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Abstract

We previously carried out the design and testing of a custom-built Haemophilus influenzae supragenome hybridization
(SGH) array that contains probe sequences to 2,890 gene clusters identified by whole genome sequencing of 24 strains of H.
influenzae. The array was originally designed as a tool to interrogate the gene content of large numbers of clinical isolates
without the need for sequencing, however, the data obtained is quantitative and is thus suitable for transcriptomic analyses.
In the current study RNA was extracted from H. influenzae strain CZ4126/02 (which was not included in the design of the
array) converted to cDNA, and labelled and hybridized to the SGH arrays to assess the quality and reproducibility of data
obtained from these custom-designed chips to serve as a tool for transcriptomics. Three types of experimental replicates
were analyzed with all showing very high degrees of correlation, thus validating both the array and the methods used for
RNA profiling. A custom filtering pipeline for two-condition unpaired data using five metrics was developed to minimize
variability within replicates and to maximize the identification of the most significant true transcriptional differences
between two samples. These methods can be extended to transcriptional analysis of other bacterial species utilizing
supragenome-based arrays.
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Introduction

The tremendous advancement of sequencing technologies

combined with rapid reductions in associated costs has allowed

researchers not only to sequence more diverse organisms but also

to sample individual bacterial species with much greater resolu-

tion. Extensive strain sequencing has led to the realization and

appreciation that most bacterial species harbour enormous

genomic diversity among strains [1–10] This diversity is manifest-

ed in small scale as single nucleotide polymorphisms (SNPs), and

also the more dramatic swapping in and out of entire genes and/or

operons through the process of horizontal gene transfer as

predicted by the Distributed Genome Hypothesis [11–12].

Analyses of multiple genomes from individual bacterial species

have led to the recognition that there exists a supragenome [11,13]

or pan-genome [1] at the species-level that is far larger than the

genome of any single strain. The supragenome is composed of the

core genome (those genes shared among all strains, and the

distributed/accessory genome (those genes that are present in only

a subset of strains). The ability to take up and incorporate DNA

from the distributed genome by sampling from other strains’ DNA

during polyclonal infections has been hypothesized to give these

organisms an important mechanism for rapid diversity generation

[11,14–17]. This genetic diversity manifests as phenotypic

diversity as different strains within the same species have been

found to possess enormous differences in complex processes such

as quorum sensing, biofilm formation and pathogenesis [12,17–

21] (Janto et al., Kress-Bennett et al. unpublished observations).

Haemophilus influenzae (Hi) is one such species of bacteria that

has been demonstrated to possess enormous genomic variability

[2,5,22]. These bacteria are commensals of the human respiratory

tract but some have pathogenic potential. Un-encapsulated non-

typeable Hi (NTHi) are most often associated with localized

disease such as chronic obstructive pulmonary disease (COPD)

[23–27], otorrhea [21], chronic otitis media with effusion (COME)

and acute otitis media (AOM) [27–33], however, they are

increasingly being found as the major source of invasive disease

[34–38]. Individual NTHi strains share only ,80% of their

,1,800 genes with all other strains (core genes) with the rest being

distributed (or accessory) genes [2]. The Finite Supragenome

Model [2,5] predicts the Hi supragenome to contain 4547 genes of

which only ,33% represent the core genome while the rest are

present at various other frequencies among strains within the
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species [22]. The tremendous genic variability among NTHi

strains presents a significant challenge when studying whole

genome transcriptional patterns among many different strains.

Traditionally, genic content must be known a priori in order to

target genes with sequence-specific probes for measurement. Since

two different strains might at a minimum share only the core

genes, an array of probes designed for genes found in any single

strain does not appropriately represent the species and therefore a

significant amount of information will be lost (hundreds of genes)

when using an array developed from a single strain. Thus, a more

robust strategy for the design of bacterial microarrays is to use

probes based on defined supragenomic sequences.

We previously designed and tested an H. influenzae supragen-
ome hybridization (SGH) array in order to perform DNA-DNA

hybridizations for the purpose of determining gene content in

unsequenced strains [22]. This array was designed based on 3,100

genes that were identified in whole genome sequencing (WGS) of

24 geographically and clinically diverse NTHi strains and which

includes .98% of all non-rare (n.0.1) genes. Since genes are

either present or absent from genomic DNA (gDNA) of any given

strain, the signal obtained for each probe is essentially binary and a

signal threshold cut-off was used to determine whether a gene was

present or not. Nevertheless the data collected is quantitative and

these arrays can also be used to hybridize labelled RNA instead of

DNA thereby acting as a transcriptomic tool. Here we report the

testing and validation of these custom SGH arrays for this

application, as well as the design of an analysis pipeline for

suggested use.

Materials and Methods

Design of the H. influenzae supragenome hybridization
(SGH) array
Design and testing of the H. influenzae supragenome hybrid-

ization (SGH) array is described by [22]. Briefly, annotations from

24 sequenced H. influenzae strains were clustered using a custom

supragenome pipeline to obtain unique clusters of genes [14].

