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Abstract

The shortening of the 39-end poly(A) tail, also called deadenylation, is crucial to the regulation of mRNA processing,
transportation, translation and degradation. The deadenylation process is achieved by deadenylases, which specifically
catalyze the removal of the poly(A) tail at the 39-end of eukaryotic mRNAs and release 59-AMP as the product. To achieve
their physiological functions, all deadenylases have numerous binding partners that may regulate their catalytic properties
or recruit them into various protein complexes. To study the effects of various partners, it is important to develop new
deadenylase assay that can be applied either in vivo or in vitro. In this research, we developed the deadenylase assay by the
size-exclusion chromatography (SEC) method. The SEC analysis indicated that the poly(A) or oligo(A) substrate and the
product AMP could be successfully separated and quantified. The enzymatic parameters of deadenylase could be obtained
by quantifying the AMP generation. When using the commercial poly(A) as the substrate, a biphasic catalytic process was
observed, which might correlate to the two distinct states of poly(A) in the commercial samples. Different lots of
commercial poly(A) had dissimilar size distributions and were dissimilar in response to the degradation of deadenylase. The
deadenylation pattern, processive or distributive, could also be investigated using the SEC assay by monitoring the status of
the substrate and the generation kinetics of AMP and A2. The SEC assay was applicable to both simple samples using the
purified enzyme and complex enzyme reaction conditions such as using protein mixtures or crude cell extracts as samples.
The influence of solutes with absorption at 254 nm could be successfully eliminated by constructing the different SEC
profiles.
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Introduction

Almost all mature eukaryotic mRNAs contain a 59 cap structure

and a poly(A) tail at the 39-end, and these non-coding elements are

crucial to the regulation of mRNA processing, transportation,

translation and degradation [1–4]. The shortening of the 39-end

poly(A) tail, also called deadenylation, often leads to translational

repression and is the rate-limited step of eukaryotic mRNA decay

[3–6]. The deadenylation process is achieved by deadenylases,

which specifically catalyze the removal of the poly(A) tail at the 39-

end of eukaryotic mRNAs. Several deadenylases conserved in

most eukaryotes have been characterized, including three widely

studied enzymes Pan2-Pan3, Ccr4-Pop2 and poly(A)-specific

ribonuclease (PARN) [6,7]. Due to the importance of the

regulation of mRNA fate, these deadenylases have been found

to play a crucial role in the regulation of diverse physiological

processes including cell cycle, embryonic development and stress

response in both the animal and plant kingdom [8–11].

The deadenylases characterized thus far can be divided into two

groups: the DEDD and EEP superfamilies. Although all dead-

enylases catalyze the same reaction of hydrolyzing the poly(A) tail

at the 39-end with the requirement of a free 39 hydroxyl group and

releasing 59-AMP as the product, they have diverse functions by

participating into various complexes and distinct catalytic

properties partially determined by their domain organizations.

For example, PARN is unique by its catalytic efficiency [12],

highly processive and allosteric catalysis stimulated by the

existence of the 59-cap structure [13–18]. All deadenylases have

numerous binding partners that may regulate their catalytic

properties or recruit them into various protein complexes.

To speculate the effects of various partners, it is important to

develop new deadenylase assay that can be applied either in vivo

or in vitro.

Currently, two kinds of method are used for deadenylase assay.

One is based on radioactive isotopic or fluorescein-isothiocyanate

labeled RNA substrates [19–23]. In this method, 32P-labeled or

commercially synthesized 59-fluorescent dye-labeled RNA sub-

strates are used for the enzymatic reaction. After reaction, the

samples are fractionated on a polyacrylamide denaturing gel

containing urea. Deadenylase activity is obtained by detecting and

quantifying the released radioactive mononucleotides. This

method has been widely used in literature due to its high

sensitivity although it is radioactive or expensive, laborious and

time-consuming. The other method utilizes the commercially

available poly(A) as the substrate and is based on the methylene

blue colorimetry [24]. The methylene blue molecules can insert

into the polynucleotide chain, and the insertion results in a shift in

the absorbance maximum in the UV spectrum [25]. This method

is nonradioactive, easily performed and less time-consuming.

However, the accuracy of this method is significantly affected by

the status of the substrate such as the molecular size distribution of

the commercially available poly(A) since the methylene blue

method monitors the amounts of the long substrates. The

methylene blue method is not applicable for short oligoadenylic
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acid [oligo(A)] as the substrate since short substrate has a relative

low methylene blue binding affinity.

