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Robust classification of cell cycle phase and 
biological feature extraction by image-based 
deep learning

ABSTRACT Across the cell cycle, the subcellular organization undergoes major spatiotempo-
ral changes that could in principle contain biological features that could potentially represent 
cell cycle phase. We applied convolutional neural network-based classifiers to extract such 
putative features from the fluorescence microscope images of cells stained for the nucleus, 
the Golgi apparatus, and the microtubule cytoskeleton. We demonstrate that cell images can 
be robustly classified according to G1/S and G2 cell cycle phases without the need for spe-
cific cell cycle markers. Grad-CAM analysis of the classification models enabled us to extract 
several pairs of quantitative parameters of specific subcellular features as good classifiers for 
the cell cycle phase. These results collectively demonstrate that machine learning-based im-
age processing is useful to extract biological features underlying cellular phenomena of inter-
est in an unbiased and data-driven manner.

INTRODUCTION
Proliferating cells undergo dynamic changes in subcellular organiza-
tion during the cell cycle. While the dramatic structural rearrange-
ments in mitosis are most prominent, subcellular components are 
also extensively reorganized during interphase. For example, DNA 
is replicated during S phase, resulting in a doubling of chromatin 
content and the concordant regulation of nuclear size (Webster 

et al., 2009; Mukherjee et al., 2016). Organelles such as the Golgi 
apparatus and endoplasmic reticulum also have cell cycle-depen-
dent dynamics in number or size to align with mitotic distribution 
and inheritance (Lowe and Barr, 2007; Mascanzoni et al., 2019). At 
the molecular level, the architecture of cytoskeletal components 
such as microtubule and actin filaments has marked cell cycle phase 
dynamics (Champion et al., 2017; Jones et al., 2019). Although 
these dynamic changes are empirically known, the development of 
advances in reference-free, image-based quantitative analyses of 
cell morphology have been limited because of the lack of informa-
tion on which subcellular features and components selectively align 
with specific cell cycle phases.

Traditionally, cellular imaging approaches employ cell cycle 
markers to monitor cell cycle phase. These markers localize to the 
nucleus and change their expression levels depending on cell cycle 
phase (Sakaue-Sawano et al., 2008; Gookin et al., 2017). While such 
markers are practically useful for many types of experiments, they 
are also biased to the conditions of their experimental expression 
and distribution (Sobecki et al., 2017; Miller et al., 2018). For many 
types of biological or clinical samples, a less invasive and more un-
biased approach to subcellular component classification would be 
useful. For example, it would be helpful to identify subcellular com-
ponents that change their localization or spatial organization across 
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cell cycle phases. In addition, if such commonly observed compo-
nents could be directly used as reference-free cell cycle markers, it 
would enable simple, unbiased quantitative methods for cell classi-
fication based on intrinsic cell cycle components.

Machine learning is a proven computational approach that may 
be useful to extract cell cycle-dependent features without knowing 
a priori which parameters to focus on. A growing literature indicates 
the potential utility of machine learning in unbiased image analyses 
for cell biological applications. For example, machine learning-
based segmentation and classification were performed on various 
cell types including yeast and mammalian cultured cells (Boland and 
Murphy, 2001; Conrad et al., 2004; Nanni and Lumini, 2008; Chong 
et al., 2015; Xu et al., 2015, 2019; Pärnamaa and Parts, 2017; Zhang 
et al., 2020). Also, image-based classification can be combined with 
flow cytometry to achieve single-cell imaging cytometry (Eulenberg 
et al., 2017; Fang et al., 2019; Gupta et al., 2019; Meng et al., 2019), 
although classification within interphase, that is, G1, S, and G2 
phases based on cell images is difficult (Eulenberg et al., 2017). 
Finally, machine learning classification of subcellular protein localiza-
tion patterns using large image datasets is a promising trend 
(Sullivan et al., 2018; Schormann et al., 2020). Therefore, the use of 
a machine learning in image-based classification of cell cycle phase 
would be a useful advance.

