal cancer (10). In spatially and temporally
heterogeneous solid cancers, invasive biopsies specimens cannot
reflect the overall characteristics of the tumor, which limits the use
of invasive biopsy based molecular assays but gives huge potential
for medical imaging (11). Radiomics, as a new term, was first
proposed by Lambin et al. in 2012 (12). Radiomics can convert
traditional radiological images into data that can be further
analysis. The workflow includes multi-steps: images acquisition,
2

image segmentation, features extraction and selection, model
construction and validation. The aim of radiomics is to translate
medical images into quantitative data, which may reveal a deeper
information of the tumor (13). With its ability to perform high-
throughput extraction of image features derived from radiographic
images, radiomics can provide a non-invasive method of
describing intra-tumoral heterogeneity (12). Previous studies
(14–18) have estimated the predictive performance of magnetic
resonance imaging (MRI) or computed tomography (CT) features
to evaluate tumor treatment response. In these studies, most
examinations were focused on LARC after nCRT, which is of
little significance for making decisions regarding NAC. In
addition, previous radiomics studies of LARC focused on the
intertumoral region alone, and information regarding peritumoral
radiomics features was overlooked. Recently, in other cancers, the
peritumoral area has been used to predict the treatment response.
For example, Khorram et al. (19) used combined peri- and
intratumoral radiomics models to predict the response to
chemotherapy in lung adenocarcinoma and indicated that
radiomic features extracted within the nodule and border (from
the baseline CT scan) performed well in predicting treatment
response in association with time to progress (TTP) and overall
survival (OS). Hu et al. (20) showed that, in patients with
esophageal squamous cell carcinoma, a model combining intra-
and peritumoral radiomics showed good performance in
predicting pCR following NAC (0.852 (95% CI, 0.753-0.951). At
present, to the best of our knowledge, only a few studies have
focused on peritumor radiomics research, and its role in
predicting treatment response to NAC has not been definitively
demonstrated. Therefore, we aimed to establish the model based
on radiomics of the intratumor and peritumor to predict the
efficacy of NAC in LARC. Prediction of good response to NAC can
reduce radiotherapy-related toxicity and the economic burden of
the patients. Our findings, if confirmed, may help identify good
response patients and lower the overtreatment rate.
MATERIALS AND METHODS

Patient Population
The study was approved by the Ethical Committee of the Sun
Yat-sen University Cancer Center. This was a secondary analysis
based on prospective research data (Approval no. 5010-2014-
013). The ethical principles of the Declaration of Helsinki were
followed in conducting work involving human participants
enrolled in this study. Informed consent was obtained from
May 2022 | Volume 12 | Article 801743
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each patient prior to treatment and participation. The study
cohort was enrolled between April 2014 and August 2020. The
patients were recruited based on the following inclusion criteria:
(1) pathologically confirmed single primary rectal cancer;
(2) clinical diagnosis of LARC (defined as the tumor invading
the muscularized layer of the intestinal wall with positive
peripheral lymph node metastasis (T2 N+) or primary tumor
invading the subserosa regardless of the status of the lymph node
(T3-4aNany); (3) no distant metastasis; (4) initial pretreatment
MRI of the pelvis; (5) no other malignant cancers; (6) no anti-
cancer treatment in other clinical centers; (7) an Eastern
Cooperative Oncology Group score of 0–1; (8) age between 18
and 75 years. The exclusion criteria were as follows: (1)
Frontiers in Oncology | www.frontiersin.org 3
preoperative staging evaluating whether the tumor had invaded
the surrounding tissues or organs (T4b); (2) severe hypertension
with poor control; (3) history of viral infection, including
human immunodeficiency virus or chronic hepatitis B or C;
(4) arrhythmia requiring antiarrhythmic treatment (except via
blockers or digoxin), myocardial ischemia (i.e., myocardial
infarction in the last 6 months), or symptomatic coronary
artery disease with heart failure exceeding New York Heart
Association level II criteria; and (5) a history of pelvic or
abdominal radiotherapy to exclude the influence of other
serious diseases and treatment history on the treatment
outcomes. The patient selection process for this study is
summarized in Figure 1. A total of 302 eligible patients were
FIGURE 1 | Flow chart of the study.
May 2022 | Volume 12 | Article 801743
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recruited from April 2014 and August 2020. Of these, a further
165 patients were ineligible and were excluded, including 157
patients received CRT, 6 patients quitted the clinical trial, 1
patient died before treatment and 1 patient didn’t perform
surgery, and finally data collection could be complete on a
total 137 participants (83 men and 54 women).

