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Abstract

Grip strength is considered one of the simplest and reliable indices of general health.

Although motor ability and strength are commonly affected in people with alcohol

use disorder (AUD), factors predictive of grip strength decline in AUD have not been

investigated. Here, we employed a data-driven analysis predicting grip strength from

measurements in 53 controls and 110 AUD participants, 53 of whom were comorbid

with HIV infection. Controls and AUD were matched on sex, age, and body mass

index. Measurements included commonly available metrics of brain structure,

neuropsychological functioning, behavioural status, haematological and health status,

and demographics. Based on 5-fold stratified cross-validation, a machine learning

approach predicted grip strength separately for each cohort. The strongest (top 10%)

predictors of grip were then tested against grip strength with correlational analysis.

Leading grip strength predictors for both cohorts were cerebellar volume and mean

corpuscular haemoglobin concentration. Predictors specific to controls were

Backwards Digit Span, precentral gyrus volume, diastolic blood pressure, and mean

platelet volume, which together significantly predicted grip strength (R2 = 0.255,

p = 0.001). Unique predictors for AUD were comorbidity for HIV infection, social

functioning, insular volume, and platelet count, which together significantly predicted

grip strength (R2 = 0.162, p = 0.002). These cohort-specific predictors were doubly

dissociated. Salient predictors of grip strength differed by diagnosis with only modest

overlap. The constellation of cohort-specific predictive measurements of compro-

mised grip strength provides insight into brain, behavioural, and physiological factors

that may signal subtly affected yet treatable processes of physical decline and frailty.
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1 | INTRODUCTION

Grip strength is one of the most sensitive measures of poor health,

frailty, and cardiovascular status,1 with accelerated weakening being a

precursor of hospitalization and even death.1 Declining grip strength

can result from sarcopenia, the accelerated loss of muscle strength and

mass,2 and is associated with comorbidities of aging, including

musculoskeletal trauma, diabetes, and neurological and psychiatric

disorders.3 This physical decline is exacerbated by poor nutrition and

other comorbidities also common in older age, including depression,

anxiety, poor sleep, smoking, and sedentary lifestyle.4 Further, grip

strength is a correlate and predictor of cardiovascular reserve and

disease,5 cognitive decline,6 frailty,7 and regional cortical grey matter

volume.8 Research stressing the worth of assessing grip strength4 con-

cluded that it was perhaps the simplest and most inexpensive index of

general health. This assessment was borne out of a large prospective

study of healthy 45- to 68-year-old men who underwent repeat test-

ing of motor and grip strength measures 25 years later, revealing that

risk of self-care disability was more than 2 times greater in individuals

with the lowest relative to the highest third of grip strength scores.9

The power of grip strength to predict declining health related to

myriad factors makes it a sensitive measure; however, a ranking of

specific antecedents of weakening grip identified with objective

methods has not been considered in a single, unbiased analysis.

The increasing prevalence of later-life initiation of heavy drinking

and development of alcohol use disorder (AUD)10 may complicate the

understanding of factors that contribute to age-related declines in grip

strength. Reports are contradictory: several studies found weaker

grip in AUD than non-AUD comparison cohorts,11,12 whereas other

studies found stronger grip in people who engaged in later-life binge

drinking.13 Neural substrates have also been identified in AUD,

indicating that poorer grip strength, manual dexterity, and gait and

balance are each correlated with regional deformation of the corpus

medullare and cerebellar vermis in AUD.11

The co-occurrence of human immunodeficiency virus (HIV)

infection in individuals with AUD14 highlights the importance of

understanding grip strength predictors in this cohort, considering the

role of declining grip strength in forecasting outcomes and well-being

in people living with HIV (PLWH). In PLWH, grip strength correlates

with various factors, including blood markers of nutrition and

anaemia,15 multimorbidity, diabetes, pulmonary function,16 depressive

symptoms,17 and cognitive impairment.6 These findings emphasize

the value of identifying grip strength predictors in the AUD popula-

tion with and without HIV comorbidity for research and health

insights. The routine measurement of grip strength in AUD patients

may be pivotal in identifying individuals at heightened risk of func-

tional decline or even hospitalization, enabling timely implementation

of targeted interventions like nutritional protein supplementation and

resistance exercises.