In this study, we sought two main goals: 1) to employ machine 
learning to construct an image-based cell cycle classification and 2) 
to quantitatively identify classifiers for cell cycle phase based on key 
features that are different from current cell cycle markers. We ap-
plied a convolutional neural network (CNN) that is known to be ef-
fective for image classification in cell biology (Dürr and Sick, 2016; 
Xu et al., 2017; Rodrigues et al., 2019) and then established a com-
putational pipeline where 1) microscopic images of fluorescently 
labeled cells are classified according to their cell cycle phase,  
2) candidate features are selected by model interpretation, and 3) 
identification of key features that represent cell cycle phase. We fo-
cus on Hoechst (DNA), GM130 (Golgi), and EB1 (microtubule plus-
ends) and show that combinations of features from these subcellular 
components quantitatively represent G1/S and G2 phases of human 
cultured cells. The approach only requires conventional microscope 
equipment and regular cell preparations, making it easy to apply to 
a wide range of studies using biological and medical images.

RESULTS
Classification by CNN models of cellular morphology
We constructed several CNN-based deep learning models to ob-
jectively classify fluorescence images of cells according to classifica-
tion parameters of interest such as cell cycle phase. The architecture 
of the CNN models is schematically shown in Figure 1A (see 
Materials and Methods for details). The models contain two to 
seven convolutional and max pooling layers followed by a set of 
fully connected and dropout layers. The output layer returns the 
probability distributions of two classes by Softmax. We comprehen-
sively searched for optimal parameter sets including the number of 
convolutional layers and the dropout rate by using a Bayesian opti-
mization algorithm. Then we constructed specific models by fitting 
the parameters through learning. Optimized hyperparameter sets 
used in the models are listed in Supplemental File S1. The results of 
the Bayesian optimization were also used to verify and compare the 
overall accuracy of the models, and only data with an accuracy 
greater than 0.55 were counted.

We first evaluated the performance of our CNN models by the 
classification of ciliated and nonciliated NIH3T3 cells. Cilia are mi-
crotubule-based cellular projections that have important roles in cel-

lular functions (Anvarian et al., 2019). In NIH3T3 cells, cilia formation 
can be induced by serum starvation and a single cell typically has 
only one cilium. Immunostaining with antibodies to acetylated tubu-
lin or to the peripheral membrane protein Arl13b can clearly mark 
cilia. We prepared a dataset of ciliated and nonciliated cell images 
that consisted of 2104 and 130 images for training and test, respec-
tively (see Materials and Methods for details). Cells were stained 
with Hoechst as well as antibodies to acetylated tubulin and Arl13b 
(Supplemental Figure S1A). Hoechst staining was used to locate 
each cell for cropping regions of interest. Arl13b staining was used 
only to ensure the annotation quality of the dataset where cells that 
were positive for both acetylated tubulin and Arl13b were anno-
tated as cilium-positive. After this annotation, acetylated tubulin 
staining alone was used for the deep learning analyses. CNN model 
learning worked well for this classification task. The models tended 
to overfit on prolonged epochs (Supplemental Figure S1B, bottom), 
so limiting epochs to around 10 was optimal for this task. Successful 
models achieved more than 95% accuracy for the test data (Supple-
mental Figure S1B). We thus concluded that our CNN models were 
effective for the fluorescence image-based classification of cells.

