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ABSTRACT
Coronary artery disease (CAD) has recently emerged as a predominant source of
morbidity and death worldwide. Assessing the existence and severity of CAD in
people is crucial for determining the optimal treatment strategy. Currently,
computed tomography (CT) delivers excellent spatial resolution pictures of the heart
and coronary arteries at a rapid pace. Conversely, several problems exist in the
analysis of cardiac CT images for indications of CAD. Research investigations
employ machine learning (ML) and deep learning (DL) techniques to achieve high
accuracy and consistent performance, hence addressing existing restrictions. This
research proposes convMixer with median filter and morphological operations for
the classification of the coronary artery disease from computed tomography
angiography images. A total of 5,959 CT angiography images were used for
classification. The model achieved an accuracy of 96.30%, sensitivity of 94.39%, and
specificity of 99.16% for combination of the morphological operations and
convMixer, 88.92% of accuracy and 89.56% of sensitivity, and 93.10% of specificity
for the combination of median filter and convMixer and 94.63% of accuracy, 95.82%
of sensitivity, and 93.10% of specificity for convMixer. The findings indicate the
viability of automated non-invasive identification of individuals necessitating
invasive coronary angiography images and maybe future coronary artery operations.
This may potentially decrease the number of people who receive invasive coronary
angiography images. Lastly, post-image analysis was conducted using DL heat maps
to understand the decisions made by the proposed model. The proposed integrated
DL intelligent system enhances the efficiency of illness diagnosis, reduces manual
involvement in diagnostic processes, supports medical professionals in diagnostic
decision-making, and offers supplementary techniques for future medical diagnostic
systems based on coronary angioplasty.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Optimization Theory and Computation, Neural Networks
Keywords Coronary artery disease, Convmixer, Angiography, Deep learning, Computed
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INTRODUCTION
Coronary artery disease (CAD) are the leading cause of disability and early mortality in the
European region, accounting for about 42.5% of annual fatalities. This equates to 10,000
fatalities daily (WHO, 2024). The WHO/Europe research indicates that males in the region
are about 2.5 times more susceptible to mortality from cardiovascular diseases than
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women. The regional disparity is evident, as the likelihood of dying prematurely
(ages 30–69) from cardiovascular disease is about five-fold greater in Eastern Europe and
Central Asia than in Western Europe. “Cardiovascular diseases and hypertension are
predominantly preventable and manageable,” stated Dr. Hans Henri P. Kluge, WHO
Regional Director for Europe. “Four million, an astonishing statistic, represents the annual
fatalities attributed to cardiovascular diseases, predominantly affecting men, especially in
the eastern sector of our WHO region.” These facts highlight the urgency for change.
Despite understanding effective strategies, the failure to consistently apply evidence-based
methods continues to result in unacceptably high rates of preventable fatalities.
Implementing targeted efforts to decrease salt consumption by 25% might potentially save
around 900,000 fatalities from cardiovascular diseases by 2030 (Kryuchkov, 2024). The
number of victims is increasing dramatically. As a result, healthcare facilities must develop
a mechanism for early detection of CAD. Recent advancements in convolutional neural
networks (CNN) models allow researchers to create a predictive model for CAD (Xu et al.,
2021; Nishi et al., 2021; Gülsün et al., 2016; Alizadehsani et al., 2019; Liu et al., 2021b).
Nonetheless, CNN’s architecture is intricate and requires a high-performance graphics
processing unit (GPU) to handle complicated pictures. Traditional methods regard
analytical angiography as one of the most precise techniques for identifying cardiac
anomalies. Angiography’s drawbacks are its high cost, potential side effects, and the
requirement for advanced technological expertise (Banerjee, Ghose & Mandana, 2020).
Conventional procedures frequently produce erroneous diagnoses and require extended
time-frames due to human error. Furthermore, it is an expensive and labor-intensive
approach to illness diagnosis that requires significant processing. Clinical diagnostic
systems have gradually incorporated Artificial Intelligence (AI) technologies over the past
three decades to improve their precision. In recent years, data-driven decision-making
utilizing AI algorithms has become increasingly prevalent in the CAD sector (Zreik et al.,
2018b). Automation and standardization of interpretation and inference procedures can
enhance diagnostic accuracy. AI-driven technologies can expedite decision-making
processes for overcoming the shortcomings of existing approaches. Visual evaluation of
coronary CT angiography images is subjective and can vary from observer to observer. In
contrast, intrusive methods such as invasive coronary angiography (ICA) require a lot of
resources and come with their own risks. AI-driven solutions can standardize
interpretations, diminish diagnostic mistakes, and accelerate decision-making, therefore
enhancing patient outcomes. Still, the fact that AI models are not always applicable is a big
problem. This is because many models are only trained on small datasets and might not
work well with different types of people or imaging methods. AI models that cannot be
interpreted are hard to use in clinical settings because doctors need clear ways to make
decisions in order to trust and use these technologies effectively. Healthcare centers
may acquire, assess, and analyze data from these developing technologies to enhance
patient services (Wolterink et al., 2019). The raw data can profoundly influence the
quality and efficacy of AI methodologies. Consequently, substantial collaboration between
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AI engineers and healthcare practitioners is essential to enhance diagnostic quality
(Papandrianos & Papageorgiou, 2021). The novel CAD detection method relies on images.
Eliminating unnecessary characteristics enables physicians and computer scientists to
provide predictions more rapidly. The essential characteristics of CAD determine the
efficacy of AI methodologies (Mamun & Alouani, 2020). Numerous studies employ DL to
ascertain the presence of CAD (Lin et al., 2021; Liu et al., 2021a;Morris & Lopez, 2021; Rim
et al., 2021; Cho et al., 2021). The main objective of this research is to develop an
automated and efficient diagnostic tool that leverages the advantages of CNNs,
MLP-mixer, and ViTs for the detection and classification of CAD from coronary CT
angiography images.