Size-exclusion chromatography (SEC), also called gel filtration

or gel permeation chromatography, is one of the most widely used

method to separate or identify molecules with different molecular

sizes or shapes. In this research, we found that the synthesized

oligo(A) could be successfully separated by SEC, which suggested

SEC or the other chromatography methods could be used to

determine the enzymatic properties of exonucleases. By using

PARN as a model enzyme, the deadenylase assay by SEC was

successfully developed. Particularly, the SEC method was found to

be able to determine whether the enzyme follows a processive or

distributive manner in catalysis.

Materials and Methods

Materials
Tris and adenosine monophosphate (AMP) were purchased

from AMRESCO. Imidazole, methylene blue and polyadenylic

acid potassium salt were obtained from Sigma-Aldrich, Inc.

Dithiothreitol (DTT) and isopropyl-1-thio-b-D-galactopyranoside

(IPTG) were purchased from Promega. The 2-, 6-and 20-mer

oligo(A) (A2, A6, A20) without the 59 phosphate group and 20-mer

oligo(dA) were synthesized by TaKaRa Biotechnology Co., Ltd

(Dalian, China). All other chemicals were local products of

analytical grade.

Protein expression, purification and sample preparation
The plasmid for the wild type human PARN (p74) was kindly

provided by Professor Anders Virtanen (Uppsala University,

Sweden). The truncated mutant p60 (residues 1–520) with the

removal of the C-terminal domain was constructed by site-directed

mutagenesis using the following primers: forward, 59-CGATGT-

CACATATGGAGATAATCAGGAGC-39, reverse 59-

GATCCTCGAGCTACTTCTCTTCCTGTTTTC-39. The

gene was cloned to the vector pET-28a (Novagen) and verified

by sequencing. The protein was overexpressed in Escherichia coli

BL21 (DE3) (Stratagene, Heidelberg, Germany) and purified as

described previously with some modifications [26,27]. In brief, the

proteins were purified by Ni2+ affinity chromatography (GE

Healthcare), and the final products were collected from a

Superdex 200 10/30 GL column equipped on an ÄKTA purifier

(GE Healthcare). The purity of the final products was above 98%

as estimated by SDS-PAGE and SEC analysis. The protein

concentration was determined according to the Bradford method

[28] using bovine serum albumin as a standard. The proteins for

the experiments in this research were dissolved in 20 mM Tris-

HCl, pH 8.0, 100 mM KCl, 0.5 mM DTT, 0.2 mM EDTA and

10% (v/v) glycerol].

Deadenylase assay by methylene blue colorimetry
The enzymatic activity was measured according to the standard

methylene blue method as described previously [24] with some

modifications. In brief, methylene blue stock solutions was

prepared by dissolving 1.2 mg methylene blue in 100 ml Mops

buffer (100 mM Mops-KOH, 2 mM EDTA, pH 7.5) and the

absorbance at 688 nm was adjusted to 0.661%. The standard

reaction buffer was buffer A (20 mM Tris-HCl, pH 7.0, 100 mM

KCl, 0.5 mM DTT, 0.2 mM EDTA and 10% (v/v) glycerol]) with

the addition of 1.5 mM MgCl2. The substrate A200 was dissolved

in the reaction buffer with the concentration of 100 mg/ml. The

reaction was initiated by mixing 10 ml enzyme and 40 ml of A200

in the standard reaction buffer. After 8 min reaction at 30uC,

methylene blue buffer was added to terminate the reaction. Then

the solution was incubated for another 15 min in the dark, and the

absorbance at 662 nm was measured using an Ultraspec 4300 pro

UV/Visible spectrophotometer.

Deadenylase assay by SEC
SEC experiments were performed on an ÄKTA purifier

equipped with a Superdex 200 10/30 GL column (GE

Healthcare). The column was pre-equilibrated for 2 column

volumes until the UV absorbance and conductance lines were at

the same level as that of the control (buffer A). The RNA substrate

(A20, A6 and A2) or DNA substrate (dA20) was dissolved in buffer

A with the addition of 1.5 mM MgCl2 and quantified according to

the instructions from the manufacture. The reaction was initiated

by mixing 20 ml enzyme and 100 ml substrate stock solutions. After

incubated at 37uC for a given time, the samples were cooled on ice

to quench the reaction and EDTA was added when necessary.