Classification by CNN models of cell cycle phase
We then applied our CNN to the classification of cell cycle phase. 
Cell cycle markers such as CENP-F and Cyclin E have generally been 
used to distinguish phases of the cell cycle. However, the usage of a 
cell cycle marker fills a slot for subsequent multicolor immunostain-
ing, while a CNN-based marker-free classification could remove this 
restriction. In addition, CNN models could be used to identify new 
features of cell cycle-dependent morphological and structural pat-
tern shifts that might be overlooked by conventional analyses. For 
example, the pattern of Hoechst staining can dynamically shift as 
the DNA content doubles during S phase, given that flow cytometry 
can distinguish between cell cycle phases based on the staining of 
DNA. Furthermore, Hoechst staining patterns may reflect dynamic 
changes in chromatin structure during the cell cycle. Other interest-
ing targets include organelles such as the Golgi apparatus and en-
doplasmic reticulum as well as molecular components such as the 
microtubule and actin cytoskeletons. Given that these subcellular 
structures are reorganized to enable cell division, they can exhibit 
dynamic spatial pattern shifts during interphase. The Golgi appara-
tus, for example, must double in quantity to be properly distributed 
in G2 phase toward mitosis, while microtubules become more dy-
namic in the G2 phase to prepare for mitotic spindle formation, 
which may be evident by changes in spatial patterning. Therefore, 
we tested whether our CNN models could detect cell cycle-specific 
features of subcellular structural patterns from cellular fluorescence 
images. Hereafter, HeLa cells were used unless otherwise stated. 
Cells were stained with Hoechst and an antibody to either the cis-
Golgi matrix protein GM130 or the microtubule plus end-binding 
protein EB1, as well as an antibody to the G2 marker protein CENP-
F (Figure 1B). Although CENP-F can be detected in the nucleus at 
late S phase (Landberg et al., 1996), for simplicity, CENP-F-positive 
and -negative cells in interphase are hereafter defined as cells at G2 
and G1/S phases, respectively. Mitotic cells were morphologically 
identified and excluded from the dataset. CENP-F staining was used 
only for annotation purposes and not for subsequent deep learning 
processes. For the Hoechst + GM130 dataset, 1848 and 113 images 
were prepared for training and test, respectively, and for the Hoechst 
+ EB1 dataset, 1884 and 116 images were prepared for training and 
test, respectively (see Materials and Methods for details).

We first tested whether the CNN models could distinguish G1/S 
and G2 phases based on Hoechst staining alone. When Hoechst 
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staining channels of the Hoechst + GM130 images (Figure 1B) were 
used, tuned models with Bayesian optimization achieved around 
90% accuracy for classification of G1/S and G2 phases based solely 
on Hoechst-stained images (Figure 1C). Learning with epochs of 
around 10–25 worked well with little to no overfitting (Figure 2A and 
Supplemental Figure S2A). We similarly classified the cell cycle 
phases using RPE1 cells stained with Hoechst and the antibody to 
CENP-F (Supplemental Figure S4A) to examine if our deep learning 
approach can be also applied to other cell types. As in the case of 
HeLa cells, tuned CNN models classified Hoechst-stained images 
according to G1/S and G2 phases with an accuracy of around 90% 
(Supplemental Figure S4B). Together, our CNN models could learn 
to distinguish between G1/S and G2 phases of HeLa and RPE1 cells 
based on Hoechst-stained images.

Effect of cytoplasmic structural patterns in CNN 
classification
Next, we tested if CNN models could classify cell cycle phases 
based on cellular features other than the patterns from Hoechst 
staining. We focused on spatial patterns in the Golgi apparatus and 
microtubule plus-ends represented by GM130 and EB1, respec-
tively (Figure 1B). In Bayesian optimization, the learning of CNN 

models based on the GM130 channel alone was less successful (up 
to ∼80% accuracy) compared with the ∼90% accuracy of Hoechst-
based models (Figure 1C). EB1 channel-based learning resulted in 
∼60% accuracy, indicating that the EB1 channel alone is not suffi-
cient to classify G1/S and G2 phases by our CNN models (Figure 1C).

We then tested if combinations of two channels, that is, Hoechst 
+ GM130 or EB1, would have additive effects. Bayesian optimiza-
tion with two channel images resulted in a ∼90% accuracy for either 
combination, which is comparable to the accuracy achieved with 
the Hoechst channel alone (Figure 1C). Consistently, successful 
models for both Hoechst + GM130 and Hoechst + EB1 images 
showed similar learning curves to those for Hoechst alone (Figure 
2, B and C, and Supplemental Figure S2, B and C). No obvious 
tendencies or characteristics were found among correctly and in-
correctly classified images (Supplemental Figure S3). The expres-
sion level of CENP-F that was used for annotation gradually in-
creases during the S-G2 transition (not in an all-or-none manner), 
which may limit the accuracy of classification as discussed later 
(Figure 4). Taken together, the classification of cell cycle phases 
with our CNN models based on GM130 or EB1 staining patterns 
worked, but only when combined with the information of Hoechst 
staining patterns.