CNN have been the standard architecture for DL techniques utilized in computer vision
applications for a number of years. Transformer-based designs, like the vision transformer
(ViT) architecture (Dosovitskiy, 2020), have recently shown impressive performance in
several applications, often outperforming conventional convolutional networks, especially
when dealing with big data sets. To use transformers for images, their representation must
be modified; applying self-attention layers in transformers directly at the per-pixel level
would cause computational costs to rise quadratically with the number of pixels in each
image. The solution, therefore, involves dividing the image into multiple patches, linearly
embedding each one, and then applying the Transformer to this collection of patches.

A basic convolutional architecture called ConvMixer was proposed to assist in
classifying CAD from CT angiographic images. It is very similar to ViT and MLP-mixer
(Tolstikhin et al., 2021). It uses direct patch processing, keeps the size and resolution of the
representation the same across all layers, stops representation down-sampling in later
layers, and can tell the difference between channel-wise and spatial mixing of data. In
contrast to the ViT and Multi-Layer Perceptrons Mixer (MLP-Mixer), our solution simply
uses regular convolutions to do all of these tasks. The major contributions of this work are:

. Used a large dataset of 5,959 CT angiography images.

. Median filtering (MLFR) and morphological (Morpho) operations are used to pre-
process the CT angiography images to remove the noise and sharpen the edges and
enhancement in images.

. ConvMixer architecture is proposed for the classification by extraction of patches similar
to the ViT and MLP-mixer. This is the first time the ConvMixer architecture has been
used for classifying CAD.

. Done the performance evaluation with the help of the performance metrics such as
accuracy, sensitivity, specificity, F-score, precision, Jaccard Index (JCI), Kappa and
Matthew’s coefficient (MC).

. Applied Explainable Artificial Intelligence (XAI) methods, such as Gradient-weighted
Class Activation Mapping (Grad-CAM), Local Interpretable Model-agnostic
Explanations (LIME) and occlusion sensitivity (OS) to the images to interpret the
decision-making process of the ConvMixer model.
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LITERATURE REVIEW
In the healthcare industry, ML is rapidly becoming a transformative instrument for
improving patient diagnoses. This is an analytical approach for extensive and complex
programming jobs, encompassing data translation from medical records, pandemic
prediction, and genetic data analysis. Numerous studies proposed various methodologies
for detecting cardiac problems using ML (Overmars et al., 2022; Lei et al., 2020; Kawasaki
et al., 2020). The ML methodology involves numerous stages, such as picture
preprocessing, feature extraction, model training and parameter optimization, model
evaluation, and ultimately, the generation of predictions using the models. The classifier’s
efficacy is contingent upon the feature selection procedure. The contemporary literature
(van Hamersvelt et al., 2019) has delineated numerous criteria for the assessment of the
ML-based model. Healthcare practitioners are mostly concerned with the reliability and
performance of the ML-based model. Furthermore, ease of use, accessibility, and
computational difficulties are critical factors for implementing the CAD detection model
in healthcare facilities (Al-Aref et al., 2019). DL is an emerging ML approach with
significant potential for diverse categorization challenges. DL provides an effective
methodology for constructing a comprehensive model that utilizes raw medical images to
forecast a significant illness (Karaddi, Sharma & Bhattacharya, 2024; Karaddi & Sharma,
2023). The CNN model surpasses alternative approaches in certain picture classification
tasks. CNN delineates the essential attributes and categorizes photos (Lu et al., 2022).
Picture annotation is a crucial element in medical picture categorization. Elevated dataset
dimensionality is a significant challenge for ML methodologies (Kolossváry et al., 2019).
Assigning weights to features, minimizing duplicate data, and mitigating overfitting can
enhance the algorithm’s efficacy (Mathur et al., 2020; Paul et al., 2022; Dong, Xu & Li,
2022).

