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Purpose: We developed a strategy of building prognosis gene signature based on clinical
treatment responsiveness to predict radiotherapy survival benefit in breast cancer patients.

Methods and Materials: Analyzed data came from the public database. PFS was used
as an indicator of clinical treatment responsiveness. WGCNA was used to identify the
most relevant modules to radiotherapy response. Based on the module genes, Cox
regression model was used to build survival prognosis signature to distinguish the benefit
group of radiotherapy. An external validation was also performed.

Results: In the developed dataset, MEbrown module with 534 genes was identified by
WGCNA, which was most correlated to the radiotherapy response of patients. A number
of 11 hub genes were selected to build the survival prognosis signature. Patients that were
divided into radio-sensitivity group and radio-resistant group based on the signature risk
score had varied survival benefit. In developed dataset, the 3-, 5-, and 10-year AUC of the
signature were 0.814 (CI95%: 0.742–0.905), 0.781 (CI95%: 0.682–0.880), and 0.762
(CI95%: 0.626–0.897), respectively. In validation dataset, the 3- and 5-year AUC of the
signature were 0.706 (CI95%: 0.523–0.889) and 0.743 (CI95%: 0.595–0.891). The
signature had higher predictive power than clinical factors alone and had more clinical
prognosis efficiency. Functional enrichment analysis revealed that the identified genes
were mainly enriched in immune-related processes. Further immune estimated analysis
showed the difference in distribution of immune micro-environment between radio-
sensitivity group and radio-resistant group.
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Conclusions: The 11-gene signature may reflect differences in tumor immune micro-
environment that underlie the differential response to radiation therapy and could guide
clinical-decision making related to radiation in breast cancer patients.
Keywords: breast cancer, radio-sensitivity, prognosis gene signature, WGCNA, LASSO
INTRODUCTION

The World Health Organization (WHO, https://www.who.int/)
has announced on February 3, 2021 that, breast cancer has now
overtaken lung cancer as the world’s mostly commonly-
diagnosed cancer, based on statistics released by the
International Agency for Research on Cancer (IARC) in
December 2020. A month later, a major new collaborative
effort, the Global Breast Cancer Initiative, was introduced by
the WHO, with the objective of reducing global breast cancer
mortality and highlighted renewed commitment to improve
survival. Cancer prognosis is a major concern in clinical
decision making and an important public health issue.

More than half of cancer patients require radiotherapy as
part of primary treatment for cancer care and radiotherapy is
frequently used to treat the most common types, such as breast
cancer, lung cancer and gastric cancer (1–3). Generally, breast
cancer patients have a long postoperative survival time with
common adjuvant setting like chemotherapy and radiotherapy.
However, due to the so called molecular heterogeneity of
tumor, there are still many patients who may not benefit
from radiation therapy but suffer from radiation-induced
toxicity (4), although they may share the same clinical and
pathological features. In the era of precision medicine,
exploration of tumor radio-sensitivity at the genome level has
appealed to much attention. Personalized radiotherapy
regimens based on cancer biology have become increasingly
important (5, 6). Hence, recent clinical guidelines emphasize
the importance of using multi-genetic tests to select patients
who should receive adjuvant therapy (6).

Commonly, the radio-sensitivity of a tumor can be determined
at the cellular level. For example, if a tumor entity shrinks or dies
after radiation therapy, the tumor can be considered “responsive”
to radiotherapy. Then, we can analyze the difference of gene profile
characteristics between the sensitive and non-sensitive types. One
of these examples is the radio-sensitivity index (RSI, high index =
radio-resistance) (7). A 10-gene signature was identified and used
to build a rank-based linear regression algorithm to predict an
vival; OS, overall survival; WGCNA,
A, breast invasive carcinoma; FPKM,
diotherapy; PR, progesterone receptor;
tion Operator; MAD, median absolute
x; PCA, principal component analysis;
OC, receiver operating characteristic;
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intrinsic radio-sensitivity and was validated on independent breast
cancer dataset (8). Another example is the 31-gene signature based
on micro-array data from NCI-60 cancer cells (9).