FIGURE 1: CNN-based classification of cell cycle phase. (A) Schematic of the CNN architecture used in this study. See 
Materials and Methods for details. (B) Representative images of HeLa cells stained with Hoechst and antibodies to 
GM130 or EB1 and CENP-F. Scale bar, 10 μm. (C) Results of Bayesian optimization for CNN models. Test accuracies (left) 
and absolute values of the loss function (right) are shown for each condition. The accuracies of GM130 and EB1 were 
significantly different from those of the other categories by Steel–Dwass test (p < 0.0001); n = 115–142 trials each.
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Extraction of cellular features used in CNN classification
What specific features do the CNN models employ for image clas-
sification? We verified the models using Grad-CAM, which gener-
ates heat maps representing regions that have a greater weight in 
CNN classification (Selvaraju et al., 2020). First, we analyzed models 
based on the Hoechst channel alone. Grad-CAM showed that the 
CNN models focused on two features of nuclei, the outlines and 
entire regions (Figure 3A). Interestingly, two distinct models used 
opposite combinations of these features; Model N1 focused on out-
lines for the assessment of G1/S and whole regions for G2, while 
Model N2 focused on whole regions for G1/S and outlines for G2 
(Figure 3A). In either case, the results suggest that the shape and 
area features that representing the nuclei, along with the DNA con-
tent (the intensity of Hoechst staining), are important parameters for 
the CNN models to classify cell cycle phases.

It remains unclear whether the CNN models use intranuclear pat-
terns of Hoechst staining in classification. The Grad-CAM data indi-
cate that CNN models appear to focus on fine structures, or ring-like 
patterns, inside nuclei (Figure 3A). We therefore tested if CNN mod-
els require information from intranuclear patterns for the classifica-
tion of cell cycle phase. We prepared a dataset of binary images 
where the nuclei were filled with their mean intensity values while 
the backgrounds were zero-filled (Supplemental Figure S5A). The 
dataset was derived from the one used in the Hoechst-based clas-
sification. Bayesian optimization resulted in ∼90% accuracy with the 
dataset of binary images, which is comparable to the results from 

the original images (Supplemental Figure S5A). Also, we experi-
mentally prepared a similar dataset using the histone deacetylase 
inhibitor Trichostatin A (TSA). The addition of TSA to the cell culture 
medium induces the hyperacetylation of histones and modification 
of chromatin structures, resulting in a homogenization of Hoechst 
staining patterns (Tóth et al., 2004; Bártová et al., 2005). While TSA 
treatment indeed made Hoechst staining more uniform, CNN mod-
els based on both TSA-treated and dimethyl sulfoxide (DMSO) con-
trol images achieved ∼90% accuracy (Supplemental Figure S5B). 
This is consistent with the result from the binary images (Supple-
mental Figure S5A). Together, these results indicate that, for accu-
rate cell cycle classification, CNN models do not necessarily require 
structural patterns inside the nuclei.

Although the information from GM130 or EB1, alongside that of 
Hoechst, did not increase the accuracy of CNN models compared 
with Hoechst alone (Figure 1C), it remains important to understand 
what features CNN models focus on in the two channel images. 
Analysis of the models using Grad-CAM showed that, when using 
two channel images, the CNN models frequently focused on the 
Golgi apparatus or microtubule plus-ends in addition to the nuclei. 
For example, two models based on the Hoechst-GM130 dataset 
focused on the outlines of the Golgi apparatus for the classification 
of G1/S, while the whole nuclear region in combination with the 
Golgi outline were used for the assessment of G2 (Figure 3B). In the 
case of the Hoechst-EB1 dataset, EB1 distributions and whole nu-
clear regions were preferentially used for the identification of G1/S 

FIGURE 2: Learning curves of CNN models. Learning curves of two representative models in each condition are shown. 
The accuracies for the test data are shown above each graph. See also Supplemental Figure S2.
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and G2, respectively (Figure 3C). These results suggest that despite 
little improvement of accuracy, CNN models tend to use multiple 
features in the classification, if they are available, by incorporating 
additional information of GM130 or EB1.