Abdar et al. (2019) proposed automatic CAD detection using the N2-generation-
NVSVM model. For the classification, the authors experimented with ten different ML
models and used 10-fold cross validation for the parallel selection of features and training
models. The authors achieved an accuracy of 93.08% for the N2-generation-NVSVM
model for the classification. Saeedbakhsh et al. (2023) suggested a CAD diagnostic tool
based on unsupervised learning models such as SVM, random forest, and artificial neural
networks. The authors used 11,495 CT angiography images for the classification. Using
SVM, they achieved an accuracy of 89.73%. Sayadi et al. (2022) classified the CAD using Z-
Alizadaly image datasets, employing six ML algorithms: decision tree, DL, SVM, Xgboost,
random forest, and logistic regression. To diagnose CAD, the authors used a Pearson
feature selection model with eight features. They achieved the highest accuracy for SVM,
95.45%. Garavand et al. (2022) used clinical parameters and angiography images to divide
CAD into groups using various ML models, including SVM, k-nearest neighbors, and
multi-layer perceptron. To advise medical professionals, the authors used 303 records with
25 features. The authors achieved an accuracy of 88% and f-measure of 88% using SVM.
Muthusamy & Murugesh (2024) used modified DenseNet201 for feature extraction and
segmentation and ResNet152 for CT angiography image classification. For classification,
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Jin et al. (2022) used 505 patients with 127 and 763 CT angiography images. The authors
used CNN for plaque segmentation and detection. The authors also used DL-based
techniques to extract the patches from the image. The authors use decision trees and
gradient boosting as classifiers to classify the illness based on the extracted features. The
authors achieved 87% of the accuracy, 84.1% of sensitivity, and 95.7% of the specificity.
Zreik et al. (2019) analyzed the CAD using DL techniques derived from angiography
images. In 192 different arteries, the authors used 187 patients and 137 invasive fractional
flow reverse measurements. The authors achieved 87% accuracy for CAD detection. Zreik
et al. (2018a) proposed an automatic classification of the CAD using recurrent CNN from
CT angiography images. The authors employed 3D-CNN to extract features, and then used
recurrent CNN to classify the extracted features. The authors trained this combination on
98 angiography images and tested it on 65 angiography images. The authors achieved an
accuracy of 77% for the classification. Han et al. (2020) proposed DL analysis for CAD
detection using DL models. In this study, the authors used data from 100 angiography
patients for training and 50 for testing the model. The authors proposed an AI system for
CT angiography classification. The authors statistically analyzed coronary images in this
study. The authors achieved accuracy of 86%, sensitivity of 83%, and specificity of 88%.

All the models mentioned above achieved lower accuracy and utilized fewer image
datasets for diagnosing CAD. These models lacked the use of XAI to interpret the
networks’ decisions. Current CAD detection methods demand substantial time and
computing resources for training before producing acceptable results. Identifying
significant patterns in an image requires valuable attributes. The latest models face
challenges in overcoming underfitting and overfitting. To address these issues, the
ConvMixer was introduced, incorporating MLFR and Morpho operations for automatic
CAD diagnosis using patch extraction, similar to the ViT and MLP-mixer. This work can
diagnose CAD efficiently, reducing the burden on medical practitioners.