NimbleGen probe design software was used to design between

three and thirteen, 60 mer probe sequences to the longest

sequence in each gene subcluster. Probes were tested and graded

in silico based on uniqueness, distribution and probe manufactur-

ing parameters. In all, 31,307 H. influenzae specific probes were

synthesized by Roche/NimbleGen. Each array contained dupli-

cates of each probe and each slide contained 12 arrays. An

additional 185 negative control probes based on Streptococcus
pneumoniae chromosomal sequences were also attached to the

slides in duplicate and a further 9,053 random sequence probes

were included. These arrays containing a total of 72,037 probes

(72 K) are referred to as the SGH arrays.

Genomic Hybridization
Genomic DNA (gDNA) was isolated from strain CZ4126/02

and Cy3-labeled using a NimbleGen One-Color DNA Labeling

Kit. NimbleGen Hybridization Kits and Sample Tracking Control

Kits were used to hybridize this labeled DNA to the custom-

designed H. influenzae SGH arrays as well as for array washing.

Images were acquired on an Axon Instruments GenePix 4200AL

array scanner.

Genomic Hybridization data processing
Images were processed and data were normalized within chips

using a Robust Multichip Average (RMA) algorithm and quantile

normalization via the NimbleScan software v2.5 [30,40]. Raw

data was converted into gene possession or absence by applying a

combination of an expression threshold (1.5X the median

background value in log2 scale) and a measure of probe variance

[22]. Subclusters producing a signal above this value were set to a

value of 1 (present) and subclusters with values below this value

were set to a value of 0 (absent). The list of present subclusters was

then used as a reference list for filtering transcription-based

microarray data.

Experimental design and sample collection for two-
condition transcriptional microarray analyses
Parallel work has focused on the role of AI-2 signalling in Hi by

comparative studies between CZ4126/02 and an AI-2 sensing

mutant (CZ4126/02DLsr::Cmr [KO]) (Janto et al. unpublished

observations). These strains were used to test and validate the use

of the SGH Array for unpaired two-condition transcriptional

microarray analysis. The CZ4126/02 WT and its cognate KO

strain were grown in two different media (BHI and CDM) and

sampled at multiple time points (the combinations of which are

referred to here as ‘‘conditions’’, Table S3) for RNA extraction.

The RNAs were converted to cDNA, Cy-3 labelled and

hybridized to the H. influenzae SGH arrays as described below.

For each condition, RNA samples were collected twice which are

referred to as replicates A and B. Each condition/replicate was

hybridized on two different SGH arrays referred to as chip 1 and

chip 2. Finally each array outputs separate information for two

duplicate probe-sets referred to as probe-set 1 and probe-set 2. All

transcriptional data in this study has been deposited in NCBI’s

Gene Expression Omnibus (GEO) [41] and are accessible through

GEO Series accession number GSE41690 [42].

H. influenzae culture media
Brain-Heart Infusion broth (BHI - Oxoid) was made using 37 g

of powdered media/L and supplemented with hemin (Sigma-

Aldrich) to a final concentration of 10 mg/mL and b-nicotinamide

adenine dinucleotide (b-NAD) to a final concentration of 2 mg/
mL. Chemically Defined Media (CDM) was made exactly as

described [43] with the following minor catalog change (Dr.

Arnold Smith, personal communication): 1X RPMI 1640 with

glutamine and 25 mM HEPES (Gibco, catalog #22400-089).

Bacterial growth for RNA extraction
For microarray experiments frozen stocks were used to

inoculate BHI plates that were incubated overnight at 37uC with

5% CO2. Isolated colonies from these plates were used to

inoculate 5 mL BHI cultures that were incubated overnight at

37uC with shaking at 200 rpm. The cultures were diluted to an

ODA600 of 0.02 in 40 mL BHI or CDM. At selected time-points

(Table S3), 1 mL culture samples were collected and transferred

immediately into 2 mL RNAProtect (Qiagen). Samples were

incubated for 10 minutes at room temperature and then stored

overnight at 4uC.

RNA extraction and quality check
Samples stored in RNAProtect were spun for 10 minutes at

2,5006g (Sorvall RT-7), the supernatant removed and the cell

pellets resuspended in 100 mL of 1X Tris-EDTA (TE) +1 mg/mL

lysozyme (Worthington Biochemical) and 1 mg/mL proteinase K

(Qiagen). RNA was extracted using a Qiagen RNeasy Mini Plus

kit with the standard protocol including genomic DNA (gDNA)

eliminator columns. The eluted RNA (,85 mL) was DNased by

adding 10 mL 10X TurboDNase buffer and 5 mL TurboDNase (2

units/mL) (Ambion) and incubating at 37uC for 1.5 hours. 2 mL
more TurboDNase was added and incubation continued for an