Biological interpretation of the CNN-based classification
The Grad-CAM results suggest that cellular images can be classified 
into G1/S and G2 phases according to the spatial patterns and/or 
the intensities of Hoechst, GM130, and EB1. Therefore, by focusing 
on these parameters, conventional image quantification could clas-
sify the images similar to the CNN models, providing a more explicit 
interpretation to the classification, such as the classification of cell 
cycle phase based on changes in nuclear size. In effect, the CNN 
models can use discrete features for quantitative image analyses. 
We measured the mean intensities and areas of Hoechst (nuclei), 
GM130 (Golgi), and EB1 of the images used in the construction of 
CNN models and the training and test datasets were pooled.

Quantitative analyses demonstrated that the mean intensities of 
Hoechst and the areas of nuclei were significantly greater in G2 

compared with G1/S (Figure 4A). Despite these statistically clear 
tendencies in the overall populations, however, individual G1/S and 
G2 phase populations were unable to be fully clustered. We then 
combined the mean intensities and areas to make a 2D plot that was 
able to cluster the G1/S and G2 populations (Figure 4B, left). More-
over, when the information of the classification probabilities (Soft-
max) provided by a CNN model were added to the plot, the data in 
the border region tended to exhibit smaller Softmax values (Figure 
4B, right). We similarly tested the mean intensities and areas for 
GM130 and EB1. Given that the GM130 or EB1 channel alone was 
not sufficient for cell cycle classification, but worked in combination 
with the Hoechst channel, we generated 2D plots using the mean 
intensities of Hoechst for one of the two axes. Consequently, 2D 
plotting of the areas or the mean intensities of Golgi or EB1 against 
the mean intensities of Hoechst resulted in well-clustered popula-
tions of G1/S and G2 phases, with smaller Softmax values at the 
border regions (Figure 4, C–F). These results demonstrate that the 
image quantification based on combinations of two distinct fea-
tures, but not single features alone, can separate cellular populations 

FIGURE 3: Grad-CAM analysis to visualize where in images the CNN models focused on. Representative Grad-CAM 
heat maps with input images for correctly classified images are shown. The model numbers correspond to those in 
Figure 2.
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according to their cell cycle phase. The results also demonstrate 
that cell cycle phase can be classified by parameters with biological 
significance, such as nuclear size.

We further investigated whether and how combinations of 
quantitative measurements efficiently enable cell cycle classifica-
tion. Multivariate analyses for the Hoechst-GM130 image data 
were performed with six parameters consisting of mean intensities, 
area, and SDs of intensities for the Hoechst and GM130 channels, 
respectively. A principal component analysis (PCA) resulted in good 
separation of the G1/S and G2 clusters with the first two principal 
components, PC1 and PC2 (Supplemental Figure S6A). The cumu-
lative proportion of the variance exceeded 75% with the two prin-
cipal components (data not shown). In a loading plot, the mean 
intensities and SDs showed similar distributions both for Hoechst 
and GM130, and interestingly, the areas of nuclei and Golgi were 
located close to each other (Supplemental Figure S6B). The load-
ing plot suggests that PC1 and PC2 are related to intensities and 
areas, respectively. Given the results of the quantification in Figure 
4, B–D, for example, the area and mean intensity of Hoechst in-
crease in G2 compared with G1/S and may result in greater scores 
of PC1 and PC2, while an increased area of Golgi at G2 could result 
in a diluted protein level of GM130, which may explain the oppo-

site PC2 loadings of the mean intensity and area of GM130 (Sup-
plemental Figure S6B). In addition, given that the quantification in 
Figure 4, B–D is based on the Grad-CAM results, the results from 
PCA may further support our interpretation that the CNN models 
focus on intracellular parameters related to subcellular organization 
such as DNA content and organelle size. The loading plot also sug-
gests that the SDs have a high correlation to the mean intensities 
for both Hoechst and GM130 and are thus reducible (Supplemen-
tal Figure S6B). Indeed, a correlation coefficient matrix showed 
relatively higher correlation coefficients between the mean and SD 
of intensities (Supplemental Figure S6C). Logistic regression analy-
sis with six parameters also well classified the cell cycle phases 
(Supplemental Figure S6D). To test which parameters are essential, 
we performed a logistic regression analysis with some of the pa-
rameters dropped out. Consistent with the results in Figures 4, B 
and C, combinations of two parameters, namely, the mean inten-
sity of Hoechst and the area of Hoechst or GM130, were sufficient 
for logistic regression models to classify the cell cycle phase (Sup-
plemental Figure S6D). In sum, the results of the multivariate analy-
ses are consistent with and further support the conclusions of the 
quantitative analyses on cell cycle phase classification shown in 
Figure 4.