PROBLEM STATEMENT
Globally, CAD accounts for a significant portion of the fatalities caused by cardiovascular
diseases and is thus the leading cause of morbidity and premature mortality. Most people
believe that invasive ICA and other traditional diagnostic procedures are the gold standard.
However, they are costly, resource-intensive, and subjective, making it more difficult to
make sound therapeutic recommendations. However, current CNNs still struggle with
processing overhead, model interpretability, and working with data from disparate sets,
despite DL’s impact on medical picture detection. This article proposes a different
approach to categorizing CAD. Using ConvMixer, a lightweight neural architecture
affected by ViTs and MLP-Mixer, it quickly pulls out spatial and contextual information
from coronary CT angiography images. This study utilizes advanced preprocessing
techniques, including MLFR and morphological processes, on a large dataset of 5,959
angiographic images to improve edge definition and reduce noise. The ConvMixer model
loses less data than other CNN designs because it uses direct patch processing to keep the
integrity of the space.
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DATASETS AND METHODOLOGY
Datasets and pre-processing
This dataset consists of coronary arteries of 500 people. Each picture depicts a mosaic
projection view (MPV), including 18 distinct images of a straightened coronary artery
arranged vertically. The training, validation, and test sets are divided in to 8:1:1 ratio, with
each set comprising 50% normal cases and 50% sick case (Gupta et al., 2020). This dataset
includes a total of 5,959 CT angiography images. Out of these, 2,539 are positive and 3,420
are negative images. A random selection of 4,827 images are used for training, 536 for
validation, and 596 for testing. MLFR and Morpho techniques were used for pre-
processing, which are discussed in detail in the following sections.

Methodology for the classification of the CAD using ConvMixer
This section presents the proposed model for the automated diagnosis of CAD using
ConvMixer, based on 5,959 CT angiography images. Figure 1 shows the pipeline for the
diagnosis of the CAD using convMixer and XAI applied to CT angiography images. This
classification of CAD has the following steps:

. Collection of data: In this, cardiovascular CT angiography images are collected from
publically available platform Mendeley Data (Gupta et al., 2020).

. Pre-processing of CT angiography images: In this, two different techniques, MLFR and
Morpho operations, were applied to enhance and sharpen the edges of the collected
images.

i) Median filtering (MLFR): Random noise can be blocked by median filters,
especially when the noise amplitude probability distribution has big tails and
regular patterns. The median filtering method is executed by traversing a window
over the picture. The filtered picture is produced by positioning the median of the
values inside the input window at the middle location of that window in the output
image. The median serves as the greatest probability estimate of location for
Laplacian noise distribution. The median filter does a good job of predicting the
gray-level value in areas that are mostly the same, especially when there is long-
tailed noise. Upon crossing an edge, one side predominates the window, resulting in
a sudden transition between values in the output. Consequently, the boundary
remains distinct. Some problems with these filters are that they can mess up the
edges of the picture and add extra noise when the signal-to-noise ratio is low, and
they cannot get rid of medium-tailed (Gaussian) noise distributions. In digital image
processing, MLFR is particularly popular because, in some cases, it removes noise
nevertheless retain edges.

ii) Morphological operations (Morpho): Morphology encompasses a comprehensive
array of image processing techniques that manipulate pictures according to their
forms. Morphological procedures apply a structuring element to an input picture,
resulting in an output image of the same dimensions. A morphological process
determines the value of each pixel in the output picture by comparing its
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corresponding pixel in the input image with its neighboring pixels. The
fundamental Morpho operations are dilation and erosion. Dilation increases the
pixel count along the edges of objects in a picture, whereas erosion decreases the
pixel count at object borders. The number of pixels added or removed from objects
in a picture is dependent on the dimensions and configuration of the structuring
element used in image processing. In dilation and erosion processes, the associated
pixel and its adjacent pixels in the input image dictate the status of each pixel in the
output picture through a rule. The rule for manipulating the pixels defines the
operation as either dilation or erosion.

iii) Open and close processes are performed on the images based on the dilation and
erosion operations. The opening procedure first erodes an image, then dilates the
degraded image, employing the same structural element for both processes. A
Morpho opening effectively removes small things and thin lines from a picture
while maintaining the shape and size of larger objects. The closing procedure
expands an image and subsequently contracts the dilated image, employing the
identical structural element for both processes. Morpho closure effectively fills small
gaps in a picture while maintaining the form and dimensions of larger voids and
objects. The example for the pre-processed images using MFLR and Morpho are
presented in the Fig. 2.

iv) The MLFR and Morpho approaches in the pre-processing phase provide several
benefits compared to traditional procedures, rendering them exceptionally
successful for picture augmentation. MLFR efficiently eliminates impulsive noise,
such as salt-and-pepper noise, while maintaining essential edges and structures, in
contrast to linear filters that sometimes obscure significant features. This guarantees
that critical properties are preserved for further processing. Morpho procedures
improve the structural integrity of pictures by refining object borders, removing
minor undesired artifacts, and filling gaps. The integration of dilation and erosion
aids in maintaining essential objects while eliminating extraneous noise, rendering it
especially beneficial for activities necessitating accurate shape and edge information.
Morpho-based opening and closing processes also improve segmentation by
reducing errors, which is important for deep learning (DL) models that depend on
clear, defined features. The MLFR and Morpho methods guarantee clear, noise-free,

Figure 1 Proposed coronary artery disease classification diagram.
Full-size DOI: 10.7717/peerj-cs.2771/fig-1
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and well-structured pictures, unlike common pre-processing methods like Gaussian
filtering, which can cause a lot of blurring, or Fourier-based methods, which may
lose spatial information. This finally improves the precision and dependability of
classification tasks by supplying high-quality input data for DL models.