Development of an NTHi Expression Microarray

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e105493



additional 1.5 hours. The DNased RNA samples were cleaned by

passing the samples through the RNeasy protocol a second time

(including the gDNA eliminator column steps). Samples were

eluted in nuclease free (n.f.) water, quantitated on a Nanodrop

1000 spectrophotometer and stored at 280uC. 200 ng of each

RNA sample was run on an Agilent 2100 Bioanalyzer using RNA

Nano6000 chips to check for RNA degradation. We performed

paired reverse transcription reactions on every RNA sample where

one reaction received reverse transcriptase (+RT, M-MLV,

Promega) and the other did not (2RT). Both reactions were

PCR amplified using primers directed against a housekeeping gene

(GAPDH) and observation of amplification in the +RT reaction as

well as lack of amplification in the 2RT reaction verified removal

of gDNA from each RNA sample.

qRT-PCR
Single-stranded cDNA was synthesized from the extracted RNA

samples using the Roche Transcriptor First Strand Synthesis kit.

Specific primers for the housekeeping and experimental genes

were designed using Roche Probe Finder online software in order

to design ,75 bp amplicons. qRT-PCR was performed on the

Roche Light Cycler 480 using a SYBR green master mix.

Reactions were performed in a 20 ml volume containing 2 ml
cDNA (1:5 dilution) and primers at 0.5 mm each. Primer efficiency

was determined by testing all primer pairs ahead of time with

gDNA template. All reactions were measured in triplicate. The

experimental data were normalized using the hpr and ldhA genes

as internal standards. Independent data analysis was carried out

using both the Pfaffl-DDCT method with the Roche Light Cycler

software as well as a linear regression method using the

LinRegPCR [44] software package. Fold changes presented are

the mean results from both methods of analysis and from

normalization against both of the housekeeping genes.

Generation of labelled double-stranded cDNA for SGH
array hybridization
First and second-strand cDNA synthesis was performed using a

SuperScript One-Cycle cDNA Kit (Invitrogen) as outlined in the

NimbleGen Microarray Experienced User’s Guide including

RNaseA and cDNA precipitation steps. 1 mg of cDNA was Cy3-

labeled using a NimbleGen One-Color DNA Labeling Kit.

NimbleGen Hybridization Kits and Sample Tracking Control

Kits were used to hybridize the labelled cDNA to the custom-

designed H. influenzae SGH arrays as well as for array washing.

Images were acquired on an Axon Instruments GenePix 4200AL

array scanner.

Analysis of microarrays
Images were processed to.pair files containing expression values

for both sets of duplicate probes representing all the subclusters on

the H. influenzae SGH array using the NimbleScan software.

These.pair tables were merged with a reference list of subclusters

that had been determined to be present in the CZ4126/02

genome (see above) in order to remove non-relevant probe/

subcluster data. These parsed.pair files were then normalized

within and across chips using a Robust Multichip Average (RMA)

algorithm and quantile normalization using the NimbleScan v2.5

software followed by a median polish whereby the 3 to 13 probe

values/subcluster were condensed to a single value (in duplicate)

[39,40]. Duplicate probe-set values were treated as independent

replicates. For comparison of technical and biological replicate

data, CyberT was used to obtain Bayesian corrected p-values,

Bonferroni corrected p-values and Benjamini-Hochberg values

[45]. Significance Analysis of Microarrays (SAM v3.0) was used to

obtain lists of genes with associated permutation-based false

discovery rates (FDR) [46]. These data were combined and filtered

in the following order: 1) SAM FDR ,10%, Bayesian p-values,

.05, Benjamini-Hochberg FDR,10%, Bonferroni corrected p-

value,.05, raw values in at least one of the two conditions being

compared .256 normalized intensity.

Results

Removal of non-relevant subclusters for microarray
analysis
The custom-designed H. influenzae SGH array contains 31,307

unique probes that target 2,890 of the 3,100 gene clusters

identified in 24 geographically diverse clinical strains. Gene

clusters were further subdivided into ‘‘subclusters’’ with more

stringent alignment parameters in order to capture allelic

differences within more variable genes. The power of this array

is its ability to capture information for any strain of H. influenzae
since the probes represent the majority of the predicted

supragenome (.85% of all ‘‘non-rare’’ genes. Non-rare genes

are defined as those that are present in more than 10% of Hi

strains) [22]. However, since a large proportion of the gene probes

present in the SGH array do not correspond with any gene for any

given single strain, once a strain is selected for study, an in silico
analysis should be performed to ensure that only the relevant

subset of probes is included in the final analysis. This is important

for the purposes of obtaining a Gaussian distribution of data

needed for both normalization and statistical testing. Therefore, it

is necessary to remove all data from so-called ‘‘non-relevant’’ gene

clusters, defined as those present in one of the 24 strains used to

design the array but not present in the strain being interrogated.