Then the samples were loaded on the injection ring with the

volume of 100 ml. The absorbance at 280 nm, 254 nm and

215 nm were monitored simultaneously. The peak area of AMP

was calculated using the software Origin (OriginLab Corp.) and

the concentration of AMP was calculated thereby according to the

standard curve. The enzymatic data were fitted using the

Michaelis–Menten equation to obtain the kinetic constants Km

and Vmax.

Cell culture and extraction
The human embryonic kidney (HEK)-293T cell line was

obtained from the American Type Culture Collection (ATCC,

Manassas, VA). The HEK-293T cells were maintained in DMEM

(Dulbecco’s modified Eagle’s medium; Gibco) with 10% FBS (fetal

bovine serum; Gibco). Cells were cultured at 37uC in a humidified

incubator. The coding sequence of the full-length PARN was

subcloned into pcDNA3.1 (Invitrogen) containing a Flag tag at the

N-terminus. Prior to transfection, HEK-293T cells were seeded in

a 60-mm dish for 24 h. The plasmids were transfected using the

Vigofect transfection reagent (Vigorous) according to the manu-

facturer’s instructions. After 20–24 h transfection, the HEK-293T

cells were washed with the ice-cold PBS buffer, harvested, and

stored at 280uC. The cell lysis buffer was buffer A with the

addition of 1 mM PMSF and 1 mg/ml leupeptin. The cell lysates

were centrifuged at 15000 g for 30 min at 4uC, and the

supernatant was used for the enzyme assay.

Spectroscopy
Circular dichroism (CD) spectra were recorded on a Jasco-715

spectrophotometer using a cell with a path length of 0.1 cm. UV

absorption spectra were measured on an Ultraspec 4300 pro UV/

Visible spectrophotometer.

Results and Discussion

Characterization of the substrates and AMP
As a 39-exoribonuclease which specifically catalyze the degra-

dation of the mRNA poly(A) tail, the product of deadenylase

catalysis is 59-AMP. For in vitro deadenylase assay, synthetic

oligo(A) or commercial available poly(A) are frequently used as the

substrate [19,20,23,24,29]. Since the product and the substrate are

significantly different in their molecular size, it is possible to

separate them by techniques such as SEC that could recognize the

size of the samples. As presented in Figure 1A, the elution volume

of A20, A6, A2 and AMP were around 18.0, 19.6, 22.0 and

20.3 ml, respectively. The elution volume increased with the

decrease of molecular weight except for that the elution volume of

A2 is larger than that of AMP. This may be caused by that the

A Deadenylase Assay by SEC
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substrates A20, A6 and A2 were synthetic oligo(A) without the 59

phosphate group, which means that the charge of A2 was 21

while that of AMP was 22. For small molecules such as A2 and

AMP, the SEC elution volume was affected by both the molecular

weight and the charge of the molecule. It is worth noting that there

were some overlap between the elution peaks of A6 and AMP on

the Superdex 200 column, and the usage of the other column may

be better when using A6 as the substrate of deadenylase.

Nonetheless, the result in Figure 1A indicated that SEC was able

to separate the oligo(A) substrate and product of deadenylase. In

order to quantify the AMP concentration from the elution peak,

standard curve was determined by plotting the AMP concentra-

tion vs. the peak area in the SEC profile (Figure 1B and 1C), and a

good linear relationship was observed. It is worth noting that the

height of the peak also showed a good linear relationship (data not

shown), revealing that both the peak area and height could be used

for quantitative measurement. In addition to AMP, the standard

curves of the substrates could also be determined using the same

method (data not shown). To minimize the system error of the

assay, the volume of prepared samples were 120 ml and the load

volume was fixed to 100 ml.

Commercial poly(A) were also frequently used in the in vitro

assay for deadenylases. According to the instructions from the

manufacture, poly(A) were prepared from ADP with polynucle-

otide phosphorylase, and the number of adenosine ranged from

400–6000. The wide size distribution of the commercial poly(A)

makes it impossible to determine the molecular weight and the

molar concentration of poly(A), while only the mass concentration

can be determined. Three batches of poly(A) with different

production lot and storage time were characterized and used for

the assay to check whether the different lots of products affected

the enzymatic parameter determination. As shown in Figure 1D,

the three lots of poly(A) samples were distinct in size distributions.