The following variables were obtained from patient medical
charts: age, sex, body mass index (BMI), history of smoking,
initial carcinoembryonic antigen (CEA) and carbohydrate
antigen 19-9 (CA19-9) levels (as determined by MRI), the date
and cycle of chemotherapy, surgery date, and tumor regression
grade (TRG). Blood samples were collected from all patients
within one week of treatment. In addition, the date of the
baseline MRI, clinical T and N staging, the distance from the
tumor to the anal edge, the long and short diameter of the tumor,
the status of mesorectal fascia (MRF) invasion, and extramural
vascular invasion as determined by MRI were obtained.

Neoadjuvant Chemotherapy and
Pathological Assessment
The chemotherapy regimen implemented within the current
study was the CapeOx plan (oxaliplatin 30 mg/m2, day 1;
capecitabine 850–1,000 mg/m2, bid, days 1–14). There were
breaks of three weeks between cycles. The total number of
cycles ranged between two and four. Upon completion of
chemotherapy, TME surgery was performed.

Two experienced gastrointestinal cancer pathologists (Dr. Xi
and Dr. Wu) with 8 and 12 years of diagnosis experience,
respectively, reviewed and evaluated all resected specimens.
Clinical and MRI data were also evaluated by these pathologists.
TRG was evaluated based on the TRG system proposed by
Mandard et al. (21) TRG was quantitated in five grades: TRG1
(complete regression) showed absence of residual cancer and
fibrosis extending through the different layers of the bowel wall;
TRG2 was characterized by the presence of rare residual cancer
cell scattered through the fibrosis; TRG3 was characterized by an
increase in the number of residual cancer cells, but fibrosis still
predominated; TRG4 showed residual cancer outgrowing fibrosis;
and TRG 5 was characterized by absence of regressive changes.
Considering that a good response to NAC can lead to avoiding
radiotherapy and that poor responders may need further
treatment or assess other treatment options, patients were
divided into two response groups: good responders (TRG 1–2
disease, no or rare tumor cells remaining) and poor responders
(TRG 3–5 disease, moderate to extensive residual cancer cells).
Frontiers in Oncology | www.frontiersin.org 4
A consensus was reached in cases involving uncertainties in
evaluating the pathology specimens.

MRI and Image Evaluation
Patients underwent rectal MRI prior to NAC. The time from the
MRI to the start of therapy was less than 2 weeks. Response:
thank you very much for your question. All the MRI
examinations were performed without bowel preparation,
endorectal gel or spasmolytic drugs. Pretreatment MRI was
performed using a 3.0 T MR scanner (Trio Tim, Siemens
Healthcare, Malvern, PA, USA; Achicva 781-278, Philips,
Cambridge, MA, USA) using two elements of the body matrix
coil as well as two elements of the spine matrix coil, or was
performed using a 3.0 T system (Discovery 750, 750 W, SIGNA
Pioneer GE Healthcare, Chicago, IL, USA; uMR 780, United
Imaging, Shanghai, China) equipped with an eight-channel
phased-array body coil in the supine position. A conventional
rectal MRI protocol including diffusion-weighted imaging
(DWI) and axial, coronal, and sagittal T2W images was
implemented in all patients. Contrast-enhanced sequences
were obtained. Detailed MRI protocol were list in Table 1.