Recognizing how a decline in grip strength relates to normal

aging and conditions including AUD (which exhibits accelerated

aging in multiple brain structural and functional domains), we used a

data-driven approach based on multi-layer perceptrons (MLPs) to

discover which commonly obtained variables in clinical research are

leading predictors of poor grip strength in these cohorts. Accordingly,

variables from five domains—brain structure, neuropsychological

functioning, behavioural status, haematological and health status, and

demographic characteristics—were available from our ongoing studies

of AUD, HIV, and normal aging for analysis.18 Based on the complex

interplay of factors affecting grip strength and the unique challenges

faced by individuals with AUD and HIV, we hypothesized that predic-

tors of grip strength would differ significantly between the AUD and

control cohorts. Specifically, we expected that in the AUD cohort,

health-related factors (such as HIV status) and neurological markers

(such as regional brain volumes) would have a greater influence on grip

strength than in the control cohort. Conversely, for the control cohort,

we anticipated that traditional aging-related factors (such as cognitive

performance and cardiovascular health) would be more prominent pre-

dictors of grip strength than in the AUD cohort. To formally test these

hypotheses, our analysis proceeded in three steps: first, our machine

learning model was trained on data from participants irrespective of

cohort and then fine-tuned by cohort. Second, the machine learning

algorithm identified variables that best predicted grip strength for each

cohort. Third, traditional correlational analysis tested the relations

between the identified variables per cohort and grip strength as a check

on the validity and clinical relevance of the machine learning findings.

2 | METHODS AND MATERIALS

2.1 | Participants

Between 2012 and 2019, 370 participants were enrolled in SRI

International-Stanford University collaborative studies to examine the

effects of aging and disease on the brain. Of them, 191 participants

had the demographic and diagnostic data needed to perform the

proposed study. Of those, 81 were healthy control participants and

110 participants were diagnosed with AUD of whom 53 (48.18%) were

also living with HIV. We included individuals with HIV comorbidity to

diversify and increase the size of the data set, which is considered best

practice for machine learning-based analyses.19 Furthermore, the

healthy controls were matched using the maximum bipartite matching

algorithm20 with respect to age, sex, and body mass index to the AUD

cohort reducing the number of controls to 53 and the total number of

participants analysed by the study to 163 (Table 1).

This study abided by the principles of the Declaration of

Helsinki. Procedures were reviewed and approved by the Institutional

Review Boards of SRI International (Advarra FWA00023875; SRI

FWA00007933) and Stanford University (FWA00000935). Before

undergoing study procedures, the participants provided written

informed consent and were screened with a breathalyser to ensure a

breath alcohol level of 0.0. Participants provided demographic infor-

mation (e.g. age, sex, years of formal education, and socioeconomic

status (SES)21). Clinically trained researchers obtained a medical his-

tory and conducted the Structured Clinical interview for DSM22

[DSM-IV-TR] and23 [DSM-5] to establish history of DSM-IV-TR
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alcohol dependence or abuse or DSM-5 AUD and to exclude those

with bipolar disorder or schizophrenia. Control participants did not

meet DSM-IV-TR or DSM-5 criteria for any psychiatric disorder. Par-

ticipants also completed a structured interview regarding their drink-

ing history24 from which lifetime quantity of alcohol consumed was

calculated. A blood sample provided HIV serological status, complete

blood count, and comprehensive metabolic data. AUD diagnosis and

HIV infection were coded as binary variables.

A Karnofsky score of 70 or above (25; range 0–100), which mea-

sures ability to perform daily tasks, was required. Exclusions were

conditions potentially affecting the central nervous system, including

head trauma, stroke, epilepsy, loss of consciousness >30 min; chemo-

therapy for cancer, uncontrolled hypertension, uncontrolled diabetes,

or ferrous metal in the body precluding MRI scanning.