Among them, the elution peak of poly(A)-lot1 was the sharpest

with an elution volume of about 8.0 ml, which is close to the void

volume of the column. The elution profile of poly(A)-lot3 showed a

smeared peak, while that of poly(A)-lot2 was between those of

poly(A)-lot1 and poly(A)-lot3. Although significant discrepancy was

observed for the elution profiles, the peak areas of the three lots of

poly(A) substrates were approximately equivalent with a variation

within 5%, confirming that the same mass concentration of

poly(A) was used for the SEC analysis. UV absorbance and CD

Figure 1. Characterization of the synthetic oligo(A) and commercial poly(A) samples. (A) SEC profiles of A20, A6, A2 and AMP. The
concentration of A20, A6, A2 and AMP were 2, 5, 10 and 25 mM, respectively. (B) SEC profiles of AMP with various concentrations. (C) Relationship
between the peak area of the AMP elution peak and the AMP concentration. The raw data is shown as square symbols and the fitted curve is
presented as a solid line. (D) SEC profiles of three batches of commercial poly(A) samples with a mass concentration of 100 mg/ml. (E) UV absorption
spectra of the three batches of commercial poly(A) samples with a concentration of 100 mg/ml. The UV absorption spectra were measured by
Ultraspec 4300 pro UV/Visible spectrophotometer using a cell with a path length of 1 cm. (F) CD spectra of 100 mg/ml poly(A) samples. The CD
spectra were recorded on a Jasco-715 spectrophotometer using a cell with a path length of 0.1 cm. All samples were prepared in buffer A. The SEC
analysis was performed using a Superdex 200 10/30 GL column, and the absorbance at 254 nm was monitored.
doi:10.1371/journal.pone.0033700.g001
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spectroscopy were measured to further investigate the properties of

the three lots of commercial poly(A). As shown in Figure 1E and

1F, no significant difference was observed for the three lots of

samples. The slight discrepancy in the CD spectra might be caused

by the dissimilar size distribution or secondary structure of the

three samples. These results suggested that the major difference

among the three patches of poly(A) preparations was the size

distribution of the poly(A) molecules.

Deadenylase assay by SEC using A20 as the substrate
The data in Figure 1A showed that the elution peak of A20 and

A2 were well separated from the AMP peak, indicating that both

of them were suitable substrates for the deadenylase assay by SEC

method. Due to the resolution of the Superdex 200 column, the

peak of oligo(A) smaller than A6 overlapped with that of AMP and

column with better resolution should be chosen. Considering that

the wild type PARN usually underwent proteolysis after storage,

the mutant p60 with the removal of the C-terminal domain of the

wild type protein was used in this research. To optimize the SEC

assay using A20 as the substrate, the dependence of PARN

catalysis was studied on the concentrations of A20 and enzyme as

well as reaction time. As shown in Figure 2, as the reaction

proceeded, the peak of A20 decreased accompanied with a shift to

the larger elution volume after 1 min reaction, while the peak area

of AMP increased thereby. An additional peak appeared at about

19.2 ml, which remained unchanged along with the reaction time.

This elution peak was characterized as EDTA, which was added to

the reaction solutions to terminate the reaction. To avoid the

influence of the EDTA peak to the elution profile, the difference

profiles are recommended to be used instead of the original spectra

(data not shown, please refer to Figure 3B). In this work, we also

tested the method of quenching the reaction on ice but not the

addition of EDTA, and it is also applicable since the quenched

samples were greatly diluted in the SEC column with buffers

containing no divalent metal ions (Figure 2C). A small peak at

22.0 ml appeared after 10 min reaction, which was characterized

Figure 2. SEC assay of PARN using A20 as the substrate. (A) The elution profiles of the reaction solutions quenched at different time. The
initial A20 concentration was 2 mM, and the concentration of PARN was 0.001 mg/ml. The reaction was initiated by mixing 20 ml enzyme and 100 ml
substrate. After incubated at 37uC for a given time, the samples were cooled on ice. EDTA was added to the samples to terminate the reaction, and
then the samples were injected into the SEC column. (B) Time-course changes of the AMP during reaction. The concentration of AMP was calculated
from the peak area using the standard curve shown in Figure 1C. (C) SEC profiles of the reaction solutions using various concentrations of A20 as the
substrate. The A20 concentration was ranged from 0 to 2 mM and the final concentration of PARN was 0.001 mg/ml. The reaction time was 1 min. (D)
Determination of the enzymatic parameters using the Michaelis–Menten kinetics. The fitted curve is presented as a solid line.
doi:10.1371/journal.pone.0033700.g002
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to be A2. The appearance of A2 also confirmed that PARN is a 39-

59 exonuclease [19,20]. The production of AMP increased linearly

with the time within 2 min reaction, followed by decrease in the

production rate.