The features of tumor location, MRF, and extramural venous
invasion (EMVI) were evaluated by two radiologists (Dr. Cai and
Dr. Li with 12 and 16 years of experience respectively in rectal
cancer imaging), and the double-blind principle was applied. The
rectum extends from the anal verge (AV) to a distance 15 cm
cranially and can be divided into upper rectum (10.1-15cm from
AV), mid rectum (5.1-10cm from AV) and lower rectum (0 to 5
cm from AV). The MRF positive was defined that the distance
was less than 1mm from the tumor to mesorectal fascia. The
extramural venous invasion was assess based on the EMVI
scoring system raised by Smith et al. (22). Score 0-2 was
defined EMVI negative and score 3-4 was defined EMVI positive.

Tumor Segmentation
All regions of interest (ROIs) were manually evaluated via the T2
Weighted image (T2WI) in each slice of the MRI for 3D
segmentation. The ROI 1 is the segmentation for the whole
tumor and ROI 2 was the segmentation for the tumor bed, which
was defined the area that the tumor invaded to the mesorectal.
Image segmentation was performed using the open-source
software ITK-SNAP (version 3.8.0, www.itksnap.org/;
developed at the University of Pennsylvania and the University
of North Carolina at Chapel Hill). Digital imaging and
communications in medicine images were obtained prior to
TABLE 1 | Detailed MRI protol.

MRI protocol

Sequences FOV
(cm)

Slice
gap

Slice
sapcing

Axis T2WI without fat suppress, small FOV, thin layer, The upper bound included the entire sacral promontory, and the lower bound
included the entire anus, area larger than 320*256

20 3 0.5

Axis T1WI without fat suppress, small FOV, thin layer, Turbo spin echo (TSE) 30-40 5 1
Axis DWI with fat suppress, b=800 30-40 5 1
Axis contrast-enhanced LAVA sequences with fat suppress 30-40 4 -2 ov
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treatment. Small field of view, high-resolution axial T2W
sequence is a priority for segmentation. If this sequence could
not be obtained, the T2W sequence best displaying the tumor
was used for segmentation (including coronal, sagittal, or large
field images of the non-high-resolution axial).

Radiomics Feature Extraction
ROI segmentation was used for radiomics feature extraction.
Radiomics feature extraction was performed using the
“PyRadiomics” package in Python (version 3.0, Wilmington,
DE, USA; https://pyradiomics.readthedoc s.io/). Features
extracted from the volume of the entire tumor were defined as
intertumoral features. Based on the whole tumor, peritumor
features were acquired by expanding 5 mm from the border of
the tumor to the tumor bed. The process of intratumor and
peritumor ROI segmentation is shown in Figure 2.

To avoid data heterogeneity bias, all MRI data were subjected
to imaging normalization (the intensity of the image was scaled
to 0–100) and resampled to the same resolution (1mm×1mm×1
mm) before feature extraction. For each ROI, six feature classes
[251 first order statistics, and texture classes (including 336 gray
level cooccurrence matrix, 224 gray level run length matrix, 224
gray level size zone matrix, 196 gray level dependence matrix,
and 70 neighboring gray tone difference matrix)] were calculated,
which resulted in a total of 1301 radiomics features for each scan.
The file for the extraction process is included in the
Supplementary Material.

Feature Selection
The selection process was as follows to screen valuable features
and reduce redundant, irrelevant features. First, it was necessary
to perform standard scaling of the extracted features. Second, the
inter-reader agreement was estimated using the interclass
coefficient (ICC) between features extracted from the two
segmentations. Only features with an ICC >0.70 were selected
for the feature selection process. Third, after conducting Pearson
Frontiers in Oncology | www.frontiersin.org 5
correlation, univariate analysis, and the application of the least
absolute shrinkage and selection operator (LASSO) algorithm,
the most useful predictive parameters were selected to construct
the delta-radiomics signature. Finally, multivariate logistic
regression was used to generate the prediction model. The
workflow of the radiomics model construction was showed
in Figure 3.