However, many experiments cannot be done on human
beings. Experiments on animals would not guarantee that the
same conclusion can be drawn for humans. In the real clinical
data analysis, treatment response could reflect sensitivity to
radiotherapy of tumor patients’. According to varied treatment
responses of patients, some radiotherapy-associated genes and
lncRNAs are identified using bio-informatics approach and are
utilized to predict prognosis of patients in several cancers (10,
11). Nevertheless, a treatment response usually reflects a short-
term therapeutic effect and is not enough to reflect clinical
benefits, such as a survival advantage (12). For tumor patients
with a long-time survival (e.g., breast cancer patients), a
preferable indicator of clinical benefits is progression-free
survival (PFS). PFS is defined as the time from randomization
to the time of disease progression, which is established by a
discrete clinical or radio-logical assessment and also depends on
the growth rate of a cancer (13). As less affected by subsequent
treatments, palliative care, and comorbidities, PFS is a better
alternative endpoint for overall survival (OS) and can be
evaluated prior to determining survival benefit (12).

In this study, we used PFS as an alternative indicator of
radiotherapy response in breast cancer patients with
radiotherapy. Weighted correlation network analysis (WGCNA)
was used to screen the most relevant modules to radiotherapy
response between response and non-response groups. Based on the
module genes,wedeveloped a survival prognosis signature of breast
cancer patients to distinguish the benefit group of radiotherapy. For
precision medicine, our work offered more evidence and clues for
using radiotherapy response related genes as potential signature to
identify radio-sensitive for cancer patients or as targets that
promote personalize radiation.
MATERIALS AND METHODS

Data Sources
We downloaded gene expression RNA-seq and phenotype data of
GDC TCGA Breast Cancer (BRCA) cohort from the UCSC Xena
website (https://gdc.xenahubs.net). TheRNA-seqdata (version: 07-
18-2019, n = 1,217) are standardizedbyFragments PerKilobase per
Million (FPKM) and the unit is normalized as log2 (fpkm+ 1). The
mRNA and lncRNA expression data were extracted according to
the GENCODE annotations database V38 (https://www.
gencodegenes.org/). Phenotype data include clinical phenotype
(version: 08-07-2019, n = 1,284) and survival data (version: 07-
18-2019, n = 1,260).
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The gene expression dataset was collated to exclude normal
tissues and samples of metastatic tumors. After matching clinical
information, we excluded samples of male breast cancer and
unidentified gender. Next, we removed subjects with missing
survival data or radiotherapy information. Patients with follow-
up survival time less than 30 days were also eliminated. Finally,
937 patients were included in the study population. We adopted
multivariable stepwise Cox regression analysis based on the AIC
to identify major clinical influence factors for OS (See Table 1).
Age, radiotherapy, chemotherapy, age, progesterone receptor
(PR) status, N stage, and pathological stage were the impact
factors of OS, which were reasonable.

In addition, external validation was performed using E-TABM-
158 dataset (n = 130) downloaded from the ArrayExpress database
(https://www.ebi.ac.uk/arrayexpress/). This dataset includes
information of transcription profiling of human breast cancer
samples and clinical outcome (14). The inclusion and exclusion
criteria of samples were the same as above.

Study Design
Figure 1 is the flow chart. In this study, we used TCGA BRCA as
developed dataset. Patients with PFS happened after the start of
radiotherapy (RT) and were defined as “RT non-response” group
and those without a PFS event were defined as “RT response”
group (See Figure 1A). In the 534 RT patients, there were 44
patients in the “RT non-response” group and 418 patients in the
“RT response” group. Patients with missing RT time data were
Frontiers in Oncology | www.frontiersin.org 3
excluded. We ranked the patients based on their days to disease
progression or follow-up time (Figure 1B). Then, patients with
the longer follow-up survival time in the “RT response” group
were selected as control group to match main clinical factors
(age, chemotherapy, PR status, pathological stage, and N Stage,
see Table S1) with the “RT non-response” group using
propensity score matching method.