FIGURE 4: Class separation by image quantification of selected features. Quantification was performed with original 
(annotated, but not classified with CNN) images. (A) Comparison of the mean intensities of Hoechst and the areas of 
nuclei between G1/S and G2 phases. p < 0.0001 by Mann–Whitney U test for both of the pairs. (B–F) 2D plots of 
indicated pairs of the features. In each panel, the same dataset was color coded in different ways; (left) by classes, 
G1/S (orange) and G2 (blue); (right) by Softmax values.
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DISCUSSION
In this study, we investigated whether machine learning approaches 
could enable the classification of cell cycle phase. We constructed 
CNN models and used them to classify fluorescence images of cells 
according to categories of interest. Remarkably, our models could 
robustly classify G1/S and G2 phases of HeLa and RPE1 cells without 
cell cycle markers (Figures 1 and 2 and Supplemental Figures S2 and 
S3). While usage of a cell cycle marker fills a slot to limit multicolor 
immunostaining, our CNN-based classification only requires 
Hoechst staining that is frequently used in cellular experiments for 
cell cycle phase classification. Thus, conventional image datasets 
can be used for cell cycle classification. Learning with combinations 
of multiple cell cycle markers will further expand the scope of the 
application for the classification of G1, S, and G2 phase with appli-
cations in live cell imaging and mitotic phases.

While providing an efficient tool for cell phase classification, our 
CNN-based approach also provided several biological insights. 
Grad-CAM analyses showed that CNN models focused on distinct 
cellular features for their assessment of G1/S and G2 phases 
(Figure 3), specifically, the area and intensity of staining. Indeed, by 
plotting two of these features together, cell cycle phases were com-
putationally well separated (Figure 4, B–F). Since DNA content dou-
bles during S phase and nuclear size increases accordingly, it is 
therefore reasonable that the mean intensities and areas of cells 
under Hoechst staining were greater at G2 than G1/S phases (Figure 
4, A and B). Consistent with our finding that the differences in each 
parameter alone is not clear enough for clustering entire popula-
tions (Figure 4A), the Grad-CAM results suggest that CNN models 
may seek to use combinations of features (Figure 3A). The results of 
the image quantification are also consistent with the idea that a 
combination of parameters including the nuclear size and DNA con-
tent can be effective for separating cell cycle phase in a multivariate 
feature space (Gut et al., 2015). While the selection of nucleus-re-
lated parameters is straightforward as flow cytometry already com-
monly uses DNA content for cell cycle classification, the advantage 
of our approach is that it allows the extraction of features from cell 
images without prior knowledge, reference, or bias.

For classification based on the combination of Hoechst and 
GM130 images at G2, Golgi area tended to be greater, while mean 
intensities of GM130 tended to smaller (Figure 4, C and D). Taking 
a closer look, the Golgi apparatus is densely packed at G1/S and 
spreads over the nuclei (Figures 1B and 3B). This is presumably due 
to mechanisms coupled with cell cycle progression compaction to-
ward mitosis (Tang and Wang, 2013; Wei and Seemann, 2017). It is 
therefore likely that the spreading of the Golgi apparatus at G2 re-
sults in an increased area and a decreased intensity of GM130 
staining at G2 compared with G1/S. Importantly, the results in this 
study provide quantitative evidence for the dynamic remodeling of 
the Golgi organization coupled with the cell cycle during inter-
phase. On the other hand, contrary to expectations, the results for 
EB1 indicate that both the areas (i.e., the numbers) and the mean 
intensities of EB1 foci distributed similarly between G1/S and G2 
phases (Figure 4, E and F). Contrary to expectations, the results 
showed no detectable changes in microtubule elongation dynam-
ics during interphase. This is consistent with the result that EB1 
images alone were unable to be classified by cell cycle phase by 
our CNN models (Figure 1C). Interestingly, both the areas and the 
mean intensities of EB1 correlated with the mean intensities of 
Hoechst (Figure 4, E and F). Such alignments in 2D feature space 
may help to keep the G1/S and G2 populations separated. Given 
that, based on the Grad-CAM results, the CNN models likely use 
salient information from the EB1 images (Figure 3C), there could be 