For testing purposes we used a strain (CZ4126/02) that was not

included in the design of the H. influenzae SGH array. Our first

task was to determine the gene content of this strain for the

purposes of removing non-relevant data later. This we accom-

plished by two methods 1) WGS of CZ4126/02 and mapping of

identified genes back to the SGH array clusters (Janto et al.

unpublished observations) and 2) hybridization of genomic DNA

(gDNA) to the SGH array and application of a signal threshold to

determine whether a gene was present or not [22]. A comparison

of the WGS and SGH data sets from strain CZ4126/02 revealed

that 2805/2890 (97%) of the identified gene clusters were in

agreement between the two methods. Using WGS as the gold

standard we identified 39 false positives (some of which could

potentially be true positives present in WGS contig gaps) and 46

false negatives. In addition, we found only four genes in the WGS

that were not represented on the SGH array [22]. Because of this

accuracy we used SGH data for the purposes of removing data not

relevant to strain CZ4126/02.

From the SGH gene possession experiment, hybridized

CZ4126/02 gDNA gave a positive signal for 1702 of the 2890

total gene clusters and 2194 of the 4052 total gene subclusters

represented on the array. This list of 2194 gene subclusters was

then merged with the raw output from transcriptional experiments

to isolate data only associated with those CZ4126/02 strain-

specific subclusters. All transcriptional data in this study has been

deposited in NCBI’s Gene Expression Omnibus (GEO) [41] and

are accessible through GEO Series accession number GSE41690

[42]. A representative histogram of the distribution of log2
transformed raw intensity values obtained before and after

removal of non-relevant subclusters is shown in Figure 1. A

summary of the distributions of each data set (relevant and non-
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relevant) compared to random and control data at the probe-level

is presented in Table 1.

After removal of non-relevant subcluster data, the remaining

data was normalized between and across chips where necessary

using the NimbleGen NimbleScan software. In the same

representative sample we found only fourteen false positives (14/

2194 or 0.64%) (gene subclusters that gave a transcriptional signal

significantly above background that did not give a SGH signal

over threshold) illustrating the consistency across methods of

analysis.

Step-wise filtering with statistical tests and testing on
technical and biological replicates
In analyzing the data here, a Bayesian-corrected variance was

applied and t-tests were performed using the web-based micro-

array analysis tool, CyberT [45]. We found that using a Bayesian

p-value cut-off of 0.05 alone is not stringent enough as it results in

reporting of a large number of false positives. This is illustrated by

comparing the technical replicates for condition 4 (the same RNA

sample run on two different chips), in this case biological replicate

B, chip 1 vs. chip 2, which produced nearly identical results, with a

R2 of.9941 (Figure 2). Submitting this comparison to CyberT

and obtaining Bayesian corrected p-values results in a list of 120

subclusters with p,0.05, each of them a false positive (Table S2).
In this same dataset applying a fold change cut-off alone is

similarly inappropriate. In this comparison of a technical replicate,

30 subclusters are found with a fold change.1.5, all false positives

(Table S3). Twenty-three (23)/30 of these subclusters have

expression values below 28 (256) raw intensity on both chips.

These two parameters applied together (fold changes and t-tests)

give some measure of biological and statistical significance that

compensate for each others’ weaknesses as far fewer clusters meet

both cut-offs of fold .1.5 and p,0.05 than either alone, however,

there are still several that slip through as false positives.

Therefore, a permutation-based false discovery rate (FDR) was

calculated with the Significance Analysis of Microarrays (SAM)

excel plug-in [46]. An FDR (q-value) of 10% calculated by SAM

was used for this filtering step. A non-permutation-based estimate

of the FDR was also used as an additional filter again with a cut-off

of 10% (0.1) (Benjamini-Hochberg [BH]). The extremely stringent

Bonferroni-corrected p-value was used to identify only the most

significant findings. In the technical replicate comparison

discussed above (Condition 4, replicate B, chip 1 vs. chip 2), the

application of any one of these three additional statistical filters

(SAM FDR, BH FDR, or Bonferroni-corrected p-value) results in

no significant findings between the technical replicates, which is

the reality (Table S1).

Thus, a custom step-wise filtering process was developed and

implemented roughly in order of stringency. This involved

obtaining the set of genes associated with the SAM permutation-

Table 1. Comparison of the distributions of raw data and filtered sub sets of probe-level data.