Figure 2 Example of CAD CT-images with image pre-processing techniques (MFLR and Morpho).
Full-size DOI: 10.7717/peerj-cs.2771/fig-2
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. Data spliting: After image pre-processing, all images are splitted into training,
validation, and test data in the ratio of 8:1:1, respectively.

Structure of ConvMixer
It is possible that patch-based representation is more responsible for the impressive
performance of visual transformers than the transformer architecture itself. This work
proposed a straightforward convolutional architecture for CAD classification, which refer
to as ConvMixer. This architecture bears many similarities to the ViT. For example, it
works directly on patches, keeps the same representation size and resolution across all
layers, doesn’t downscale the representation at lower layers, and can tell the difference
between channel-wise mixing and spatial mixing of information. On the other hand, in
contrast to the ViT and the MLP-Mixer, this design exclusively uses ordinary convolutions
to perform all of these functions. This structure of ConvMixer is presented in the Fig. 3.

ConvMixer comprises a patch embedding layer succeeded by many iterations of a basic
fully-convolutional block, maintaining the spatial configuration of the patch embeddings
(Liu et al., 2024). This is represented as:

CVMO ¼ Batch NormðrCvcin!hoðXin; S ¼ p;K size ¼ pÞÞ (1)

where, p is patch size, S is stride, K is kernel, Xin is input, and CVMO is the patch
embedding of the convMixer. This block comprises depth-wise convolution (CDW)
succeeded by point-wise convolution (CPW). It is most effective with exceptionally large
kernel sizes for the CDW. Every convolution is succeeded by an activation function and
subsequent Batch Normalization:

CVM0
l ¼ Batch NormðrCDWðCVMl � 1ÞÞ þ CVMl þ 1 (2)

CVMlþ1 ¼ Batch NormðrðCPWðCVM0
lÞÞÞ: (3)

Figure 3 Architecture of the ConvMixer (Trockman & Kolter, 2022).
Full-size DOI: 10.7717/peerj-cs.2771/fig-3
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Following several executions of this block, carry out global pooling to obtain a feature
vector of size h, that is subsequently input into a softmax. In this work, the
convMixer_256_8 model was used for classification with specification listed in the Table 1.
Where, eight is the depth of the network, 256 is the number of channels, and it has only 0.8
million parameters. Due to this light weight computational complexity reduces, and less
time will take for the training. ConvMixer has total 37,558,600 parameters, out of these
9,973,762 are trainable parameters, 7,637,312 are non-trainable parameters, and
19,947,526 are optimizer parameters. The convMixer_256_8 require 38.05 MB of size to
train and test the model. The ConvMixer model specifications are defined and then trained
using the parameters listed in Table 1. Based on Trockman & Kolter (2022), parameters
were chosen for model training to provide the best performance, stability, and
generalization. Since too big a learning rate might lead to divergence and too small a rate
can slow down training, the learning rate of 0.003 is used to strike a compromise between
stability and quick convergence. We used the Adam optimizer due to its ability to adjust
learning rates, which effectively manages sparse gradients and accelerates convergence. A
batch size of 128 helped keep the gradient updates stable, and 30 epochs let us fine-tune the
network for specific tasks while also making sure the model is well-trained and avoiding
overfitting. In order to reduce computational complexity, the sparse categorical
cross-entropy loss function was used for classification. We used a kernel size of 5 and a
patch size of 2 to maintain computational efficiency while capturing spatial characteristics.
We selected eight convMixer layers for depth to minimize overfitting, reduce complexity,
and provide adequate feature learning capability. The smoother non-linearity of the GeLU
activation function, which improves gradient flow and learning dynamics, made it the best
choice over the ReLU. A weight decay of 0.0001 was also used as a regularization method to
guarantee improved generalization and avoid overfitting. We used the above mentioned
parameters to give best and robust model for the classification. To evaluate its efficacy, the
proposed model is tested on a separate set of images, with performance assessed through a

Table 1 Parameters and specification used for the model training.