Statistical Analysis
X2 or Fisher’s exact tests were used for comparing categorical
variables, while the Kruskal–Wallis test was used to compare
numeric variables. A receiver operating characteristic curve
(ROC) analysis was performed to estimate the predictive
performance of different models, which was calculated as the
area under the curve (AUC). Calibration curve were evaluated
using calibration and decision curves. Univariate and
multivariate logistic analyses were performed to clarify the
relationship between clinical parameters and pCR. Statistical
significance was defined as a two-tailed p-value of <0.05.
Python (version 3.7) and R statistical software (version 3.3.3;
Vienna, Austria) were used for graphical depiction and statistical
analysis, respectively.
RESULTS

Clinical Characteristics
The clinical characteristics of the enrolled patients are summarized
in Table 2. In total, 137 patients were recruited in this study.
Participants were randomly divided into training (n=91) and
validation sets (n=46). The mean age of the patients was 57
(range: 30–77) years; 83 (60.1%) were men, and 55 (39.8%) were
women. There was no statistically significant difference in the good
response rate between the training and validation cohorts (16.5%
vs. 19.5%, p=0.834). Except for maximal lymphnode (max LN),
statistically significant differences were not observed in all clinical
D

E F

A

B

C

FIGURE 2 | The segmentation process of the region of interest for intratumor and peritumor. (A) The whole tumor was manually segmented on axial T2-weighted
images and labeled as “intratumor” area (the red area). (B) Manually outline the area of the tumor bed (the green area), which is defined as the mesorectal area that
the tumor has invaded. (C) Show the outline of the entire tumor. (D–F) The edge link to the “tumor bed” of “tumor” was dilated by 5 mm and subtracted to obtain
the “peritumor” tissues (the blue area).
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features when comparing the training and validation cohorts.
mulivariate factor analysis revealed that the CEA level, T stage,
and tumor invasion circumference (TIC) were relative to TRG
(p<0.05). (Table 3).

Feature Selection and Radiomics
Signature Construction
In total, 1,301 radiomics features were retrieved from intratumor
and peritumor images conducted via T2WI.We performed Pearson
correlation and univariate analyses to screen the correlative features
and eliminate features with low reproducibility. LASSO analysis was
then used to select the features from among the screened features
(Supplementary Figure 1). Finally, following backward
elimination, 9 and 10 features were selected from the peritumor
and intratumor images, respectively (Table 4). The remaining
features are listed in Supplementary Table 1.

Eventually, the traditional clinical characteristics, selective
clinical characteristics and radiomics signature were used to
constructed the predictive model, including the traditional clinical
model (including T and N stage), selective clinical model (including
T stage, CEA level, TIC), intratumor radiomics model, peritumor
radiomics model, combined radiomics model (including intra-
peritumor radiomics) and clinic-radiomics model (selective
clinical characteristics combined intra-peritumor radiomics).
Models Performance
The traditional clinical model yields an AUC of 0.677 (95%
confidence interval [CI] 0.527–0.827) in training set and an AUC
of 0.701 (95% CI 0.565-0.837) in validation set. When
Frontiers in Oncology | www.frontiersin.org 6
considering the selective clinical model, the results suggest that
the AUC in the training set is 0.775 (95% CI 0.637-0.913) and
that is 0.596 (95% CI 0.637-0.913) in validation set. In the
training cohort, intratumor radiomics features model yielded
an AUC of 0.932, whereas that of the peritumor model was 0.921.
Furthermore, the two models yielded an AUC of 0.805 and 0.838,
respectively, in the validation set (Table 5).

Compared to selective clinical model and the intratumor
radiomics model individually, the combined selective clinic-
intratumor radiomics model achieved the highest AUC (0.940,
95% CI 0.882–0.997) in the training set, whereas the AUC value
is 0.781(95% CI 0.603–0.959) in the validation set. Besides, The
AUC of the selective clinic-peritumor radiomics model for
training set is 0.932 (95% CI 0.871–0.992) and that of the
validation set is 0.844 (0.667-1.000), which is statistically
significantly higher than that of the selective clinical model
(p=0.025) (Table 6).

The AUC of the combined radiomics model was 0.949 (95%
CI 0.887–0.998) in the training cohort and 0.844 (95% CI 0.650–
1) in the validation cohort, which was higher than that of the
individual radiomics model. Compared to the combined
radiomics model, the combined clinic-radiomics model,
improved the AUC from 0.844 to 0.871 in the validation
set (Table 7).