mean median max min N

ALL probe-set 1 6.85 5.49 15.99 3.45 31,307

ALL probe-set 2 6.85 5.49 15.99 3.43 31,307

CZ specific probe-set 1 10.22 10.42 15.99 3.79 10,161

CZ specific probe-set 2 10.23 10.44 15.99 3.86 10,161

Not CZ probe-set 1 5.31 5.16 14.62 3.69 21,146

Not CZ probe-set 2 5.31 5.16 14.65 3.68 21,146

Negative probe-set 1 5.15 5.09 6.65 3.71 185

Negative probe-set 2 5.27 5.17 7.46 3.78 185

Random control probes 5.12 5.01 10.83 3.53 9,053

Expression data in log2 from condition 3, replicate A, chip 1. Raw output (ALL) was filtered using SGH data to produce subsets of data containing subclusters (and
associated probes) present in CZ4126/02 (CZ specific) and subclusters not present in CZ4126/02 (Not CZ). Normalization was performed after filtering. Negative: probes
synthesized from Streptococcus pneumoniae genes expected to be absent in H. influenzae. N: number of probes in each set. Probes are synthesized in duplicate on each
chip (probe-set 1, probe-set 2).
doi:10.1371/journal.pone.0105493.t001

Figure 1. Data distribution with and without removal of non-
relevant subclusters. Data from condition 3 (WT CZ4126/02 grown in
in CDM media to ODA600 1.0), replicate A, chip 1. Intensity values are
binned by 0.2 in log2 scale. Non-relevant subclusters are defined as
genes that are not present in the strain being interrogated and thus are
uninformative (and detrimental) to the analysis.
doi:10.1371/journal.pone.0105493.g001
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based FDR,10% and then removing genes with a Bayesian-

corrected p-value..05. In some samples the SAM FDR filter was

more stringent than the Bayesian-corrected p-value, therefore, the

order of filtering was flipped in these cases. After this, genes were

removed that had a Benjamini-Hochberg FDR.10%. The

remaining genes with Bonferroni corrected p-values,.05 were

selected for the next step. Any findings with raw intensity values

below 28 (256=,1.5X background in log2) in both conditions

were not considered sufficiently above background levels and also

removed. This step-wise application of filters complemented each

test’s weaknesses and allowed us to observe lists of differentially

regulated genes at varying levels of stringency. Fold change was

not considered until after the final filter and is presented as is with

no cut-off. In most cases this step-wise filtering resulted in final lists

of genes up or downregulated by more than 1.5 fold which we

consider to be reasonably biologically relevant.

Technical replication for microarray studies
An exhaustive analysis of technical replicates was performed to

assess the reproducibility of the H. influenzae SGH chips for

transcriptomic analyses. Two levels of technical replication were

applied. The first level is contained within the array design

wherein each probe is represented in duplicate on each chip. Since

each subcluster is represented by between 3 and 13 probes on each

chip, two sets of 3–13 values are obtained per subcluster. The

NimbleScan normalization process includes a median polish

whereby the 3–13 probe values are condensed to a single value,

which again is calculated in duplicate. We describe this type of

technical replication as probe-replication. Therefore the first

validation test was to evaluate these duplicate normalized probe

values as shown in Figures 3, and 4 for two separate RNA

samples from a single condition. Each figure displays two plots

which represent the same RNA sample run on two separate chips.

There is no major skew in any of the data as evidenced by the best-

fit lines associated with very high correlation coefficients (R2) .

0.98. Most variation occurs at expression values at or below

background levels (log2 value of ,5.5). Comparison of probe-sets

was performed for an additional 9 conditions (18 RNA samples; 36

chips) the results of which are displayed in figures S1–S18.

A second level of technical replication was performed in

microarray studies by hybridizing each RNA sample to two

separate chips. Therefore this level of replication evaluated the

reproducibility of the labeling, hybridization, scanning and

normalization processes. Similar expression plots were generated

by averaging the two duplicate-probe intensity values for chip 1

and plotting against the average for chip 2 (Figures 1 and 5). We

observe that the inter-chip variability is just as low or lower as the

probe variability with R2 values ranging from 0.9751 to as high as

0.9951. These extremely high correlation coefficients were found

consistently throughout all of the transcriptomic studies performed

and are presented in full in figures S19–S26.

Biological Replication
To establish whether the results are reproducible across

different RNA samples, two separate cultures of CZ4126/02 were

grown to obtain duplicate RNA samples under the same

conditions (Table S3). In chemically defined media (CDM), R2-

values ranged between 0.9751 and 0.9945 (Figure 6, Figures S27
and S28). When grown in the complex media, brain-heart

infusion (BHI), the R2-values ranged between.9385 and.9696

(Figures S29 and S30). Furthermore, we compared the results of

our microarray analysis pipeline with qRT-PCR analysis on pairs

of biological replicates (Figure 7). As these were biological

replicates we did not expect to see any differences. However,

our microarray analysis pipeline indicated that two genes

(cluster2554 and cluster2443aa) were significantly differentially

regulated between these particular biological replicates and this

was confirmed in the qRT-PCR analysis. This demonstrates that

comparable results are obtained between the two methods of

analysis.

Discussion

In this paper we repurpose an established CGH array for

microarray-based transcriptional analysis of virtually any H.
influenzae strain without the need for sequencing of the genome.