After removing samples with outlier gene expression using
hierarchical clustering analysis, 41 pairs of RT non-response/
response samples were left. WGCNA was used to identify the
most relevant mRNA and lncRNA modules to RT response
between the two groups. Based on the relevant mRNA module
genes, univariate Cox regression analysis was performed to
screen survival related genes. Then common genes in both
TACGA BRCA and E-TABM-158 were selected to build a
survival prognosis signature model for breast cancer patients
using Least Absolute Shrinkage and Selection Operator (LASSO)
Cox regression model. This gene signature was evaluated in the
developed dataset and validated in an external dataset. In
addition, we also explored the related biological mechanisms
(See Figure 1C).

WGCNA Correlation Analysis
Weighted gene co-expression network analysis is a systems
biology method to describe the correlation patterns among
genes and clinical traits (15), which can be conducted using
the WGCNA package in R (4.0.5) software. It is generally
TABLE 1 | Associations of clinical variables with OS in BRCA (total N = 937).

N % HR (95%CI) P

Radiotherapy* yes 534 57
no 403 43 2.348 (1.553, 3.551) <0.001

Chemotherapy* yes 761 90 1.000
no 86 10 1.987 (1.200, 3.290) 0.008
unknown 90

Age* <60 503 54 1.000
≥60 434 46 2.139 (1.442, 3.173) <0.001

Histology IDC 663 71 1.000
ILC 187 20 0.872 (0.522, 1.458) 0.774
others 86 9 1.592 (0.803, 3.152) 0.138
unknown 1

ER status positive 699 78 1.000
negative 199 22 0.952 (0.509, 1.178) 0.877
unknown 39

PR status* positive 607 68 1.000
negative 289 32 1.765 (1.178, 2.644) 0.006
unknown 41

T Stage T1/T2 784 84 1.000
T3/T4 150 16 1.021 (0.585, 1.782) 0.942
unknown 3

N Stage* N0/N1/N2 750 82 1.000
N3 169 18 1.597 (0.859, 2.970) 0.139
unknown 18

M Stage M0 778 98 –

M1 18 2.0
unknown 141

Pathological stage* I/II 688 75 1.000
III/IV 230 25 3.129 (1.771, 5.530) <0.001
January 2022 | Volume 11 | Article
IDC, infiltrating ductal carcinoma; ILC, infiltrating lobular carcinoma; ER, estrogen receptor; PR, progesterone receptor; TNM, tumor-node-metastasis stage.
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believed that genes with low amplitude variation and low
expression do not play an important biological role in
regulating body function and improving computational
efficiency of WGCNA. Median absolute deviation (MAD) is a
robust statistic used to describe the dissociation between samples
(16). In this study, the top 5,000 mRNAs and lncRNAs with
highest MAD were selected to perform WGCNA.

The WGCNA process is as follows. First, the value of the
“soft” threshold parameter (beta) is estimated using the
“pickSoftThreshold” function. The R-squared criterion of scale-
free topology is set to 0.9. Then, Pearson correlation coefficients
between genes are calculated using the expression data and the
correlation matrix is converted to a weighted adjacency matrix
based on beta. Next, a topological overlap matrix (TOM) is
generated to describe the connection degree between genes.
Genes with high connection degree are then grouped into the
same module. The merge cut-off threshold is set to 0.2, which
means that modules with a similarity higher than 0.8 are merged
into one module (17).

After the relevant modules are grouped, principal component
analysis (PCA) of the modules is performed. The first principal
component (namely, eigengene) is extracted to represent the
gene expression level within the module and is used for Pearson
correlation analysis with clinical traits like RT response. Module
with the strongest correlation to RT response and P-value <0.05
is considered associated with radio-sensitivity.

Establishment of Prognostic Gene Signature
As mentioned above, univariate Cox regression model and
LASSO Cox regression model with penalty parameter tuning
conducted by 10-fold cross-validation were applied to build a
Frontiers in Oncology | www.frontiersin.org 4
radio-sensitivity related survival gene signature based on the
relevant mRNA module genes. The risk score formula is as
below:

Risk score =o
n

i=1
Coef(i)X(i) (1)

where n is the number of genes in the prognostic prediction
model, Coef(i) represents the coefficient, and X(i) means the
relative genes expression level.