The nomogram of clinics-intratumor and clinics-peritumor
for predicting good response as well as the calibration curve are
presented in Figures 4, 5 respectively. The nomogram showed
good performance in predicting the response to NAC. Good
discrimination and good calibration for the probability of TRG
were observed in the validation set with respect to clinics-
FIGURE 3 | The workflow of the radiomics model construction.
May 2022 | Volume 12 | Article 801743
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peritumor radiomics, with an AUC of 0.838. However, in the
validation set, our nomogram for the clinics-intratumor models
did not achieve better discriminatory efficiency than that of the
peritumor models. The nomogram of the clinic-radiomics model
showed good discrimination in predicting treatment response in
the validation set as well (Figures 6 A–E).
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Pretreatment prediction of good treatment response is of great
significance in pre-therapeutic decision-making. These models
demonstrated that the performance of the radiomics signature
model in predicting treatment response was far superior to that
of the traditional or selective clinical features model. In addition,
we found that peritumor radiomics model performed as well as
intratumor radiomics model in predicting good treatment
response after NAC. The combined clinic-radiomics model
showed superior performance in predicting treatment response.

MRI is the image modality of choice when dealing with the
primary staging and restaging after treatment in LARC.
Although high-resolution MRI is recommended for T and N
staging in patients with rectal cancer, the accuracy of staging is
still unsatisfactory (18). The main challenge of MRI in
assessment of pretreatment T stage is that differentiating early
RC (T1-T2) from LARC (12). The study of Detering et al.
showed that the accuracy of T stage of early RC evaluated by
MRI is poor, with a 54% agreement to pathology (23). For the
total T category, the sensitivity, specificity and accuracy of MRI
assessment are 87%, 75% and 85% (24). In the assessment of N
staging, a poor accuracy of 69% was observed in Detering’s study.
Radiomics, which were obtained from the primary image of
tumor, reflect number of characteristics, not only the shape and
location, but also the tumor heterogeneity. Due to the lower
accuracy of the staging of RC, it may lead to the poor
performance in predicting the prognosis or the treatment
response in rectal cancer. This hypothesis is consisted with our
findings. Our study revealed that radiomics model has higher
predictive performance than clinical model, no matter the
traditional or the selective model, suggesting that radiomics
could be a practical image biomarker for patients with LARC
in predicting treatment response. However, lack of the standard
protocol for MRI acquisition and uncertainties in tumor
segmentation adversely limit the clinical application
of radiomics.

Previous studies have identified that pretreatment T2W
images play an important role in predicting treatment response
(15, 16) in patients with LARC. However, these studies focused
on patients with LARC who received nCRT. The rate of pCR to
nCRT was higher than that to NAC in patients with LARC (6). In
consideration of individual therapy strategies, screening patients
who are likely to achieve a good response to NAC is important to
avoid over-treatment. Moreover, most previous studies on
radiomics in patients with LARC concentrated on whole tumor
features in patients treated with nCRT. Palmisano and colleagues
(25) analyzed the apparent diffusion coefficient (ADC) and
imaging via DWI and T2WI before, during, and after nCRT in
patients with LARC and demonstrated that changes in the ADC
value and tumor volume at different times could help identify
pCR. Shaish et al. (26) reported that T2WI radiomics could be
used to predict pCR, neoadjuvant rectal scores, and TRG in
patients with LARC receiving nCRT. Furthermore, Petresc et al.
(27) reported that T2WI radiomics showed good predictive
performance for LARC non-response. In our research, we
proposed a pretreatment MRI-based peri- and intratumor
TABLE 2 | Clinical characteristics of patients in the training and validation set.