The current format of the H. influenzae SGH array allows for 12

independent hybridizations (samples) per chip and here we

describe a single-color fluorescence analysis pipeline. Strain-

specific genome variability in terms of gene possession is captured

by the SGH array [22] via-hybridization with genomic DNA. This

provides all the information required for removal of non-relevant

gene clusters during subsequent transcriptional analysis. While

WGS provides more information than SGH it is not necessary for

Figure 2. Comparison of chip replicate values for RNA from condition 4. Log2 expression values (average of two probe-sets) from the same
RNA samples run on two different chips: chip1 (x-axes) and chip2 (y-axes). Condition 4 (CZ4126/02DLsr::Cmr grown in CDM media to ODA600 1.0),
replicate A (left) and replicate B (right).
doi:10.1371/journal.pone.0105493.g002
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the purposes of transcriptional experiments. SGH produces

excellent results more rapidly, at a lower cost and is more easily

integrated because the reagents, the array itself and the data

output are exactly the same in SGH and transcriptional

experiments. For transcriptional experiments we estimate the

costs per sample to be approximately $110 with a workflow of four

days from sample collection to data output (including analyses).

Compared with RNAseq this is a cheaper alternative at this time

which can run several hundred dollars more for a small bacterial

genome. Organisms with larger genomes require more sequencing

and thus the cost per sample increases. Significantly adding to the

cost and workflow of RNAseq is the requirement for pre-

processing of RNA to remove ribosomal RNA before being

sequenced. However, besides cost there are other considerations to

be taken into account if deciding between these technologies.

Although microarrays remain the cheaper option RNAseq has

been demonstrated to have higher sensitivity and a higher

dynamic range than microarray analysis [47]. If the objective is

to detect genes expressed at very low levels RNAseq may be a

better choice. Furthermore, because RNAseq is non-probe-based

it allows measurement of all expressed transcripts without a priori
knowledge of the genome content thereby bypassing any artifacts

of gene annotation and potentially identifying novel gene

transcripts. In contrast, the described SGH microarray is targeted

and those targets are fixed, thus a small amount of data will

inevitably be missing for a few genes in any given strain. However,

we have demonstrated here that we are able to capture the vast

majority of annotated genes in any H. influenzae strain by

incorporating the supragenome into the design of the array [22].

Another major consideration is that microarray analysis methods

and software are well-established and user-friendly while RNAseq

data analysis has not reached the same level of development,

requiring knowledge and expertise in handling large datasets as

well as the command line.

Because of the multiple strain design of the SGH array some

extra steps in data analysis are required that are not normally

encountered in single organism microarrays. Primarily this

involves removing hybridization data that is not relevant to the

strain under investigation (ie probes that are designed to genes that

are not present in that particular strain). A comparison of data

Figure 3. Comparison of probe replicate values within RNA from condition 3, replicate A. Log2 expression values from the two probe sets
in condition 3 (WT CZ4126/02 grown in in CDM media to ODA600 1.0), replicate A on two separate chips (left/right).
doi:10.1371/journal.pone.0105493.g003

Figure 4. Comparison of probe replicate values within RNA from condition 3, replicate B. Log2 expression values from the two probe sets
in condition 3 (WT CZ4126/02 grown in in CDM media to ODA600 1.0), replicate B on two separate chips (left/right).
doi:10.1371/journal.pone.0105493.g004
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distributions before and after the removal of non-relevant gene

clusters confirmed that the transcriptional datasets are converted

from non-Gaussian to Gaussian distributions (Figure 1, Ta-
ble 1).

For sample comparison we developed an analysis pipeline to be

used with the normalized strain-relevant data that incorporates

two freely available microarray analysis tools (SAM and CyberT)

that together incorporate four diverse methods of statistical

analysis. The most logical measure of difference used to analyze

transcriptional data is the fold change, obtained simply by dividing

the sample means. The weakness in drawing conclusions using fold

changes alone lies in the blindness to expression levels illustrated in

Figure S3. To compensate, a statistical comparison of mean

values using T-tests is commonly used. However, this test is

influenced greatly by the variance of the samples, something that is

determined by both the biology of the gene and also by the

equipment and methods used to measure the sample. The

Bayesian-corrected variance is a method for reducing noise in

microarrays which can overwhelm biological differences with

limited sampling. This method infers single gene variance based

on the variance of other similarly expressed genes. We found in

developing our transcriptional comparison pipeline that relying on

calculated Bayesian-corrected p-values in conjunction with fold

change cut-offs was not stringent enough as false positives were still

being detected between replicate samples (Tables S2, S3).

To further control for the discovery of false positives (FDR) we

used both permutation and non-permutation based methods using

SAM and CyberT. One weakness of SAM is that it is

inappropriate for small numbers of replicates. This is due to the

fact that the modified p-values (q-values) are calculated based on

the number of times the software can randomly rearrange the

replicate values (permutations). Thus SAM’s power, accuracy and

significance increase with increased replication.