2.2 | Measurements

Grip strength was tested by squeezing a hand dynamometer

(Lafayette Instrument Company, Model 78010) using maximum

strength while standing. The test started with the dominant hand and

then continued with the other hand in the following order: for right

(R) handers—R, R, L, L, R, L; the opposite order was performed for left

(L) handers. Each hand was tested three times, and the score was the

mean grip strength of the two hands expressed in kg.

This measure of grip strength was predicted by a machine

learning approach from measurements extracted from brain MRI and

non-imaging measurements from five domains, which are specified

next. While all 163 participants had MRI measurements, non-imaging

measurements were available for at least 50% of participants.

Table S1 provides a complete list, description, and missing values per-

centage of the measurements.

Demographic variables included age, sex, education, and socioeco-

nomic status (Table 1).

Haematological and health status was determined with blood

chemistry obtained from blood samples yielding metabolic panel

data (renal and hepatic function, electrolytes, calcium, proteins, and

blood sugar), complete blood count (including haematocrit, mean

corpuscular haemoglobin concentration [MCHC], mean corpuscular

volume, red blood count, white blood count), and indices of nutrition

(B12-folate, serum prealbumin). Physical measures included body

mass index (BMI), diastolic and systolic blood pressure, and heart rate.

Behavioural indices were measures of life functioning, including

the Global Assessment of Function (GAF) from the DSM-IV-TR SCID,

Beck Depression Inventory, 2nd edition,26 the eight health-related

quality of life subscales of the SF-21,27 and the Alcohol Use Disorders

Identification Test (AUDIT28).

Neuropsychological functioning was assessed with cognitive

and psychomotor speed measures from standard tests: FAS letter

fluency,29 Golden Stroop Test,30 Rey-Osterrieth Complex

Figure Test31 (copy, immediate, and delayed recall), Trails A and B,32

and 3 subtests of the Wechsler Memory Scale-Revised33 (Logical

Memory II, Backward Digit Span, and Backward Block Span).

MRI volumes were derived from T1-weighted Inversion-Recovery

Prepared SPoiled Gradient Recalled (SPGR) images (TR = 7.068 ms,

TI = 300 ms, TE = 2.208 ms, flip angle = 15�, matrix = 256 � 256,

slice dimensions = 1.25 � 0.9375 � 0.9375 mm, 124 slices) acquired

between 2012 and 2019 using a GE 3 T whole-body MR system

(General Electric Healthcare, Waukesha, WI). MRIs were processed

using the SIBIS processing pipeline.34 Following visual inspection for

image artefacts, structural T1-weighted MRI images were denoised

and skull-stripped. The process of skull stripping utilized a brain mask

created through majority voting, considering segmentations from FSL

(v5.0.6), BET, AFNI (v16.1.15) 3dSkullStrip, and Robust Brain Extrac-

tion (ROBEX v1.2).35 Field inhomogeneity in the MRI was corrected

using ANTs (v2.1.0) N4ITK.36 The brain mask was further refined by

expanding majority voting to maps produced by previous segmenta-

tion methods and FreeSurfer MRI gcut [v5.3.037;] applied to the

corrected MRI.

After using the resulting mask to remove the skull from the MRI,

the brain was segmented into grey matter and white matter using

ANTs Atropos.38 Grey matter parcellated maps identified six lobar

regions: frontal, temporal, parietal, occipital, cingulate, and insular cor-

tices using the SRI24 atlas.39 All regions except the insula, were subdi-

vided into sub-regions. Subcortical areas analysed included the

caudate, putamen, pallidum, and thalamus. Additional measurements

comprised pons, corpus callosum, cerebellum, precentral gyrus, and

vermis, which was divided into three sections approximating the1

anterior,2 posterior, and3 inferior regions. To minimize the number of

comparisons and because laterality hypotheses were not proposed,

regional volumes from both hemispheres were combined as the analy-

sis metric resulting in a total of 18 regions examined. Each participant

was then coded by 58 (imaging and non-imaging) measurements.