Parameters or specifications Value

Weight decay 0.0001

Learn rate 0.003

Batch size 128

Epochs 30

Channels or filters 256

Loss Sparse categorical cross entropy

Patch size 2

Kernel size 5

Depth 8

Optimizer Adam

Activation GeLU
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confusion matrix. Additionally, XAI techniques—including GCAM, LIME, and OS are
applied to the test images to interpret and visualize the model’s decision-making process.

Advantages of convMixer
The main advantages of convMixer compared to MLP-mixer, ViT, and CNNs are as
follows:

. It has simple and isotropic architecture compare to ViT.

. The patch dimension will same throughout the processing in the convMixer where as
dimension will reduce in the MLP-mixer and ViT.

. Point-wise and depth-wise convolutions are performed.

. It is an simple CNN structure made up with convolutions, batch normalization, and
activations.

. Due to its simple architecture, it has less computational complexity.

EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, the classification performance of the proposed model is described. In this
work, first the convMixer, MLFR+convMixer, and Morpho+convMixer models were
trained on 4,827 images using parameter listed in the Table 1 and Fig. 4 shows the training
accuracy and loss curve of the proposed model. After training, classification of 596 images
are taking place. Accuracy, sensitivity, precision, specificity, JCI, kappa, MC, and F-score
have been calculated using the confusion matrices. Figures 5 and 6 show the patch
extracted from the proposed model and activations of the convolutional layer of the
proposed Morpho+convMixer model respectively.

Figure 7 gives the confusion matrices of the convMixer, MLFR+convMixer, and
Morpho+convMixer models. From Fig. 7, 319 images from positive and 246 images from
negative images are truly predicted using convMixer, 309 images from positive and 221
images from negative are correctly detected using MLFR+convMixer, and 337 images from
positive and 237 images from the negative are correctly classified using Morpho
+convMixer. From these confusion matrices, the performance of the proposed model were
evaluated in the Table 2. Table 2 represents the performance of the proposed models. In
this, convMixer achieved 94.63%, 95.82%, 93.10%, 94.69%, 90.93%, 80.32%, 89.08% and
95.25% of accuracy, sensitivity, specificity, precision, JCI, kappa, MC and F-score,
respectively. MLFR+convMixer achieved 88.92%, 89.56% 88.04%, 91.15%, 87.70%,
64.57%, 77.37% and 90.35% of accuracy, sensitivity, specificity, precision, JCI, kappa, MC,
F-score respectively. Morpho+convMixer achieved the highest accuracy of 96.30%, 94.39%
of sensitivity, 99.16% of specificity, 99.41% of precision, 93.87% of JCI, 86.78% of kappa
92.58% MC, and 96.83% of F-score. From these, it can be concluded that this proposed
model convMixer with morphological operations model performed better than other two
models listed in the Table 2. Figure 8 presents a visual representation of the performance
evaluation of the proposed ConvMixer models. Figure 9 shows the receiver operating
characteristic (ROC) of the proposed model.
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Figure 4 Model accuracy and loss curves. Full-size DOI: 10.7717/peerj-cs.2771/fig-4

Figure 5 Patch embedding of the ConvMixer. Full-size DOI: 10.7717/peerj-cs.2771/fig-5
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XAI using GCAM, LIME and OS
Figure 10 shows that XAI is applied to both positive and negative images in order to
understand the decision made by the proposed model. In this study, GCAM, LIME, and
OS were applied to the images. The network extracts more discriminatory features from
the image that is represented in dark red, fewer features are extracted from the image that
is shown in light red, and no features are extracted from blue, allowing it to make decisions
based on the model’s extracted features.

Limitations of the proposed work or research
The suggested model provides a simple architecture for CAD categorization. Although it
demonstrates competitive efficacy in specific tasks, it possesses several drawbacks relative

Figure 7 Confusion matrices for the CAD classification using proposed models.
Full-size DOI: 10.7717/peerj-cs.2771/fig-7

Figure 6 Activation’s of the ConvMixer in convolutinal layer kernels.
Full-size DOI: 10.7717/peerj-cs.2771/fig-6
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to more sophisticated systems such as CNNs or Transformers. It is deficient in multi-scale
feature extraction and hierarchical representation capabilities compared to typical CNNs,
rendering it less effective for intricate applications. In contrast to ViTs, it lacks attention
mechanisms, hence constraining its capacity to capture long-range relationships. It may
also exhibit suboptimal performance on limited datasets and need extended training
durations or more data augmentation to get competitive outcomes. Moreover, its
diminished inductive bias and restricted utilization in research render it less adaptable
than recognized designs such as CNNs or Transformers. Notwithstanding its efficiency,
these constraints constrain its application to more complex or large-scale picture
categorization tasks (Demirbaş, Üzen & Fırat, 2024).