As a final filtering step we used Bonferroni-corrected p-values

calculated by CyberT. In many microarray analyses applying the

Bonferroni correction is not performed because it is too stringent

and often removes data that is known to differ between two

samples (false negatives). In these H. influenzae microarray

Figure 5. Comparison of chip replicate values for RNA from condition 3. Log2 expression values (average of the two probe-sets) from the
same RNA samples run on two different chips: chip1 (x-axes) and chip2 (y-axes). Condition 3 (WT CZ4126/02 grown in in CDM media to ODA600 1.0),
replicate A (left) and replicate B (right).
doi:10.1371/journal.pone.0105493.g005

Figure 6. Representative biological replicate comparisons. Log2 expression values (averages of both probe-sets from both chips) from the
two biological replicate samples for both condition 3 (left, WT CZ4126/02 grown in in CDM media to ODA600 1.0) and condition 4 (right, CZ4126/
02DLsr::Cmr grown in CDM media to ODA600 1.0).
doi:10.1371/journal.pone.0105493.g006
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studies, however, we found that it was appropriate and useful for

removing many genes that had fold changes under 1.5 but were

still found significant by the other tests as well as for removing

genes for which there was high variance between biological

samples. These four filtering steps (T-tests, permutation-based

FDR, BH FDR and Bonferroni-corrected T-tests) used together in

conjunction with a raw hybridization value cut-off provide a

robust, flexible method for two-condition microarray analyses.

Replicate samples were examined in detail and conclusively

demonstrated that duplicate probe sets provide consistent repeat-

able quantitative data (Figure 3–4, S1–S18). We also found that

technical replication by hybridization of the same cDNA samples

on two different chips was just as robust as probe replication

(Figures 1, 5, S19–S26). The correlation between biological

replicate experiments is also extremely high, especially when

bacteria were grown in the defined media, CDM, where the

growth conditions are more tightly controlled (Figures 6, S27–
S28). Not surprisingly, the variation observed is somewhat higher

when the bacteria were grown in the complex media, BHI, likely

due to variation in the growth conditions and not the array

(Figures S29–S30).

These results establish that the methods developed to obtain

transcriptional data from the H. influenzae SGH arrays are

consistent and robust within and across chips as well as among

biological replicates. Used in conjunction with the filtering pipeline

described above we have described the establishment of a unique,

robust microarray analysis pipeline for multi-strain comparisons

specific to Haemophilus influenzae. We believe this tool could be

of great use to others studying this organism and to those studying

other organisms that make use of similar supragenome based

arrays who may not have the resources to perform RNAseq or the

expertise to deal with the associated downstream bioinformatic

data analysis required.

Supporting Information

Figure S1 Comparison of probe replicate values within
RNA from condition 1, replicate A. Log2 expression values

from the two probe sets in condition 1, replicate A on two separate

chips (left/right).

(TIF)

Figure S2 Comparison of probe replicate values within
RNA from condition 1, replicate B. Log2 expression values

from the two probe sets in condition 1, replicate B on two separate

chips (left/right).

(TIF)

Figure S3 Comparison of probe replicate values within
RNA from condition 2, replicate A. Log2 expression values

from the two probe sets in condition 2, replicate A on two separate

chips (left/right).

(TIF)

Figure S4 Comparison of probe replicate values within
RNA from condition 2, replicate B. Log2 expression values

from the two probe sets in condition 2, replicate B on two separate

chips (left/right).

(TIF)

Figure S5 Comparison of probe replicate values within
RNA from condition 4, replicate A. Log2 expression values

from the two probe sets in condition 4, replicate A on two separate

chips (left/right).

(TIF)

Figure S6 Comparison of probe replicate values within
RNA from condition 4, replicate B. Log2 expression values

from the two probe sets in condition 4, replicate B on two separate

chips (left/right).

(TIF)

Figure 7. Comparison of SGHmicroarray analysis vs qRT-PCR in two biological replicate pairs. All values represent fold changes between
biological replicates. Pair 1 =Condition 3 (WT CZ4126/02 grown in in CDM media to ODA600 1.0) replicate A vs. replicate B. Pair 2 = Condition 4
(CZ4126/02DLsr::Cmr grown in CDM media to ODA600 1.0) replicate A vs. replicate B. qRT-PCR data are the average from normalization against two
different house-keeping genes and two different methods of analysis (Pfaffl-DDCT and linear regression) *a statistically significant difference from
SGH microarray analysis (passed all five filtering steps). Colors highlight fold changes above 2 (red) and below 22 (blue).
doi:10.1371/journal.pone.0105493.g007
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Figure S7 Comparison of probe replicate values within
RNA from condition 5, replicate A. Log2 expression values

from the two probe sets in condition 5, replicate A on two separate

chips (left/right).

(TIF)

Figure S8 Comparison of probe replicate values within
RNA from condition 5, replicate B. Log2 expression values

from the two probe sets in condition 5, replicate B on two separate

chips (left/right).