2.3 | Machine learning and statistical analysis

To minimize potential confounding effects of sex, supratentorial vol-

ume was residualized from all imaging measurements with a general-

ized linear model (GLM). A GLM also regressed out the confounding

effects of sex and socioeconomic status (SES)40 from grip strength

TABLE 1 Demographic data of the control cohort and the AUD
cohort.

Controls, N = 53 AUD, N = 110

Male/female 33/20 73/37

Age, years 51.73 (13.52) 52.64 (10.73)

Socioeconomic statusa 27.04 (11.89) 42.25 (13.87)*

Body mass index, kg/m2 26.11 (4.02) 25.98 (4.32)

Total alcohol consumed, kg 39.86 (80.52) 1037.92 (847.09)*

Alcohol consumed in the

past year, kg

1.32 (2.35) 17.63 (19.82)*

Note: () indicates standard deviation.

*Significant group difference (p < 0.001), otherwise non-significant.
aSocioeconomic status: lower values = higher socioeconomic status.
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and all non-imaging scores. Missing non-imaging values were imputed

using the mean (continuous variables) or mode (categorical variables)

based on sex and diagnosis (i.e. control or AUD). All measures, except

for grip strength, were normalized between 0 and 1, based on the

minimum and maximum value of each feature in the training split of

each cross-validation fold and applied on the validation split

of that fold.

To predict grip strength of all 163 participants, we designed a

lightweight three-layer MLP (see Supplement Methods). The model

was evaluated by a 5-fold cross-validation stratified by controls, AUD,

and participants with AUD and HIV. Pearson correlations were then

computed between predicted and actual grip strength within the con-

trol and AUD samples separately. p Values of the correlation were

determined by both t statistics and permutation tests (see Supplement

Methods). After training the model on all cohorts to predict grip

strength, we performed “fine-tuning”41 by training two distinct ver-

sions of the same model architecture on control and AUD separately.

For the fine-tuning process, the weights from the initially trained

model on all cohorts were used as initialization. This approach ensured

that the cohort-specific models retained the general learning from the

broader dataset while adapting to the idiosyncratic features of each

cohort and enabled testing whether the predictors of grip strength

diverged between the control and AUD cohorts.

For each model, the correlations among control and AUD samples

were recalculated and compared via z-test. Next, the contribution of

each measurement in the prediction process was quantified by com-

puting their Shapley Additive exPlanations (SHAP) values, a commonly

used metric in machine learning.42 Based on SHAP, the measurements

were ranked and the 10% (or 6) measurements with the highest SHAP

values were further inspected. Lastly, we repeated the above proce-

dures of training and fine-tuning cohort-specific models and deriving

SHAP values by replacing MLP with three other models: ridge regres-

sion, support vector regression, and random forest (see Supplement

Methods).

As SHAP does not provide statistical significance levels, the hier-

archical relevance of each of the 6 measurements in relation to grip

strength was computed via Pearson correlation (if they were continu-

ous) or t test (if they were binary). For each measurement, the correla-

tion coefficients within the control and AUD cohort were compared

by a z-test. For the subset of top control-specific measurements that

were weak contributors (i.e. below the top 6) to the AUD model, a

robust linear regression model (RLM)43 was separately fitted in each

cohort to regress grip strength (predictor) from those measurements

(independent variables) and then an F test examined the goodness-

of-fit of the regression.44 Likewise, F tests examined the power of

AUD-specific measurements in explaining the variance of grip

strength in each cohort separately. To ensure that insignificance of

the AUD-specific measurements on the control cohort was not an

artefact of sample size, we randomly sampled 53 participants 10 times

from the AUD cohort and repeated the above computations.

For all experimental outcomes with associated significance statis-

tics, p values ≤ 0.05 (after Bonferroni multiple comparison correction)

were accepted as significant.

3 | RESULTS

3.1 | Machine learning training differentiating
cohorts

When cross-validating the MLP model on all participants, the correla-

tion between predicted and actual grip strength was r = 0.20

(p = 0.141) for controls and r = 0.20 (p = 0.038) for AUD. Following

fine-tuning, the correlation of the control-specific model increased to

r = 0.34 (p = 0.012) on the controls and was not significant (r = 0.06,

p = 0.523) for the AUD cohort (Figure 1, top). Permutation testing

resulted in similar significance levels (Supplement Results) and the

z-test suggested the control-specific correlation was different from

the AUD-specific correlation on a trend level (p = 0.08). Lastly, com-

pared to other machine learning models (Table S2), only the MLP

model resulted in significantly accurate prediction when fine-tuned on

controls. We therefore focused our discussion on MLP hereafter.