The enzyme activity was obtained by the initial velocity of the

enzymatic reaction in which the enzyme was saturated by the

substrates. It is worth noting that the appropriate concentration of

the enzyme and substrates as well as the reaction time is important

for discontinuous assay to ensure that the amount of products is

within the linear range of the velocity. Under our experimental

conditions, when the concentration of A20 and p60 were 2 mM

and 0.001 mg/ml, respectively, the AMP was produced linearly to

about 20 mM within 2 min. The enzymatic parameters of p60

were determined by varying the concentration of A20 from 0.1 to

2 mM with a p60 concentration of 0.001 mg/ml (16.08 nM) and a

reaction time of 1 min. Although PARN is an allosteric enzyme, it

has been shown that at physiological KCl concentrations, the

catalysis of PARN follows the Michaelis–Menten formulation [17].

Thus the initial velocity data at various A20 concentration were

fitted by the classical Michaelis–Menten equation (Figure 2D),

which revealed that the Km-A20, Vmax-A20 and kcat values of p60

were 0.2660.02 mM, 8.460.2 mM/min and 8.7 s21, respectively.

Deadenylase assay by SEC using A2 as the substrate
The previous study by Ren et al. has shown that A2 can hardly

be hydrolyzed by Mg2+-coordinated PARN, but can by Mn2+,

Zn2+ or Co2+-coordinated enzyme [30]. For the native Mg2+-

coordinated PARN, A3 is the shortest oligo(A) substrate. Thus A2

Figure 3. Degradation of A2 by PARN in the presence of Mg2+ or Mn2+. (A) The elution profiles of the reaction solutions containing Mg2+ or
Mn2+ quenched at different time. The concentrations of A2, PARN and the divalent mental ions were 10 mM, 0.02 mg/ml and 3 mM, respectively. The
peak appeared in the buffer containing Mn2+ at about 20 ml was from Mn2+-coordinated molecules (labeled as Mn2+-X), and this peak maintained
unchanged during the reaction. To avoid the influence of this peak, difference profiles are obtained and shown in panel B. Since the synthetic A2
contained no 59-phosphate group, the degradation of A2 resulted in the production of 59-AMP and adenosine. (B) The difference profiles obtained by
subtracting the SEC profile recorded at a given time by that at 0 min.
doi:10.1371/journal.pone.0033700.g003

Figure 4. Relative activities of PARN when using the three lots of commercial poly(A) as the substrate. (A) Activities determined by the
methylene blue and SEC assay. The mass concentration of poly(A) were all 100 mg/ml. The final concentration of enzyme was 0.04 mg/ml, and the
reaction time was 10 min. (B) SEC profiles of the reaction solutions quenched at 0 and 10 min using the three lots of poly(A) as the substrate.
doi:10.1371/journal.pone.0033700.g004
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was used as the substrate to check the validation of the

deadenylase assay by the SEC method. As shown in Figure 3, in

the presence of 3 mM Mg2+, A2 was hardly hydrolyzed when

compared to A20 (Figure 2) even though a high enzyme

concentration of 0.02 mg/ml was used. After 60 min reaction, a

small amount of AMP was produced. In the SEC profile shown in

Figure 3A, a new peak with an elution volume of 26.0 ml

appeared. This new peak was subsequently characterized as

adenosine since the synthetic A2 lacking the 59 phosphate group

will hydrolyze to AMP and adenosine. Consistent with the

previous observation [30], A2 could be efficiently degraded in

the presence of Mn2+. According to the AMP production, the

enzyme activity in the presence of Mn2+ was estimated to be more

than 80 times higher than that in the presence of Mg2+. Moreover,

the Mn2+-coordinated molecules also have absorption at 254 nm,

and the construction of difference profiles by subtraction of the

control can successfully eliminate the influence of the solutes with

absorption bands in the SEC profiles (Figure 3B).