Characteristics Training Validation P
(N = 91) (N = 46)

Gender 0.54
Male 53 30
Female 38 16

Age 0.90
<60 49 26
≥60 42 20

BMI 0.64
<18.5 8 6
18.5-24 56 25
>24 27 15

Smoking 0.28
no 74 33
yes 17 13

Family history 0.85
no 72 35
yes 19 11

HB (g/l) 0.78
<120 15 6
≥120 76 40

CEA (ng/ml) 0.99
<5 56 28
≥5 35 18

CA19-9 (u/ml) 0.53
<35 82 39
≥35 9 7

T stage 0.42
T3a 28 13
T3b 24 16
T3c 4 0
T4a 35 17

Distance (cm) 0.55
≤5 14 8
5.1-10 65 29
>10 12 9

TIC 0.69
1/4 1 1
2/4 26 11
3/4 41 25
4/4 23 9

MRF 0.64
negative 77 32
positive 14 14

EMVI 0.45
negative 72 32

positive 19 14
LN metastasis 0.20
negative 63 26
positive 28 20

max LN (mm) 0.04*
<5 48 15
≥5 43 31

TRG 0.83
0 76 37
1 15 9
*p < 0.05.
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features model combining clinical and radiomic features to
predict a favorable response to NAC in patients with LARC.
Interestingly, the model combining intratumor and clinical
features did not show statistically significant improvement in
the predictive performance compared to that of the radiomics
Frontiers in Oncology | www.frontiersin.org 8
model. The reason for this may be that the radiomics model
yielded good performance in predicting treatment responses in
patients with LARC, and the partial clinical characteristics were
reflected in the radiomics. Although prediction performance
varied in the validation cohort, the model incorporating
TABLE 3 | Univariate and multivariate analyses of the clinical characteristics.

Characteristics univariate Multivariate
HR CI 95% P HR CI 95% P

Gender
Male
Female 1.27 0.41-3.90 0.67

Age
<60
≥60 1.03 0.33-3.13 0.97

BMI
<18.5
18.5-24 1.34 0.20-26.63 0.80
>24 1.59 0.21-33.19 0.69

Smoking
Yes
No 0.63 0.09-2.60 0.56

Family history
yes
no 2.21 0.61-7.34 0.20

HB (g/l)
<120
≥120 0.75 0.20-3.64 0.69

CEA (ng/ml)
<5
≥5 0.20 0.03-0.79 0.04* 0.23 0.03-1.05 0.08**

CA19-9(u/ml)
<35
≥35 0.28 0.02-1.52 0.23

T stage
T3a
T3b 0.19 0.03-0.86 0.05* 0.23 0.03-1.15 0.10
T3c 0.70 0.03-6.42 0.77 0.83 0.03-12.02 0.89
T4a 0.20 0.04-0.76 0.03* 0.25 0.05-1.09 0.08**

LN metastasis
positive
negative 1.15 0.33-3.64 0.81

Distance (cm)
≤5
5.1-10 1.22 0.28-8.56 0.81
>15 1.20 0.13-11.54 0.87

TIC
≤2/4
3/4 0.22 0.05-0.76 0.02* 0.26 0.06-1.02 0.06**
4/4 0.19 0.03-0.86 0.05* 0.53 0.06-3.39 0.52

MRF
positive
nagative 1.48 0.30-5.62 0.59

MRF invasion
Tumor
LN 0.70 0.15-2.57 0.61
tumor deposit 1.23 0.06-9.45 0.86
other 2.45 0.11-28.1 0.48

EMVI
positive
negative 0.94 0.20-3.40 0.93

max LN (mm)
<5
≥5 0.97 0.31-2.97 0.96
May 20
22 | Volume 12 | Article 8
*p < 0.05; **p < 0.1.
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peritumor features performed as well as that incorporating
intratumor features in predicting good treatment response.

To our knowledge, this is the first study to evaluate the
performance of a model including both peritumor and
Frontiers in Oncology | www.frontiersin.org 9
intratumor radiomics features in predicting a good response to
NAC in LARC. Delli Pizzi et al. (28) reported that a model
combining primary staging and radiomics, including
information on tumor cores and borders, performed best in
TABLE 4 | Numbers of features that remained after each selection step for radiomics signature construction.