The correlation of the MLP model fine-tuned on AUD was not

significant (r = 0.20, p = 0.148) for controls and was significant

(r = 0.30, p = 0.001) for the AUD cohort, although the z-test did not

reveal significant difference between the two correlation coefficients

(p = 0.53). Finally, for the model fine-tuned on AUD, there was no

statistical difference in the model's prediction accuracy between AUD

participants with and without HIV (t = 0.47, p = 0.636). To examine

whether the confounder regression and imputation induced data leak-

age that inflated prediction accuracy, we performed regression and

imputation within the training folds of each cross-validation run.

Results indicate the significance outcomes of the above correlation

analyses remained endured (Figure S1).

3.2 | Correlations of model-identified predictors
with grip strength

The top 6 (10%) measurements according to their SHAP values

(Figure 2) for the control-specific model were cerebellar white matter

volume, Backward Digit Span, precentral gyrus grey matter volume,

mean corpuscular haemoglobin concentration (MCHC), diastolic blood

pressure, and mean platelet volume. For the AUD-specific model, two

of the top 6 measurements overlapped with those of the control

cohort: cerebellum white matter volume and MCHC. Four predictors

unique to the AUD cohort were HIV infection status, social function-

ing, platelet count, and insula grey matter volume (Figure 1, Middle).

3.3 | Tests of significant predictors of grip strength

Mean platelet volume (r = �0.442, p < 0.001) significantly correlated

with grip strength among the controls (Figure 1, bottom) but not in the

AUD cohort (r = �0.13, p = 0.174). The z-test suggests a significant

difference between the two correlation coefficients (z-score = �1.99,

p = 0.04). Similarly, MCHC only correlated with grip strength of con-

trol participants (r = 0.362, p = 0.008) but not with AUD participants
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(r = 0.06, p = 0.485), with a trend-level difference between the two

correlations (z-score = 1.84, p = 0.06). Moreover, the control-specific

measurements predicted grip of control participants significantly bet-

ter than an intercept-only RLM (F statistic = 5.501, R2 = 0.255,

p = 0.001). By contrast, the control-specific measurements were not

able to predict grip of the AUD participants significantly

(F statistic = 0.455, R2 = 0.033, p = 0.768).

For the AUD cohort, cerebellar white matter volume (r = 0.365,

p < 0.001) and platelet count (r = 0.303, p = 0.001) were signifi-

cantly correlated with grip strength (Figure 1, bottom). They were

not significantly correlated with grip strength of controls (cerebellar

white matter volume (r = 0.20, p = 0.150), platelet count (r = 0.02,

p = 0.891)), and the z-test suggested a trend-level difference

between the two cohort-specific correlation coefficients with platelet

F IGURE 1 Top: separately for controls (blue) and AUD (orange), the machine learning model predicted grip strength using all measurements.
For each cohort, the predicted grip strength values are significantly correlated with the actual grip strength values. Middle: salient predictors (top
10%) are ranked according to SHAP values. Mean corpuscular haemoglobin concentration is denoted as MCHC. Black font colour represents
predictors that were strong for both cohorts; cohort-specific predictors are represented by the cohort-specific font colour. F-test applied to the
cohort-specific predictors revealed a double dissociation across the cohorts. Bottom: salient predictors for each of the cohorts that were
significantly correlated with grip strength.
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count (z-score = �1.69, p = 0.09). Moreover, these two AUD-

specific measurements were not significantly different between the

AUD-only participants and AUD participants living with HIV (platelet

count (t = 0.71, p = 0.47), cerebellar white matter volume

(t = �0.99, p = 0.32)) (Figure 3 and Figure S2). Lastly, the AUD-

specific measurements predicted grip strength of the AUD cohort

significantly better than an intercept-only RLM (F statistic = 4.515,

R2 = 0.162, p = 0.002), even when the analysis was confined to

53 participants randomly sampled from the AUD cohort (max p value

is 0.03 across 10 trials) to match the number of controls. The AUD-

specific measurements were not significant (F statistic = 1.172,

R2 = 0.074, p = 0.330) for control grip strength. These findings

remained unchanged when rerunning the RLM using the five AUD-

specific features (i.e. all but MCHC) that were also identified as

important by at least one of the three other machine learning models

(Figure S3).

