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Abstract

Surgical procedures carry the risk of postoperative infectious complications, which can be severe, 

expensive, and morbid. A growing body of evidence indicates that high-resolution intraoperative 

data can be predictive of these complications. However, these studies are often contradictory in 

their findings as well as difficult to replicate, suggesting that these predictive models may be 

capturing institutional artifacts. In this work, data and models from two independent institutions, 

Mayo Clinic and University of Minnesota-affiliated Fairview Health Services, were directly 

compared using a common set of definitions for the variables and outcomes. We built 

perioperative risk models for seven infectious post-surgical complications at each site to assess the 

value of intraoperative variables. Models were internally validated. We found that including 

intraoperative variables significantly improved the models’ predictive performance at both sites for 

five out of seven complications. We also found that significant intraoperative variables were 

similar between the two sites for four of the seven complications. Our results suggest that 

intraoperative variables can be related to the underlying physiology for some infectious 

complications.
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Introduction

Surgical procedures carry the risk of postoperative infectious complications, which can be 

severe, expensive, and can put patients’ lives at risk [1–5]. With the ubiquity of decision 

support tools integrated into electronic health record (EHR) systems, perioperative decision 

support capabilities represent a promising direction for reducing postoperative risk or 

tailoring care including interventions aimed at individualized anticipation and management 

of the complication risk.

Initial surgical planning is primarily based on a preoperative assessment. While clearly 

essential, this assessment is insufficient to capture dynamic risks or changes in patient status, 

which may occur in the operating room. Preoperative assessment is, by definition, based on 

preoperative data and the planned procedure. Surgeries can deviate from the original plan for 

a variety of reasons or may involve unexpected physiologic changes such as bleeding, 

rendering the original risk estimates less valid. While the original estimates reflect the 

general risk of the patient and the planned surgery, they reflect neither new findings, changes 

in patient status, nor an altered course of surgery.

A growing body of published literature indicates that high-resolution intraoperative data can 

be predictive of complications [6–9]. However, the findings in these studies often contradict 

each other, are difficult to replicate at other sites, and are often based on very limited use of 

intraoperative data. For example, several studies have reported intraoperative hypothermia 

increases the risk of post-surgical infectious complications [6–8]. On the contrary, other 

studies found that there were no differences in the minimum, maximum, or ending 

temperatures between patients with surgical site infection (SSI) and those without – 

potentially due to an institutional effect: better temperature control at certain institutions. 

While temperature was unassociated with the surgical site infection, other intraoperative 

factors, most prominently blood loss, showed a significant association [9]. Besides 

institutional differences in clinical practice, differences in findings may also arise due to 

differing analytical approaches. Studies differ in the way they aggregate intraoperative 

variables: some studies use moments and extrema (minimum and maximum), while others 

use the ending measurement (the last measurement or the average of the last few 

measurements). Finally, differences in findings can also stem from discrepancies in 

definitions of the variables and outcomes.

Several high-quality registries form the backbone of surgical quality improvement research 

aimed at understanding and reducing postoperative complications. The National Surgical 

Quality Improvement Project (NSQIP) registry [10, 11] uses high-quality manually curated 

data [1, 12] and stands out as the gold-standard for surgical quality improvement and 

surgical outcomes research. NSQIP offers standardized definitions for exposure/risk 

variables and outcomes, helping to ensure consistency across studies. Unfortunately, it lacks 

detailed information regarding intraoperative risk factors, including physiologic data, 

laboratory data, medications, or other treatments, limiting its use for our purpose.

We conducted this study at two independent sites, Mayo Clinic and University of Minnesota-

affiliated Fairview Health Services. These are two large Midwestern academic health 
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systems with tertiary centers providing a wide range of surgical services. Both sites are 

members of the NSQIP registry; so, we were able to use outcome data from NSQIP patients 

at each site, serving as a high quality gold-standard. We used preoperative and intraoperative 

EHR data collected from the clinical data repositories of the respective sites and 

standardized the data elements across the two sites to facilitate direct comparison of the 

models.

The study aims to answer the following questions: (i) In the context of perioperative decision 

support, does the use of intraoperative data improve the performance of 30-day postoperative 

risk models? (ii) Do significant intraoperative variables in the risk models pertain to the 

same physiological concepts across the two sites? We proceed with the assumption that 

when significant intraoperative variables differ despite having been defined identically, the 

models may capture institutional differences; when the significant variables coincide, they 

are more likely to relate to the physiological processes underlying the postoperative 

complications.

Methods

Setting and cohort definition.