Risk score could be calculated using related gene expression
value. The optimal cutoff value of risk score was determined
using R package survminer. Patients were divided into low risk
score group (radio-sensitive, RS) and high risk score group
(radio-resistant, RR) based on the cutoff value of risk score. R
packet survival was used to perform survival analysis between
these two groups. Receiver operating characteristic (ROC) curves
and its area under the curve (AUC) values were utilized to
evaluate the specificity and sensitivity of the signature in a time-
dependent manner using package timeROC. Calibration curves
were used to evaluate the reliability and accuracy of the ROC
curves. Lastly, an external validation of the survival gene
signature was conducted using the above methods.

Clinical Application
In order to evaluate the clinical application value of the survival
prognosis gene signature, the gene signature was applied with
relevant clinical characteristics to a stepwise multivariate Cox
proportional hazards model. Multivariate ROC curves for gene
signature and clinical factors were plotted. Then, a prognostic
nomogram predicting 3-, 5-, and 10-year survival probability for
A

B

C

FIGURE 1 | Schematic of study design. (A) The definition of RT response group and RT non-response group. (B) The rank of RT response group and RT non-
response group based on time. (C) Analysis process.
January 2022 | Volume 11 | Article 816053
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BRCA patients in the RT group was constructed based on the
Cox model. Further, clinical decision curve analysis (DCA) was
performed based on several models to evaluate benefit value of
survival prognosis gene signature. We tested the discrimination
of the Cox model by Harrel l ’s concordance index
(C-index) analysis.

Functional Enrichment Analysis
We performed Gene ontology (GO) enrichment analysis of
target module genes implemented using the R package
clusterprofiler. GO enrichment analysis includes three
ontologies, namely, biological process (BP), molecular function
(MF), and cellular component (CC). The adjusted P-value <0.05
of GO enrichment analysis using the Benjamini–Hochberg
method was considered statistically significant. The R package
GOplot was used to visualize the GO enrichment data.
Furthermore, the Database for Annotation, Visualization and
Integrated Discovery (DAVID) online tool (https://david.ncifcrf.
gov/tools.jsp) was used to collect more detailed biological
function annotation information.

CeRNA Network
Competing Endogenous RNAs (ceRNA) hypothesis reveals a
novel mechanism of RNAs interaction. MiRNAs are known to
cause gene silencing by binding mRNAs, while lncRNAs as
ceRNAs can regulate gene expression by competitively binding
miRNAs (18). We searched miRNAs binding with survival
prognosis signature genes using two RNA interaction
databases, namely, miRDB (http://mirdb.org/) and mirTarbase
(http://mirtarbase.cuhk.edu.cn/), and the sum aggregate of these
two databases was considered as the target miRNA to signature
genes. Then the matched miRNAs were used to predicted
interaction with their targeted lncRNA using another two RNA
interaction databases starBase (https://starbase.sysu.edu.cn/) and
lncBase (http://carolina.imis.athena-innovation.gr/diana_tools/
web/index.php). The matched lncRNAs that were common in
radio-sensitivity relevant lncRNA module were included into
ceRNA construction. The R package ggalluvial was used for the
visualization of the ceRNA network.

Immune Cell Infiltration Analysis
Tumor-infiltrating immune cells are vital for cancer treatment and
patient prognosis. To compare the difference of immune micro-
environment between the radio-sensitive group and radio-resistant
group, abundance tumor-infiltrating immunecells (TIICs)datawas
estimated and downloaded from the TIMER2.0 database (19)
(http://timer.cistrome.org/). TIMER2.0 provides more robust
estimation of immune infiltration levels for TCGA tumor profiles
using state-of-the-art algorithms. The distributions of immune
cells, including CD8+ T cells, CD4+ T cells, B cells, neutrophils,
macrophages, and dendritic cells (DCs) were exhibited by a box-
plot to explore the relationship between gene expression and
immune infiltration from the two groups. In addition, we
explored several immune checkpoint genes expression level
between the two groups and compared the immune score using
ESTIMATE method (20).
Frontiers in Oncology | www.frontiersin.org 5
Statistic Methods
In this study, all gene data were standardized into “Z-score”
using function “covariates” in R packet BhGLM. R packet glmnet
was used to perform LASSO regression model. Kaplan–Meier
(K–M) curve was used to show the survival curves. Log-rank test
evaluated the statistically significant differences of survival.
Nomogram was plotted by using R package rms. Wilcoxon test
was used to compare two groups with continuous variables that
were non-normal. For missing clinical variable data, R packet
mice (multiple imputation by chained equations) was used for
multiple interpolation (21). All statistical analyses were
performed using the R (4.0.5) software. A P-value of 0.05 was
considered significant. All statistical tests were two-sided.
RESULTS