F IGURE 2 Comprehensive list of all measurements ranked by their SHAP value and their level of strength in predicting grip strength for our
machine learning model. The top 10% or 6 measurements have been highlighted as the top predictors for each cohort. Left: SHAP values for
model fine-tuned on the control cohort (blue). Right: SHAP values for model fine-tuned on AUD cohort (orange). Mean corpuscular haemoglobin
concentration is denoted as MCHC, body mass index as BMI, global assessment of functioning as GAF, alcohol use disorders identification test as
AUDIT, and Beck Depression Inventory-II as BDI.
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4 | DISCUSSION

Based on machine learning, we identified predictors of grip strength in

110 AUD individuals and separately in the 53 controls matched

in age, sex, and BMI to the AUD cohort. Our data-driven analysis

uniquely identified a double dissociation, i.e. strong predictors of grip

strength unique to controls, namely Backward Digit Span (a measure

of spatial working memory), precentral gyrus grey matter volume, dia-

stolic blood pressure, and mean platelet volume, were not significant

predictors of the AUD grip. By contrast, predictors unique to AUD,

namely HIV status, social functioning, platelet count, and insula grey

matter volume, were not significant predictors of control grip. Given

the broad clinical relevance of grip strength, these predictors could

identify diagnostically-selective biomarkers of decline and enhance

our understanding of how AUD in contrast with non-AUD individuals

affects central and peripheral nervous system functions.

Critical for predicting grip strength in both cohorts was cerebellar

white matter volume, which was expected given its role in motor con-

trol.45 Critically, cerebellar volume was significantly correlated with

grip strength only in the AUD cohort (Figure 1), indicating an advan-

tage of machine learning in revealing relations that may be undetect-

able using simple correlational statistics. Rather than cerebellar white

matter, the precentral gyrus, which is linked to voluntary motor func-

tions, emerged as a strong predictor of grip in the control cohort.

Another brain structure commonly affected in AUD is the insula,46

and our study further revealed that it was one of the top predictors of

grip strength unique to AUD patients. However, given the complex

functional role of the insula, it remains unclear whether its association

with motor function (such as grip strength) is mediated by other fac-

tors including perception, self-awareness, and interpersonal experi-

ence. While speculative, the involvement of the insula in grip strength

could be explained through several pathways. Specifically, its role in

interoception may influence effort perception during motor tasks,

whereas its function in emotional regulation could impact motivation

in strength-related activities.47 The insula's connections with motor

areas suggest a direct influence on motor preparation and execution.

Research has shown that the anterior insula integrates interoceptive

information with cognitive processes, potentially affecting motor

output.48 Studies have also demonstrated the insula's involvement in

action selection and activation during hand movements.49 These find-

ings collectively suggest a complex interplay between insular function,

motor control, and grip strength.

In addition to neuroanatomical measurements, machine learning

revealed significant functional implications for grip strength in the AUD

cohort. Specifically, our analysis uniquely revealed that social function-

ing, the degree to which one can engage with family and friends,

emerged as a significant predictor of grip strength exclusively in AUD

participants. This stronger correlation reflects the simultaneous effects

of alcohol abuse on physical ability and functioning,50 two factors that

are less dependent in healthy individuals. Regarding cognitive perfor-

mance, unique to control participants was working memory assessed

with Backward Digit Span in predicting grip strength. Controls tended

to have longer Backward Digit Spans than AUD (p = 0.074); the larger

standard deviation for spans in the AUD contributed to its weaker rele-

vance or more heterogeneous influence in the AUD than the controls.