EB1-related biological features yet to be uncovered and 
explained.

In conclusion, this study demonstrates that quantitative image 
analyses based on CNN classification can provide insights into the 
computational and biological significance of cellular images. As a 
proof of principle, we extracted biologically significant features that 
represent spatial and temporal classes of cells such as cell cycle 
phases. Our results confirm that CNN models are a powerful classi-
fication tool for biological imaging, but in a more novel context can 
also serve as an unbiased experimental tool to extract previously 
unknown biological features that might otherwise be overlooked by 
researcher inspection of the micrographs. In other words, CNN 
models can provide guidance on what features may be interesting 
or important to focus on. The approach developed in this study re-
quires no special equipment or sample preparations except conven-
tional microscopes and regular cellular immunofluorescence proto-
cols. Our approach can be thus easily translated to other studies 
that use primary biological materials. While we used fixed cells in 
this study, the application to live cell imaging will be a feasible future 
option. Furthermore, higher resolution images will enable research-
ers to focus on the finer structures of subcellular components. For 
example, despite being dispensable in formal cell cycle classifica-
tion (Figure 4B and Supplemental Figure S5), under certain condi-
tions, CNN models may be able to interrogate intranuclear struc-
tures such as the chromatin to reveal novel structural systems 
dynamics orthogonal or parallel to cell cycle phases. It will be thus 
interesting to combine our approach with superresolution micros-
copy, which may reveal cell cycle-dependent structural dynamics in 
the subnuclear space. Such refined applications of machine learning 
for the classification of subtle differences in organelle and cytoskel-
etal dynamics with biological explainability may provide new in-
sights to the fields of cell and developmental biology and the medi-
cal and pharmaceutical sciences.

MATERIALS AND METHODS
Antibodies and chemicals
Chemicals were from Fujifilm Wako Pure Chemical Corporation, un-
less otherwise noted. Primary antibodies used were acetylated tu-
bulin (1:10,000; 6-11B-1; Sigma), Arl13b (1:500; 17711-1-AP; Pro-
teintech), GM130 (1:1,000; 610822; BD Biosciences), EB1 (1:1,000; 
610534; BD Biosciences), and CENP-F (1:500; ab108483; Abcam). 
Alexa Fluor–conjugated secondary antibodies (1:500) were pur-
chased from Thermo Fisher Scientific. Hoechst 33258 and TSA were 
purchased from Thermo Fisher Scientific and Alomone Labs, 
respectively.

Cell lines and immunofluorescence
Cell culturing and immunofluorescence were previously described 
(Takao et al., 2017, 2019) and the details are as follows. NIH3T3 cells 
(ATCC) were cultured in DMEM supplied with 10% Fetal Clone III 
(Hyclone, GE Healthcare) and 1% penicillin/stereptomycin (Life 
Technologies, Thermo Fisher Scientific). HeLa and RPE1 cells 
(ECACC) were cultured in DMEM supplied with 10% fetal bovine 
serum (Life Technologies, Thermo Fisher Scientific) and 1% penicil-
lin/streptomycin.

NIH3T3 cells cultured on coverslips were serum starved with 
DMEM containing 0.5% Fetal Clone III to induce cilium formation 
for 24 h before fixation. The cells were then fixed with 3.7% parafor-
maldehyde in phosphate-buffered saline (PBS) for 10 min and incu-
bated in blocking buffer (0.05% Triton X-100 and 1% bovine serum 
albumin in PBS) for 20 min to permeabilize and block at RT. The cells 
were then incubated with primary antibodies in blocking buffer for 
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1 h at RT, washed three times, and incubated with secondary anti-
bodies for 1 h at RT. The cells were subsequently stained with 1 μg/
ml Hoechst in PBS for 5 min, washed three times, and mounted with 
ProlongGold (Thermo Fisher Scientific).