WGCNA Correlation Analysis
Figure 2 shows the process of searching the most relevant
mRNA module to RT response between 41 pairs of RT non-
response/response samples using the top 5,000 mRNAs with
highest MAD. The beta value for the construction of the co-
expression network was set to 10 (Figure 2A). The obtained R-
squared of scale-free topology was 0.93 (Figure 2B). After
dynamic branch cut and modules merge process, WGCNA
identified eight modules (Figure 2C) and calculated the
coefficients associated with RT response (Figure 2D).
MEbrown module with 534 genes, was most correlated to the
RT response of patients. Similarly, the lncRNA modules relevant
to RT response are shown in Figure S1.

Establishment of Prognostic Gene
Signature
Among the 534 genes in MEbrown module, univariate Cox
regression analysis screened 32 survival related genes and 22
genes were common in E-TABM-158 dataset. Then these 22
genes were thrown into the LASSO Cox regression model to
build a survival prognosis signature in 534 RT BRCA patients.
Figure 3 shows the process of gene signature construction. With
penalty parameter tuning conducted by 10-fold cross-validation,
lambda parameter was set to 0.011 when partial likelihood
deviance reached the minimum value (Figure 3A). According
to the lambda, a number of 11 hub genes were selected
(Figure 3B) with their coefficients (Figure 3C). Based on the
formula (1), the risk score was calculated as follows:

Risk score = 0:022� CKB + 0:283�MGAT1 − 0:149� CTDSPL

+0:341�MORF4L2 − 0:280� OPTN + 0:021� CTSH

−0:111� CKB − 0:196� CELSR2 − 0:083� ETV6

+0:257� ST6GALNAC4 + 0:192� UNC93B1

The optimal cutoff value of risk score was 0.515. Then
patients were divided into low risk score group (RS group,
n = 421) and high risk score group (RR group, n = 113) based
on the cutoff value of risk score (See Figure 4A). RS group had
a much higher survival rate (P <0.001) compared to RR
January 2022 | Volume 11 | Article 816053
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A B

C

FIGURE 3 | Process of gene signature construction using LASSO. (A) Penalty parameter tuning conducted by 10-fold cross-validation. (B) 11 hub genes with (C)
their coefficients.
A B

C D

FIGURE 2 | Process of searching the most relevant mRNA module to RT response. (A) Soft threshold for the construction of the co-expression network.
(B) R-squared of scale-free topology. (C) Cluster dendrogram of merged dynamic modules. (D) The correlation coefficients between modules and RT response.
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 8160536
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group (Figure 4B). The median survival time of RS group was
1,043 days (Q1:588, Q3:2,041) whereas the RR group was 760
days (Q1:504, Q3:1,308). Time-dependent AUC curve showed
that our survival prognosis signature worked well and robust
(Figure 4C). The 3-, 5-, and 10-year AUC of the risk score were
0.814 (CI95%: 0.742–0.905), 0.781 (CI95%: 0.682–0.880), and
0.762 (CI95%: 0.626–0.897), respectively (Figure 4D).
Calibration plot showed a good reliability and accuracy of the
ROC curve (Figure 4E).

In the validation dataset, E-TABM-158, risk score was
calculated based on the same method in the RT patients (n =
59). Patients were also divided into the RS group (n = 42) and the
RR group (n = 17) (See Figure 5A). Similarly, RS group had a
statistically significant higher survival rate (P = 0.011) compared
to RR group (Figure 5B). Time-dependent AUC curve fluctuated
around 0.7 (Figure 5C). The 3- and 5-year AUC of the risk score
were 0.706 (CI95%: 0.523–0.889) and 0.743 (CI95%: 0.595–
0.891) (Figure 5D). Calibration plot seemed good as well
(Figure 5E). Due to limited observed samples, we did not
predict the 10-year survival in this dataset.