We consider two independent Midwestern health care systems: Mayo Clinic (MC) and 

Fairview Health Services (FHS). We include all patients from MC and FHS between 2010 

and 2017 who are part of the NSQIP sample. For these patients we collected all available 

information about their NSQIP index surgery and a 30-day history before the index surgery 

from the respective institutions’ EHR repositories. The NSQIP registry collects 

complications within a 30-day postoperative window. If a patient had another surgery in the 

30-day postoperative window, we used the index surgery and measured the 30-day 

postoperative window for the outcome from the index surgery. For each complication, 

patients with the same pre-existing complication at the time of surgery were excluded.

Independent variables.

We primarily rely on known risk factors of infection [13–15]. Independent variables were 

divided into three groups: demographic, preoperative, and high-resolution intraoperative. We 

limit ourselves to basic demographic information, such as age, sex, and body mass index 

(BMI) that are generally available. Preoperative variables are historic diagnoses including 

the problem list, procedures, and medications, as well as the preoperative indication for 

surgery. We use laboratory results and vitals to establish a preoperative baseline. Data from 

the preoperative assessment were preferentially used; if the data is not available, we use 

measurements from no more than 30-days before surgery. Diagnosis codes are rolled up into 

complications using the Clinical Classification Software [16].

Aggregating intraoperative variables.

The intraoperative variables include orders, medications, and high-resolution vitals and labs. 

The stream of high-resolution variables needs to be divided based on the three stages of 

anesthesia. During the first (approximately) 15 minutes, called the induction phase, the vitals 

drop and deviate heavily from the normal. The last 15 minutes is called the emergence 
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phase, where vitals are expected to return to close to normal but also involves significant 

changes as the patient is transitioned from anesthesia—often with full ventilation—to no 

anesthesia. The operation takes place between these two phases, in the so-called 

maintenance phase, where the vitals are expected to remain stable, although different from 

the preoperative baseline. In this work, we focus on the maintenance phase and use the mean 

value of labs and vitals during this phase.

Outcomes.

We consider seven infectious outcomes: sepsis, septic shock, urinary tract infection (UTI), 

pneumonia (PNA) and the three kinds of SSI (superficial, deep tissue, and organ space SSI). 

We extract the outcome information from the NSQIP registry.

Modeling.

Each outcome was modeled independently using logistic regression. For each outcome, two 

models are constructed. The “pre” model only uses demographics and preoperative data (30-

day history of complications, baseline labs and vitals), while the “pre+intra” model uses 

aggregated intraoperative measurements on top of the preoperative and demographic data.

All models are logistic regression models. Missing labs and vitals were imputed using the 

middle of the normal range for the measurement. This assumes that the measurement is 

missing because it was deemed unnecessary to measure. The initially high number of 

independent variables was reduced by causal variable screening [19]. We used the PC-

Simple algorithm [20] with a maximal condition set size of three [21]. This algorithm 

discards all variables that are independent of the outcome given at most three other 

variables. The rationale is that these variables do not affect the outcome directly, they only 

affect the outcome through other variables. Subsequent backwards elimination was applied 

to the remaining set of independent variables with a significance level of .05. The R 

statistical computing environment was used for all modeling. The PC-Simple algorithm is 

available in the pcalg R package [20].

Evaluation.

Consistent with the intended use in perioperative decision support, we evaluated the models 

based on their predictive performance using concordance as the metric. Concordance is the 

probability that between two randomly selected patients, among which one has the 

complication in question while the other does not, the one with the complication has the 

higher predicted risk. Concordance is equivalent to the commonly reported area under the 

receiver-operating-characteristic curve (AUC).

Internal validation and effect of the intraoperative variables.

Bootstrap estimation with 200 replications was used to estimate the concordance of the 

models. For each complication, two models were built on the same bootstrap replication: 

one with and one without the intraoperative variables. We measured the effect of the 

intraoperative variables as the mean difference in concordance between the models with and 

without intraoperative variables across the 200 bootstrap replications. The statistical 

significance of the difference was determined through a paired t-test.
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External comparison.

If the intraoperative variables capture a valid physiological phenomenon, then the variables 

selected at the two sites relate to the same quantity. We manually examined the models with 

the intraoperative data across the two sites to determine whether the selected variables 

coincide or at least relate to the same physiological concept. For example, oxygen saturation 

and ventilator settings relate to the same physiological concept (oxygen in the blood). When 

the selected variables relate to different concepts, there is a risk that the model simply 

captures an institutional artifact.

Results

Cohort Description

Table 1 contains a description of the analytic cohort at the two health systems. It contains 

demographic information, outcomes, history of the outcomes, history of relevant 

complications, and baseline (preoperative or at most 30 days before the index surgery when 

preoperative measurement is unavailable) lab results and vitals. Due to the high number of 

lab results and vital signs, we only report those that were significant in at least one of the 

models. Categorical variables are reported as count and percentage in parenthesis; 

continuous variables are reported as median and interquartile range in parenthesis.