These limitations can be overcome in the future by utilizing the attention mechanism in
the simplest way, using a large amount of datasets, using real-time data images, using
advanced optimization techniques, and also using multi-modal datasets. The model’s
attention mechanisms will effectively address the inductive bias issue.

Comparison of the proposed model with previous state-of-the-art
models and other DL-models
Table 3 presents the comparison of existing state-of-the-art (SOTA) methods with
proposed model. In Jin et al. (2022), the authors attained a maximum accuracy of 97.00%

Figure 8 Graphical representation of performance of different ConvMixer models.
Full-size DOI: 10.7717/peerj-cs.2771/fig-8

Table 2 Performance evaluation of the proposed ConvMixer models.

Method Accuracy Sensitivity Specificity Precision JCI Kappa MC F-score

ConvMixer 94.63 95.82 93.10 94.69 90.93 80.32 89.08 95.25

MFLR+ConvMixer 88.92 89.56 88.04 91.15 87.70 64.57 77.37 90.35

Morpho+ConvMixer 96.30 94.39 99.16 99.41 93.87 86.78 92.58 96.83
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employing a CNN+GBDT methodology with a dataset of 890 samples. Nevertheless, the
authors attained a sensitivity of 84.10%, suggesting possible constraints in identifying
positive cases. In a similar vein, Sayadi et al. (2022) documented an accuracy of 95.45%
with an SVM model applied to the Z-Alizadaly dataset, whereas Abdar et al. (2019)
attained an accuracy of 93.08% utilizing a N2Genetic-NVSVM model. Alternative SVM-
based approaches, including Saeedbakhsh et al. (2023) and Garavand et al. (2022), attained
accuracies of 89.73% and 88.00%, respectively, although they did not assess specificity or

Figure 9 ROCs of of the proposed models. Full-size DOI: 10.7717/peerj-cs.2771/fig-9
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sensitivity. In Zreik et al. (2018a), a 3D CNN+RCNN model was employed, achieving a
modest accuracy of 77.00%. However, their subsequent research in Zreik et al. (2019)
enhanced this to 87.00% by utilizing a conventional CNN model. In Han et al. (2020), the
CNN achieved an accuracy of 86.00%, with a specificity of 88.00% and a sensitivity of
83.00%. Conversely, inMuscogiuri et al. (2024), the accuracy was 91.50%, with a specificity
of 95.30% and a sensitivity of 79.70%. The suggested model surpasses the majority of
current strategies, with an accuracy of 96.30%, a specificity of 99.16%, and a sensitivity of
94.39%, so illustrating its robust capacity to differentiate among various classes. It was
trained on a considerably larger dataset of 5,959 samples, enhancing its robustness and
generalizability relative to models developed on smaller datasets. The findings demonstrate
that the suggested method offers enhanced accuracy while achieving an improved
equilibrium between specificity and sensitivity, rendering it a more effective and
dependable strategy for classification tasks.

Figure 10 Example of XAI (GCAM, LIME, and OS) decision understanding by proposed model.
Full-size DOI: 10.7717/peerj-cs.2771/fig-10

Table 3 Comparison of existing SOTA with proposed model.