Lastly, we calculated the risk score of the patients in the whole
samples in both developed and validation datasets. In TCGA
BRCA dataset, the RS group received RT (n = 421) had a much
higher survival rate (P <0.001) compared to the RS group
without RT (n = 306) (Figure 6A). The RR group received RT
(n = 113) had no better survival rate (P = 0.63) compared to the
RR group without RT (n = 97) (Figure 6B). The RS patients
gained additional survival benefit after receiving RT. This
phenomenon was not observed in the validation group, though
Frontiers in Oncology | www.frontiersin.org 7
the RS group that received RT (n = 42) seemed to have a slightly
higher survival (P = 0.27) compared to the RS group without RT
(n = 41) (Figure 6C). While the RR group that received RT (n =
17) was prone to having lower survival (P = 0.13) compared to
the RR group without RT (n = 15) (Figure 6D).

Clinical Application
The prognosis gene signature was applied with relevant clinical
factors to a stepwise multivariate Cox proportional hazards
model in RT TCGA BRCA patients. Figure 7 shows that the
risk score was an independent factor to OS. Each unit increased
in the risk score, was associated with a 3.535-fold (CI95%: 2.941–
4.247) increase in the risk of death. Multivariate ROC curves for
3-, 5-, and 10-year survival show that gene signature had better
predictive power than relevant clinical factors (Figures 8A–C).
The combined model of gene signature and clinical factors could
reach over 0.8 of accuracy. Same conclusion was found in
validation dataset (Figures 8D, E). The combined model could
reach over 0.75 of accuracy.

Then, a prognostic nomogram predicting 3-, 5-, and 10-year
survival rate for RT BRCA patients was constructed based on the
Cox model using age, PR status, pathological stage and risk score
(Figure 9A). With 1,000 cross-validation, the C-index of the
nomogram based on the Cox model is 0.836. Further, clinical
DCA was plotted based on several models at 3-, 5-, and 10-year
(Figures 9B–D). Model1 was Cox model using risk score.
Model2 was Cox model using clinical factors and Model3 was
a mixed of clinical factors and risk score. Model3 had the
maximum clinical net benefit. Model2 was better than Model1.
A

D

C

E

B

FIGURE 4 | Discrimination ability of gene signature in developed dataset. (A) Low risk score group and high risk score group based on the cutoff value of risk score.
(B) K–M curve of comparison for the RS and RR groups. (C) Time-dependent AUC of the risk score. (D) The 3-, 5- and 10-year AUC of the risk score. (E) Calibration
plot for 3-, 5- and 10-year AUC of the risk score.
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Functional Enrichment Analysis
We explored the functional enrichment of 534 genes in
MEbrown module (See Figure 10). The module genes were
mainly enriched in “T cell activation”, “regulation of innate
immune response”, “neutrophil mediated immunity”, etc.,
immune-related processes in BP (Figure 10A). We also
explored the functional enrichment of the 11 genes in the
prognosis signature (Figure 10B). Most of these genes were
separately enriched and mainly involved in BP. CTSH and
UNC93B1 were enriched in the same ontology “adaptive
immune response”. Correlation coefficient plot based on gene
expression shows that the correlations between these genes were
low (Figure 10C).

CeRNA Network
In total, we searched 52 miRNAs binding with 6 of 11 survival
prognosis signature genes using miRDB and mirTarbase
databases. Then, using another two RNA interaction databases
starBase and lncBase, the 17 of 52 matched miRNAs had
interaction with 14 targeted lncRNAs that were common in
radio-sensitivity relevant lncRNA module (See Figure 11).