(TIF)

Figure S9 Comparison of probe replicate values within
RNA from condition 6, replicate A. Log2 expression values

from the two probe sets in condition 6, replicate A on two separate

chips (left/right).

(TIF)

Figure S10 Comparison of probe replicate values within
RNA from condition 6, replicate B. Log2 expression values

from the two probe sets in condition 6, replicate B on two separate

chips (left/right).

(TIF)

Figure S11 Comparison of probe replicate values within
RNA from condition 7, replicate A. Log2 expression values

from the two probe sets in condition 7, replicate A on two separate

chips (left/right).

(TIF)

Figure S12 Comparison of probe replicate values within
RNA from condition 7, replicate B. Log2 expression values

from the two probe sets in condition 7, replicate B on two separate

chips (left/right).

(TIF)

Figure S13 Comparison of probe replicate values within
RNA from condition 8, replicate A. Log2 expression values

from the two probe sets in condition 8, replicate A on two separate

chips (left/right).

(TIF)

Figure S14 Comparison of probe replicate values within
RNA from condition 8, replicate B. Log2 expression values

from the two probe sets in condition 8, replicate B on two separate

chips (left/right).

(TIF)

Figure S15 Comparison of probe replicate values within
RNA from condition 9, replicate A. Log2 expression values

from the two probe sets in condition 9, replicate A on two separate

chips (left/right).

(TIF)

Figure S16 Comparison of probe replicate values within
RNA from condition 9, replicate B. Log2 expression values

from the two probe sets in condition 9, replicate B on two separate

chips (left/right).

(TIF)

Figure S17 Comparison of probe replicate values within
RNA from condition 10, replicate A. Log2 expression values

from the two probe sets in condition 10, replicate A on two

separate chips (left/right).

(TIF)

Figure S18 Comparison of probe replicate values within
RNA from condition 10, replicate B. Log2 expression values

from the two probe sets in condition 10, replicate B on two

separate chips (left/right).

(TIF)

Figure S19 Comparison of chip replicate values for RNA
from condition 1. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 1, replicate A (left) and

replicate B (right).

(TIF)

Figure S20 Comparison of chip replicate values for RNA
from condition 2. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 2, replicate A (left) and

replicate B (right).

(TIF)

Figure S21 Comparison of chip replicate values for RNA
from condition 5. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 5, replicate A (left) and

replicate B (right).

(TIF)

Figure S22 Comparison of chip replicate values for RNA
from condition 6. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 6, replicate A (left) and

replicate B (right).

(TIF)

Figure S23 Comparison of chip replicate values for RNA
from condition 7. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 7, replicate A (left) and

replicate B (right).

(TIF)

Figure S24 Comparison of chip replicate values for RNA
from condition 8. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 8, replicate A (left) and

replicate B (right).

(TIF)

Figure S25 Comparison of chip replicate values for RNA
from condition 9. Log2 expression values (average of two probe-

sets) from the same RNA samples run on two different chips: chip1

(x-axes) and chip2 (y-axes). Condition 9, replicate A (left) and

replicate B (right).

(TIF)

Figure S26 Comparison of chip replicate values for RNA
from condition 10. Log2 expression values (average of two

probe-sets) from the same RNA samples run on two different

chips: chip1 (x-axes) and chip2 (y-axes). Condition 10, replicate A

(left) and replicate B (right).

(TIF)

Figure S27 Biological replicate comparison from Con-
dition 1 and 2. Log2 expression values (averages of both probe-

sets from both chips) from the two biological replicate samples for

both condition 1 (left) and condition 2 (right).

(TIF)

Figure S28 Biological replicate comparison from Con-
dition 5 and 6. Log2 expression values (averages of both probe-

sets from both chips) from the two biological replicate samples for

both condition 5 (left) and condition 6 (right).

(TIF)
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Figure S29 Biological replicate comparison from Con-
dition 7 and 8. Log2 expression values (averages of both probe-

sets from both chips) from the two biological replicate samples for

both condition 7 (left) and condition 8 (right).

(TIF)

Figure S30 Biological replicate comparison from Con-
dition 9 and 10. Log2 expression values (averages of both probe-

sets from both chips) from the two biological replicate samples for

both condition 9 (left) and condition 10 (right).

(TIF)

Table S1 Source of RNA for each ‘‘condition’’.
(DOCX)

Table S2 False positives found using a p-value,0.05
cutoff. Condition 4, replicate B, chip 1 and chip 2 were

compared. Raw expression values are shown. FDR: False

discovery rate, BH: Benjamini-Hochberg, Bon. pVal: Bonfer-

roni-corrected p-value.

(DOCX)

Table S3 False positives using a fold change cutoff of
.1.5. Condition 4, replicate B, chip 1 and chip 2 were compared.

Raw expression values are shown. FDR: False discovery rate, BH:

Benjamini-Hochberg, Bon. pVal: Bonferroni-corrected p-value.

(DOCX)
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