HeLa and RPE1 cells cultured on coverslips were fixed with cold 
methanol at –20°C for 5 min. For the experiments with TSA treat-
ment, 1 μM TSA or 0.1% DMSO (control) was added to the culturing 
medium 6 h before fixation. The procedures after fixation were 
same as those described above for NIH3T3 cells.

Microscopy
A spinning disk-based confocal microscope (IXplore SpinSR; Olym-
pus; Hayashi and Okada, 2015) equipped with a 60× oil-immersion 
objective (PLAPON60×OSC2/NA 1.4, Olympus) was used for image 
acquisition. The 3D cell images were recorded by using a comple-
mentary metal–oxide–semiconductor (CMOS) camera (ORCA-
Flash4.0 V3, Hamamatsu Photonics) with 2 × 2 digital binning result-
ing in a pixel size of 0.2167 μm and Z-interval of 1 μm.

Image processing, quantification, and construction  
of CNN models
Original 16-bit z-stack images were maximum intensity projected 
with ImageJ. The rest of the processes were performed with our Py-
thon (version 3.7.4) codes on the JupyterLab (version 1.2.3) platform 
unless otherwise stated. The images were standardized with conver-
sion into 8-bit and cropped to designated sizes (∼130 × 130 pixels) 
covering most of single cell areas by centering the centroids of nuclei 
(Hoechst staining). The images were annotated by manually sorting 
the cropped images into the class folders (e.g., “ciliated and noncili-
ated” and “G1/S and G2”), split into training and test data with the 
ratio 8:2, and converted into NumPy matrices with class labels to 
construct the datasets for the subsequent CNN modeling. The train-
ing data were augmented by rotation and parallel translation to in-
crease the number of data by four times and 20% of the training data 
were further split into the validation data in the learning processes. 
CNN models were constructed using the Keras package that was 
also used for Bayesian optimization. The size of convolution kernels 
and max pooling were fixed to 3 × 3 and 2 × 2, respectively. Maxi-
mum pooling is a pooling operation for downsampling by extracting 
the maximum value from each 2 × 2 window. One or two of the chan-
nels (e.g., Hoechst and/or GM130) were selected as the input; note 
that the marker channel (e.g., CENP-F) was removed from the data-
sets and never used in the learning processes. ReLU (rectified linear 
unit; also known as ramp function) was used as the activation func-
tion, except the output layer that used Softmax. The Softmax func-
tion turns the probability distributions of potential outcomes. Binary 
cross-entropy loss was used as the loss function. Above operations 
and functions are commonly used in neural networks. For Bayesian 
optimization, hyperparameters were searched with the following set-
tings of the parameter ranges (minimum, maximum): the number of 
hidden convolution and max pooling layers (0, 6), the number of 
convolution kernels (2, 50), the rate of dropout (0, 0.9), and the num-
ber of batches (4, 100). GPU provided by Google Colaboratory was 
used for Bayesian optimization and in part for other calculations. The 
Grad-CAM codes were from previous work (Selvaraju et al., 2020). In 
this study, the results from the last maximum pooling layer (immedi-
ately before the fully connected layer) were focused in all Grad-CAM 
analyses. See Supplemental File S1 for details such as the Python 
package versions and information for the CNN models. The Python 
code is available via GitHub (https://github.com/dtakao-lab/
Nagao2020). The image datasets and tuned models are available via 
Zenodo (10.5281/zenodo.3745864).

For the image quantification in Figure 4, we used our Python 
codes. The areas of Hoechst, GM130, and EB1 were extracted by 
using clipping binary masks with given thresholds. The training and 
test datasets were pooled and the results from Model N1, NG1, or 
NE1 were used for the Softmax values. The statistical tests were 
performed with Python and R (version 3.6.1).
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