Immune Cell Infiltration Analysis
Figure 12 shows the difference of TIICs between the RS group
and the RR group in the whole TCGA BRCA patients, estimated
by the TIMER2.0. The distributions of immune cells, namely,
CD4+ T cells and B cells, enriched much in the RS group than in
the RR group (Figure 12A). However, macrophages infiltrated
much in the RR group. In several immune checkpoint related
Frontiers in Oncology | www.frontiersin.org 8
genes such as programmed death-1 (PD1) and Lymphocyte-
activation gene 3 (LAG3), the RR group had higher expression
level with higher immune score (Figure 12B).
DISCUSSION

Heterogeneity in terms of tumor characteristics, prognosis, and
survival among cancer patients has been a persistent problem for
many decades. A major issue in radiation therapy of cancer is
predicting patient radio-sensitivity. Tumor molecular mapping
has been used to develop radio-sensitive genetic signatures and
has been used to identify prognostic or predictive biomarkers of
radiation responses (7, 22, 23). In breast cancer patients, there is
a strong correlation between tumor response and PFS. The
treatment effect of tumor response well predicts the treatment
effect of PFS, so PFS is an acceptable alternative endpoint of
tumor treatment response (24).

In this study, we first used PFS as a feasible indicator of
radiotherapy response in breast cancer patients with radiotherapy
because of mass missing data for “treatment response” (missing
rate: 80.15%). PFS is an alternative endpoint for OS to evaluate
survival benefit. We selected patients who accepted a clear schedule
of radiation therapy and considered those with a PFS event as RT
non-response subjects. Patients with balanced clinical baseline
information and longer non-progression survival time were
selected as control subjects.

Then WGCNA algorithm was applied to explore the most
relevant genes to the response between the two groups. Based on
A B

D

C

E

FIGURE 5 | Discrimination ability of gene signature in validation dataset. (A) Low risk score group and high risk score group based on the cutoff value of risk score.
(B) K–M curve of comparison for the RS and RR groups. (C) Time-dependent AUC of the risk score. (D) The 3- and 5-year AUC of the risk score. (E) Calibration
plot for 3- and 5-year AUC of the risk score.
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A B

C D

FIGURE 6 | K–M curve of comparison for the RT and Non-RT groups. (A) RS group in developed dataset. (B) RR group in developed dataset. (C) RS group in
validation dataset. (D) RR group in validation dataset.
FIGURE 7 | Forest plot for multivariate Cox model in RT BRCA.
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A B

D E

C

FIGURE 8 | Comparison between survival prognosis gene signature and clinical factors. (A) Multivariate ROC curves for 3-, (B) 5-, and (C) 10-year survival in
developed dataset. (D) Multivariate ROC curves for 3- and (E) 5-year survival in validation dataset.
A B

C D

FIGURE 9 | The clinical application value of the survival prognosis gene signature. (A) Nomogram for predicting 3-, 5-, and 10-year survival of RT BRCA patients.
(B) DCA curve in 3-, (C) 5-, and (D) 10-year using three models.
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the module genes, we developed an effective survival prognosis
gene signature of breast cancer patients to identify the benefit
group of radiotherapy. This gene signature as an independent
prognosis feature, could well predict the survival of patients with
radiotherapy in both developed and validation datasets. Clinical
decision based on the gene signature could offer more benefit for
breast cancer patients. Importantly, our study found that prior
patient stratification based on the gene signature could help
clinicians to comprehensively decide which kind of patients are
much preferable to receive radiotherapy and what patients
should be spared toxicity-related to RT.

The acquired 11 signature genes were cadherin EGF LAG
seven-pass G-type receptor 2 (CELSR2), creatine kinase B (CKB),
cathepsinH (CTSH), ETS variant 6 (ETV6), CTD small phosphatase
like (CTDSPL), monoacylglycerol acyltransferase 1 (MGAT1),
mortality factor 4 like 2 (MORF4L2), optineurin (OPTN),
regulatory factor X5 (RFX5), ST6 N-acetylgalactosaminide alpha-
2,6-sialyltransferase 4 (ST6GALNAC4), and unc-93 homolog B1
(UNC93B1).Whenusingonlineanalysis tool STRING(https://www.
string-db.org/) to perform protein to protein interaction, there were
Frontiers in Oncology | www.frontiersin.org 11
no interaction between these genes. Studies have reported that
CELSR2, ETV6, MGAT1, and RFX5 were associated with breast
cancer (25–28). CELSR2 is downregulated in breast cancers. ETV6–
NTRK3 fusion gene is a type of genetic alterations associated with
heterogeneity. MGAT1 takes part in aberrant N-glycan Golgi
remodeling and metabolism which is associated with epithelial–
mesenchymal transition (EMT). RFX5 can strongly increase
transcriptional activity of LINC00504 and the latter is upregulated
in breast cancer.