Model performance and effect of the intraoperative variables

Table 2 presents the predictive performance of the models for each of the outcomes. For 

each outcome, the table contains three rows: the first one shows the performance as 

measured by AUC of the “pre” model (that uses only demographics and preoperative data), 

the second one shows the performance of the “pre+intra” model, which uses the 

intraoperative data in addition to the demographics and preoperative data, and the third row 

shows the difference in performance between the “pre” and “pre+intra” models. For the 

“pre” and “pre+intra” models, the standard deviation of the performance (obtained from 200 

bootstraps) is shown in parenthesis; for the difference, the p-value of the paired t-test is 

shown in the parenthesis using the scientific notation (e.g. 2e-8 is 2*10−8). All differences 

are statistically significant at 0.05 confidence level, but superficial and deep tissue SSI are 

not significant on FHS side after Bonferroni correction.

External Comparison of the Significant Variables

Table 4 displays the number of bootstrap iterations in which the variable was selected for 

each complication at each site. We only list variables that were selected in at least 100 of the 

200 bootstrap iterations for at least one outcome at one site.

Table 3 offers a summary of the information in Table 4. It lists the most important 

intraoperative variables that are common between the two sites for each outcome.

Discussion

We view EHR-integrated perioperative clinical decision support as a key avenue towards 

reducing postoperative complications or towards better anticipating and managing them. 
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Central to such systems are accurate risk models with the ability to produce risk estimates on 

demand based on contemporaneous data, including intraoperative data. In this work, we 

sought to answer the following two questions: (i) Do intraoperative data elements improve 

our ability to predict postoperative complications? and (ii) Are these models specific to 

institutions or do they describe possible physiological phenomena that are institution-

independently predictive of postoperative complications?

Regarding the first question, we found that the inclusion of intraoperative variables led to 

statistically significant improvements in the risk models’ predictive ability for five of the 

seven infectious complications at both sites. These complications were pneumonia, sepsis, 

septic shock, organ space SSI, and urinary tract infection. At the Mayo Clinic site, the 

inclusion of the intraoperative variables led to statistically significant (albeit not necessarily 

clinically relevant) improvements for all complications, likely due to the much larger sample 

size.

The lack of statistically significant improvement for the other two SSI types, superficial and 

deep tissue, is unsurprising. These diagnoses have more ambiguity and our previous work on 

detecting SSI retrospectively also suggests that predicting superficial and deep tissue SSI is 

difficult [17, 18].

Regarding the second question, we found that some of the intraoperative variables overlap 

across the two sites for all four of the complications in which intraoperative variables 

improved the predictive performance. In the cases of pneumonia, sepsis, and organ-space 

SSI, some of the variables (lac-tate, pulse) matched exactly, while others referred to a shared 

concept. For example, FIO2 and SpO2 are related to the sufficiency of oxygen in the 

bloodstream: the first one is the ventilator setting (to supply the oxygen into the 

bloodstream) while the second one is the direct measurement of oxygen saturation. For 

sepsis, partial pressure from oxygen and PEEP have an analogous relationship; and for organ 

space SSI, bicarbonate and PH both measure the acidity of blood. The fact that many of the 

significant variables are common across the two sites suggests that these variables can be 

related to the physiological process(es) underlying the outcomes.

Conclusion

Intraoperative variables were found to statistically significantly improve the performance of 

30-day postoperative risk models for five of the seven infectious complications at both sites. 

There was considerable overlap in the significant intraoperative variables across the two sites 

and the overlapping variables were related to lactate, acidity, and blood oxygen.
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Table 1 –

Cohort Description.

Mayo Clinic Fairview

Number of patients 38,045 9,044

Demographics

Age 61 (49, 71) 55 (40, 66)

Gender (male) 18,769 (48.7%) 4053 (45%)

Outcomes

SSI Superficial 586 (1.5%) 107 (1.2%)

SSI Deep Tissue 186 (0.5%) 45 (0.5%)

SSI Organ Space 417 (1.1%) 119 (1.3%)

UTI 282 (0.7%) 147 (1.6%)

PNA 453 (1.2%) 111 (1.2%)

Sepsis 494 (1.3%) 88 (0.98%)

Septic Shock 186 (0.5%) 40 (0.44%)

History of Complications

SSI 1,232 (3.2%) 91 (1.01%)

UTI 1,271 (3.3%) 127 (1.4%)

PNA 777 (2.0%) 73 (0.81%)

Bacteremia 133 (0.3%) 23 (0.25%)

Infections 3,953 (10.4%) 165 (1.8%)

Opport. Inf. 432 (1.1%) 45 (0.50%)

Malnutrition 792 (2.1%) 60 (0.66%)