References Method Dataset Accuracy Specificity Sensitivity

Abdar et al. (2019) N2Genetic-NVSVM – 93.08 – –

Saeedbakhsh et al. (2023) SVM 11,495 89.73 – –

Sayadi et al. (2022) SVM Z-Alizadaly 95.45 – –

Garavand et al. (2022) SVM 328 88.00 – –

Jin et al. (2022) CNN+GBDT 890 97.00 95.70 84.10

Zreik et al. (2019) CNN 379 87.00 – –

Zreik et al. (2018a) 3D CNN+RCNN 163 77.00 – –

Han et al. (2020) CNN 150 86.00 88.00 83.00

Muscogiuri et al. (2024) CNN – 91.50 95.30 79.70

Proposed Morpho+ConvMixer 5,959 96.30 99.16 94.39

Note:
GBDT, Gradient boosting and decision tree.
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Table 4 represents the comparison of DL techniques with the proposed model.
ResNet50 achieved an accuracy of 94%, with a precision of 84% and sensitivity of 85%
across the models. Conversely, AlexNet has the lowest performance, achieving an accuracy
of 84%, a precision of 69%, and a sensitivity of 66%, demonstrating its constrained efficacy.
Xception demonstrates an enhanced precision of 88%, yet a slightly reduced sensitivity of
81%, culminating in an F-score of 83%. Recurrent models like LSTM and BiLSTM work
better than others. For example, BiLSTM has a sensitivity of 90%, which is higher than
LSTM’s sensitivity of 85% and leads to better overall effectiveness. The MLP mixer and
ViT models achieved an 94.00% and 95.00% of accuracy, respectively. The proposed
ConvMixer model, which combines morphological processing with ConvMixer, surpasses
all existing models. It attains a maximum accuracy of 96.30%, an outstanding precision of
99.41%, and a remarkable F-score of 96.83%, establishing it as the most successful method.
The markedly superior precision and F-score demonstrate that the suggested method
improves classification performance, giving it a more dependable and effective alternative
to traditional DL-techniques. This is attributed to its straightforward architecture and
specifications. The graphical representation of this comparison is shown in the Fig. 11.

The suggested model fundamentally consists of an MLP-Mixer augmented with
convolutions (Tolstikhin et al., 2021). It operates directly on embedded patches,
guaranteeing consistent resolution and dimensions throughout the layers. In addition,
depth-wise separable convolution can tell the difference between channel-wise and spatial
information integration, just like MLP-Mixer, and it has similar skip connections. The
suggested framework is a complete CNN. All ConvMixer actions may be performed just
using activations, batch normalization, and convolutions. Consequently, it is
fundamentally a CNNwith certain architectural hyper-parameters. Whereas ViT performs
well for large datasets and high-resolution images, CNN performs well for small and
medium datasets, and it also provides good real-time interference. The proposed model
utilizes the advantages of CNNs, MLP mixers, and ViT models to give the best
performance in CAD detection.

Table 4 Comparison proposed model with other DL-techniques.

Method Accuracy Precision Sensitivity F-score

ResNet50 94.00 84.00 85.00 84.00

AlexNet 84.00 69.00 66.00 66.00

Xception 87.00 88.00 81.00 83.00

GoogleNet 87.22 77.00 73.00 75.00

VGG19 84.00 78.00 68.00 70.00

LSTM 92.00 81.00 85.00 82.00

BiLSTM 93.00 83.00 90.00 85.00

MLP Mixer 94.00 86.00 82.00 84.00

ViT 95.00 94.00 94.00 94.00

Proposed (Morpho+ConvMixer) 96.30 99.41 94.49 96.83
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In the future, advanced attention mechanisms with ViTs, such as locally shifted
attention tokenization, will be applied for image classification and feature extraction.
Additionally, conformer or Multi-modal Adaptive Model-based Biomarker Analysis
(MAMBA) techniques will be utilized to enhance diagnostic efficacy in classification tasks.

CONCLUSION
The coronary vascular imaging reveals that the artery is a slender, tubular structure with
relatively low contrast and artifacts. This complicates the accurate classification of the
samples. This article suggested a DL method that uses morphological operations and
ConvMixer to classify the coronary blood vessels in CT angiography images. This study
introduces ConvMixer, which uses a median filter and morphological methods to pre-
process CT angiography images into groups based on coronary artery disease. The
proposed model utilizes the advantages of the MLP mixer, CNNs, and ViT. The Marpho
+ConvMixer model keeps the resolution the same throughout the process, like CNNs. It
also uses depth-wise separable convolutions, like the MLP-mixer, and patches for robust
feature extraction that are lighter than the ViT. The proposed model implements all these
processes through convolutions. Due to this, the proposed model gives robust feature
extraction with less computational cost as compared to other models. We used 5,959 CT
angiography images for categorization purposes.For the combination of morphological
operations and ConvMixer, an accuracy of 96.30%, sensitivity of 94.39%, and specificity of
99.16% was achieved; for ConvMixer alone, 94.63% accuracy, 95.82% sensitivity, and
93.10% specificity were achieved; and for the combination of median filter and ConvMixer,
88.92% accuracy, 89.56% sensitivity, and 93.10% specificity were achieved. The results

Figure 11 Performance of the ConvMixer and other DL-methods.
Full-size DOI: 10.7717/peerj-cs.2771/fig-11
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show that it is possible to automatically and non-invasively find patients who need invasive
coronary angiography. They also show that future coronary artery procedures are possible.
This may potentially reduce the number of individuals undergoing invasive coronary
angiography. Finally, we conducted post-image analysis using DL heat maps to understand
the decisions made by the proposed model. The proposed integrated DL intelligent system
improves diagnosis accuracy, reduces the need for medical staff, reduces manual work in
diagnosis, and offers additional methods to monitor coronary angioplasty-related medical
diagnostic systems. This model also improves the generalizability, accuracy, and
interpretability in order to detect the CAD automatically.
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