In this study, we tried to explore the gene regulatory CeRNA
network of the 11 hub genes. CeRNA network shows the
regulatory relationship of 14 relevant lncRNAs as ceRNA to 6
signature genes. These mRNAs and lncRNAs were associated
with radiotherapy response. In the CeRNA network, we found
that CRNDE participated in the binding of multiple miRNA
regulatory axes. CRNDE (Colorectal neoplasia differentially
expressed) is an oncogenic long non-coding RNA and has
been demonstrated to be involved in multiple biological
processes of different cancers, including breast cancer, which
might be a potential diagnostic biomarker and prognostic
A B

C

FIGURE 10 | Functional enrichment analysis. (A) GO analysis for 534 genes in MEbrown module. (B) GO analysis for 11 genes in the prognosis signature.
(C) Expression correlation between 11 prognosis signature genes.
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predictor (29). Because of its participation in diverse oncogenic
biological processes, CRNDE may illustrate the molecular
heterogeneity of tumor. lncRNA MIAT (myocardial infarction
associated transcript) originally has been considered as an
lncRNA associated with a susceptibility to myocardial
infarction. But later it was found to be related to cancers,
involved in breast cancer progression (30).

Go functional enrichment analysis revealed that 534
MEbrown module genes were mainly enriched in immune-
Frontiers in Oncology | www.frontiersin.org 12
related processes. CTSH and UNC93B1 were enriched in
“adaptive immune response”. Then we retrieved detailed
biological annotation information of the term “adaptive
immune response” using DAVID. The term is explained as
“An immune response mediated by cells expressing specific
receptors for ant igen produced through a somatic
diversification process, and allowing for an enhanced
secondary response to subsequent exposures to the same
antigen (immunological memory)”. Thus genes involved in this
FIGURE 11 | CeRNA network plot based on 11 prognosis signature genes and RT response related lncRNAs.
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process may induce the change of immune micro-environment
under the stimulus of the external environment (e.g., radiation).

Further immune estimated analysis showed the difference in
the distribution of immune micro-environment between radio-
sensitivity group and radio-resistant group. Specifically, CD4+ T
cells and B cells, enriched much in the RS group than in the RR
group. However, macrophages infiltrated much in the RR group.
This phenomenon has been found in other studies (31).
Infiltration of macrophages in solid tumors is associated with
poor prognosis and correlates with chemotherapy resistance in
most cancers (32). In addition, the RR group had higher immune
score and expression level of PD1 and LAG3. PD-L1 on tumor
cells may engage PD-1 receptors resulting in suppression of T-
cell mediated immune response (33, 34). LAG3 is an inhibitory
immune checkpoint of T cells that negatively regulates T cell
proliferation, activation, and homeostasis (35). The varied
component of micro-environment in the RR group may confer
radiation resistance.

This study has its merits. We first used PFS as a feasible
alternative indicator of radiotherapy response among breast
cancer patients and accordingly established a survival
prognosis gene signature which was proved to distinguish and
predict radiotherapy benefit patients. The limitation of this study
is that the sample size of the validation cohort (n = 130) was too
small so that some results had not enough statistical power.

In conclusion, our study developed a strategy of building
survival prognosis gene signature according to clinical treatment
responsiveness PFS to identify and predict radiotherapy survival
benefit in breast cancer patients. The 11-gene signature may
reflect differences in the tumor immune micro-environment that
underlie the differential response to radiation therapy and could
guide clinical-decision making related to radiation in breast
cancer patients. For precision medicine, our work offered more
evidence and clues for using radiotherapy response related genes
Frontiers in Oncology | www.frontiersin.org 13
as potential signature to identify radio-sensitive for cancer
patients or as targets that promote personalize radiation.
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