Feature selection steps Peritumor Features Intratumor Features

Before selection 1301 1301
ICC 1275 1143
Pearson correlation 345 336
Univariate analysis 56 37
LASSO 14 16
Backward elimination 9 10
May 2022 | Volum
ICC, interclass correlation coefficient; LASSO, least absolute shrinkage and selection operator.
TABLE 5 | The AUC value of clinical characteristics and radiomics model.

variable Training

AUC 95% CI PI P2

R1 0.921 0.852-0.990 reference 0.751
R2 0.932 0.870-0.995 0.751 reference
Clinis 0.775 0.637-0.913 0.066 0.044
T+N 0.677 0.527-0.827 < 0.001* < 0.001*

variable Validation
AUC 95% CI PI P2

R1 0.838 0.661-1.000 reference 0.583
R2 0.805 0.633-0.976 0.583 reference
clinics 0.596 0.396-0.796 0.079 0.125
T+N 0.521 0.279-0.763 0.024* 0.047*
e 12 | Artic
R1, stand for peritumor radiomics; R2, stand for intratumor radiomics. T, T stage; N, N stage; CEA, carcinoembryonic antigen; Clinics, combined the selective clinical characterisitics,
including CEA、Tstage and TIC.
*P < 0.05.
TABLE 6 | The AUC of selective clinical model compared to radiomics model.

variable Training Validation

AUC 95%CI P AUC 95%CI P

R1+clinics 0.932 0.871-0.992 reference 0.844 0.667-1.000 reference
R1 0.921 0.852-0.990 0.400 0.838 0.661-1.000 0.781
clinics 0.775 0.637-0.913 0.040 0.596 0.396-0.796 0.025*

R2+clinics 0.940 0.882-0.997 reference 0.781 0.603-0.959 reference
R2 0.932 0.870-0.995 0.392 0.805 0.633-0.976 0.360
clinics 0.775 0.637-0.913 0.030 0.775 0.637-0.913 0.180
*p < 0.05.
TABLE 7 | The AUC of radiomics model and clinics model.

variable Training Validation

AUC 95%CI P AUC 95%CI P

R1+R2+clinics 0.961 0.922-0.999 0.871 0.706-1.000
R1+R2 0.949 0.887-0.998 0.547 0.844 0.650-1.000 0.353
R1 0.921 0.852-0.990 0.322 0.838 0.661-1.000 0.789
R2 0.932 0.870-0.995 0.445 0.805 0.633-0.977 0.588
clinics 0.775 0.637-0.913 0.010* 0.596 0.396-0.796 0.001*
le 8
*p < 0.05.
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predicting the response to CRT. In that study, they included 72
patients with LARC who received nCRT for analysis, and those
with TRGs of 1 or 2 were defined as good responders (this was
the definition within our study as well). For image feature
analysis, machine-learning approaches were adopted to
establish the model. Models evaluating tumor core and tumor
border radiomics and clinical features yielded AUC values of
0.689 and 0.541, respectively; the combined model improved the
AUC to 0.793 (z=4.00, p=5.6×10-5). The tumor border model
performed poorly in predicting treatment response. However, in
our study, the model combining peri- and intratumor radiomics
features did not improve the AUC significantly compared to the
individual radiomics models. This may be because of differences
between the treatment program and image processing. In
contrast, a study by Hu et al. (20) found that the performance
of the peritumor model was better than that of the intratumor
Frontiers in Oncology | www.frontiersin.org 10
model in predicting treatment response within the training set
among patients with esophageal squamous cell carcinoma; the
performance of the two models was similar in the test set as well.
Our results showed that there were no significant differences in
performance between peritumor and intratumor radiomics
models, which was in agreement with the study conducted by
Hu et al. (20). Li and colleagues (29) constructed a multimodal
model to predict good treatment response in patients with LARC
receiving NAC, including CT, HR-T2WI, DCE-T1WI, and ADC
and demonstrated that the HR-T2WI model showed the best
performance. However, in that study, the authors did not include
peritumor information. Braman and colleagues (30) observed
that a model combining intra- and peritumor radiomic features
showed good performance in predicting pCR to NAC based on
pretreatment breast DCE-MRI and suggested that the radiomic
feature performance for predicting response was associated with
A