These findings extend existing evidence that the relationship between

grip strength and cognitive and social functioning is different between

controls and groups with neuropsychiatric disorders51 and further

underscores the role of grip strength in aligning with functional deficits

and diagnostic differences in people with AUD.

Beyond brain and behavioural measures, physical health-related

predictors linked to aging were relevant to both cohorts and included

the MCHC. Specific to controls were diastolic blood pressure and

mean platelet volume, even though these measures were not signifi-

cantly different between the two cohorts. Higher mean platelet vol-

ume correlated with weaker grip strength, which comports with an

increase in platelet function being linked to frailty.52 However, age

was only a marginally stronger predictor for the control than AUD

cohort (11th place, Figure 2) and was basically discounted as an AUD-

specific predictor (listed in the bottom half).

In addition to insular volume and social functioning, unique pre-

dictors of grip in the AUD cohort were platelet count and HIV infec-

tion status. Lower platelet count has been linked to frailty52 and

heavy drinking, especially in drinkers with HIV,53 which might explain

our finding that the correlation between platelet count and grip

strength was only observed in the AUD cohort. Compared to those

F IGURE 3 Distribution of predictors
platelet count and cerebellum for AUD
individuals without (green) and with (red)
HIV co-morbidity. Our sample did not
reveal significant difference between the
AUD with and without HIV comorbidity
for platelet count and cerebellum white
matter (t test: platelet count t = 0.71,
p = 0.47; cerebellum t = �0.99,

p = 0.32).
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without HIV comorbidity, AUD with HIV comorbidity had a lower grip

strength only on a trend-level (t = 2.61, p = 0.01), even though this

variable was the strongest predictor in the AUD cohort. Furthermore,

our sample did not reveal significant differences between the cohorts

of AUD with versus without HIV comorbidity for the two significant

predictors, platelet count and cerebellum (Figure 3). Thus, the predic-

tors specific to AUD were most likely related to the impact of AUD

and not HIV infection on the overall health of an individual as AUD is

known to cause muscle wasting,54 which reduces grip strength. In

contrast to the AUD cohort, predicting grip strength in controls was

closely tied to cognitive and physical health.

Beyond these findings, our study has areas for future expansion.

The carefully matched sample allowed for rigorous comparisons

between cohorts but might confine our findings to a specific popula-

tion. To find out if our findings generalize to the general population,

we would need to train the model on age-matched cohorts that are

larger and more diverse. Longitudinal studies could further elucidate

temporal dynamics that our cross-sectional data cannot capture. Other

lifestyle factors that often differ between people with AUD and

healthy individuals but not collected by our study (such as diet quality

and exercise history) could further explain the doubly dissociated pre-

dictors of grip differentially related to cohort. For example, AUD

patients often have lower nutrient and carbohydrate intake and higher

fat intake than non-drinkers.55,56 The different food choices and risk of

malnutrition could mediate the physical and neurobiological measure-

ments in our study. Additionally, although our SHAP analysis explained

the contribution of each individual feature to the prediction of grip

strength, possible interactions among multiple features in relationship

to grip were not examined. Despite these limitations, our rigorous

statistical approach provides an objective foundation for understand-

ing the complex relationships between AUD and grip strength, setting

the stage for more comprehensive future investigations.

5 | CONCLUSION

Our data-driven analysis successfully identified predictors of waning

grip strength, which is a bellwether of impending decline. Salient pre-

dictors of grip strength in the AUD cohort were related to infection

comorbidity, overall health, and insula volume status. While evidence

for declining grip strength in the control cohort was also forthcoming,

its predictors differed from those of the AUD cohort in highlighting

spatial working memory, precentral gyrus volume, and other physio-

logical and haematological markers of health. This double dissociation

between the unique predictors for each cohort underlines the hetero-

geneity of substrates of grip strength of this common correlate of

health status. Thus, our outcomes provide a data-driven basis for con-

tinued exploration of multi-level antecedents to waning grip strength

as a marker of impending frailty in health and disease.
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