Cancer 13,547 (35.6%) 1413 (16%)

Metastatic Disease 4,359 (11.5%) 112 (1.2%)

Transplant 624 (1.6%) 224 (2.5%)

Diabetes (T1&2) 5,215 (13.7%) 462 (5.1%)

COPD 2,372 (6.2%) 94 (1.04%)

Baseline labs and vitals

BMI 28.4 (24.8, 32.9) 27.9 (24.6, 33.6)

Pulse 70.0 (62.6, 80.0) 75.0 (66.3, 85.0)

Respiration 9.5 (8.1, 10.8) 16 (16, 18)

Bilirubin 0.45 (0.45, 0.45) 0.67 (0.4, 1)

BUN 26 (18, 35) 14 (10, 20)

RBC 3.79 (3.13, 4.36) 4.27 (3.77, 4.70)

WBC 7.85 (4.45, 11.5) 8.50 (6.23, 12.1)

MCV 88.8 (87.2, 94.1) 89.4 (86.0, 93.0)

RDW 14.8 (13.5, 16.6) 13.9 (13.0, 15.3)

Hematocrit 33.1 (27.6, 39.7) 38.2 (33.8, 41.6)

PH 7.38 (7.32, 7.42) 7.38 (7.32, 7.42)

CO2 40.5 (36.5, 43.5) 25.5 (24.0, 27.5)

Ca 4.71 (4.55, 4.92) 4.59 (4.30, 4.78)
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Mayo Clinic Fairview

K 4.15 (3.90, 4.50) 3.9 (3.7, 4.2)

Na 138 (137.8, 138.4) 139 (137, 141)

(1) Abbreviations: UTI: urinary tract infection; PNA: pneumonia; SSI: surgical site infection; COPD: chronic obstructive pulmonary disease; BMI: 
body mass index; BUN: blood urea nitrogen; RBC: red blood cell [count]; WBC: white blood cell [count]; MCV: mean corpuscular volume; RDW: 
red blood cell distribution width; Ca: calcium ion concentration; K: potassium ion concentration; Na: sodium ion concentration. (2) Only variables 
that were significant in at least one model are presented.
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Table 2 –

AUC performance of the “pre”, the “pre+intra” models, and the difference in performance.

Outcome Model Mayo Clinic Fairview

PNA Pre .877 (±.021) .693 (±.044)

Pre+intra .881 (±.022) .734 (±.044)

Difference .004 (1e-8) .041 (1e-16)

Sepsis Pre .736 (±.024) .695 (±.045)

Pre+intra .755 (±.021) .711 (±.046)

Difference .019 (1e-16) .016 (8e-13)

Septic Shock Pre .827 (+.031) .715(+.O78)

Pre+intra .834 (+.030) .755(+.O79)

Difference .007 (1e-13) .040 (1e-14)

SSI Superficial Pre .667 (+.018) .560 (+.044)

Pre+intra .688 (+.017) .563 (+.042)

Difference .021 1e-16) .003 (0.022)

SSI Deep Tissue Pre .660 (±.041) .568 (±.069)

Pre+intra .678 (+.035) .575 (+.064)

Difference .018 (1e-7) .007 (0.3)

SSI Organ Space Pre .732 (±.026) .657 (±.037)

Pre+intra .750 (±.022) .699 (±.039)

Difference .021 (1e-16) .042 (1e-16)

UTI Pre .665 (±.022) .717 (±.031)

Pre+intra .672 (±.021) .727 (±.032)

Difference .007 (1e-13) .010 (5e-14)
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Table 3 –

Selected variables

Significant intraoperaitive variables

Outcome Mayo Clinic Fairview

PNA antibiotic use, lactate, CO2, FIO2 Lactate, MCV, pulse, SpO2

Sepsis Glucose, isoflurane expired, PEEP, pulse PO2, RBC, pulse, hematocrit

Septic Shock Antibiotic use, glucose, WBC, pulse, PEEP Lactate, FIO2

SSI Superficial CVP, PEEP, pulse PEEP

SSI Deep Tissue Antibiotic use, steroid use, PEEP PO2

SSI Organ Space Antibiotic use, bicarb, Ca, glucose, CVP, isoflurane expired Hemoglobin, PH arterial, PO2, pulse

UTI Antibiotic use, steroid use Ca, PO2, CVP, PEEP

Abbreviations: FIO2: Fraction of Inspired Oxygen; PEEP: Positive End Expiratory Pressure; PO2: Partial pressure of oxygen; WBC: white blood 
cell [count]; CVP: central venous pressure; Ca: calcium ion in the blood; MCV: mean corpuscular volume; SpO2: blood oxygen saturation; RBC: 

red blood cell [count].
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