B C

FIGURE 4 | Nomogram based on the clinical characteristics and peritumor radiomics features in the prediction of response to neoadjuvant chemotherapy in locally
advanced rectal cancer (LARC). (A) Nomogram based on peritumor radiomics clinical features. (B) The calibration curve for peritumor radiomics and clinical features
in predicting treatment response for LARC in the training set. (C) The calibration curve for peritumor radiomics and clinical features in predicting treatment response
for LARC in the validation set.
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breast tumor receptor subtypes. Furthermore, Wu and colleagues
(22) identified that the enhancement patterns of the tumor-
adjacent tissue obtained via DCE-MRI might be related to the
signaling pathways involved in tumor necrosis as well as a worse
prognosis in patients with breast cancer. Thus, peritumor
imaging features contain overlooked information related to
treatment response. Combining intra-peritumor radiomics
features and clinical characteristics can thus be expected to
improve prediction performance.

Peritumor characteristics were associated with treatment
response, which may be related to the peritumor stroma,
lymphocyte infiltration, and immune microenvironment. This
suggests that the stroma in rectal cancer contains important
information concerning the prognosis and treatment response.
Various studies have also revealed that the response to chemo- or
radiotherapy may be related to stoma cells or lymphocytes in
other malignant neoplasms (31). Our results demonstrate that a
Frontiers in Oncology | www.frontiersin.org 11
peritumor radiomics model performs similarly to an intratumor
radiomics model in predicting treatment response. This indicates
that peritumor tissue might contain components that influence
the treatment response and implies the importance of predictive
information within peritumor radiomics features.

Limitations
Our study proved that combining peri- and intratumor radiomics
could predict a good response to NAC. However, our study has
several limitations. First, because of the single-center design, small
sample design study, selection bias is inevitable during patient
recruitment. Besides, lack of standard protocol of acquisition of
image also leads to selection bias. Second, Evaluating the
peritumor area relies on experienced radiologists and requires
substantial time and effort. The variability between the inter-
reader may lead to poor reproducibility. Third, we only analyzed
the impact of peritumor features on neoadjuvant treatment
A

B C

FIGURE 5 | Nomogram based on the clinical characteristics and intratumor radiomics features in the prediction of response to neoadjuvant chemotherapy in locally
advanced rectal cancer (LARC). (A) Nomogram based on clinical features and intratumor radiomics. (B) The calibration curve for intratumor radiomics and clinical
features in predicting treatment response for LARC in the training set. (C) The calibration curve for intratumor radiomics and clinical features in predicting treatment
response for LARC in the validation set.
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A

C

B

D E

FIGURE 6 | ROC and nomogram based on the clinical characteristics and intra-peritumor radiomics features in the prediction of response to neoadjuvant
chemotherapy in locally advanced rectal cancer (LARC). (A) The receiver operating characteristic curve (ROC) for different models in predicting treatment response
for LARC in the training set.(B) The ROC for different models in predicting treatment response for LARC in the validation set. (C) Nomogram based on the clinical
characteristics and combined-radiomics features in the prediction of response to neoadjuvant chemotherapy in locally advanced rectal cancer (LARC). (D, E) The
calibration curve for the models in predicting treatment response for LARC in the training set and validation set.
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response at the theoretical level and have not further confirmed
these findings at the molecular level. Thus, it is impossible to
clarify the pathophysiological process underlying the impact of the
tumor perimeter on neoadjuvant treatment response.
CONCLUSIONS

Our study demonstrated that peritumor radiomics features
contained important information related to a favorable response
to NAC. We found that a model combining the clinical
characteristics and intra-peritumor radiomics features could
improve predictive capability in terms of identifying a good
response to NAC in patients with LARC. Predictive models are
commonly used in precision medicine. The results of our study
inform future research directions and, if confirmed, will inform
medical guidelines and optimal clinical decision-making in
personalized medicine.
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