Deadenylase assay by SEC using commercial poly(A) as
the substrate

As mentioned above, three batches of poly(A) with different

production lots were found to be distinct in their size distribution

as characterized by SEC analysis. First of all, the methylene blue

assay was used to determine the enzymatic activity of the three

samples. As shown in Figure 4A, the enzymatic activity differed

dramatically when different lots of commercial poly(A) were used

as the substrates. Almost ten-fold difference was observed for the

highest and lowest activity. It is not surprising that the methylene

blue assay will be affected by the size distributions of the poly(A)

substrate since the methylene blue molecules bind more tightly

with the long chain poly(A). To speculate whether the activity

measured by the methylene blue assay was affected by the size

distributions of the substrates, the reaction samples were analyzed

by SEC after reacted for the same time as that used in the

methylene blue assay, and the elution profiles are presented in

Figure 4B. The amounts of AMP production with different

Figure 5. SEC assay of PARN using the three lots of commercial poly(A) as the substrate. (A) Time-course generation of AMP during the
enzymatic reaction of PARN using the three lots of commercial poly(A) as the substrate. The enzyme concentration was 0.02 mg/ml. The fast and
slow phases of the biphasic process were fitted by linear equation, and the fitted data are showed in solid lines. (B) Time-course generation of AMP
when using poly(A)-lot2 as the substrate and a high enzyme concentration of 0.2 mg/ml. (C) The fast phase of AMP generation when using poly(A)-
lot1 and poly(A)-lot3 as the substrate. The final concentration of PARN was 0.001 mg/ml. (D) Determination of PARN activity by fitting the
experimental data using the Michaelis-Menten kinetics.
doi:10.1371/journal.pone.0033700.g005

A Deadenylase Assay by SEC

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33700



substrates coincided with the enzymatic activity measured by the

methylene blue assay (Figure 4A). This suggested that the

discrepancy in the measured activity was not simply determined

by the size distribution of the substrate.

The time course SEC profile was recorded and the AMP

production vs. time were obtained to reveal the kinetic behavior of

PARN catalysis using the commercial poly(A) as the substrate

(Figure 5A). Surprisingly, the production of AMP showed an

apparent two-phase process when using poly(A)-lot1 and poly(A)-

lot3 as the substrates. The duration of fast phase was about 1–

2 min at a p60 concentration of 0.02 mg/ml. The slope of fast

phase were about 90- and 426- fold larger than that of the slow

phase when using poly(A)-lot1 and poly(A)-lot3, respectively. The

fast phase was too short to be monitored when using poly(A)-lot2

as the substrate. The slopes of the slow phase of the three kinds of

substrates were almost identical, about 0.2 mM/min. The major

difference between the three curves was the intersection point of

slow phase at the vertical axis, which showed a good agreement

with the relative activities of PARN measured using the three lots

of substrate. The existence of the slow phase was also evidenced by

degradation of poly(A)-lot2 using a high concentration of PARN

(0.2 mg/ml), and a typical AMP production curve was observed

with a linear part within the first 60 min reaction and a saturation

at longer time (Figure 5B). The reason for such a two-phase

behavior is unclear. A possible explanation is that the commercial

poly(A) existed in two distinct states: one was available for the

degradation by PARN, while the other was difficult. The

proportions of two states of poly(A) were independent on the size

distribution of the sample as revealed in Figures 1 and 4. It is

possible that the hardly degraded state was in high-order structures

rather than a long random chain, which might prevent the binding

of the substrate or cleavage action of PARN. However, this is

difficult to elucidate since the high heterogeneity of the

commercial poly(A).

Nonetheless, the intersection point was proportional to the

concentration of the substrate (data not shown), indicating that the

fractions of the fast phase reaction was correlated with the activity

measured by either the methylene blue or SEC assay. To ensure

the accuracy of the assay, the enzyme concentration and reaction

time were screened, and it was found that when the p60

Figure 6. Characterization of the pattern of deadenylation by the SEC assay. (A) SEC elution profiles of the reaction solutions quenched at
different time when using 5 mM A20 as the substrate. (B) Kinetics of AMP and A2 generation during A20 degraded by PARN. The concentration of A2
was calculated from the peak area using the standard curve obtained similar to that of AMP shown in Figure 1C. (C) SEC elution profiles of the
reaction solutions using 5 mM A6 as the substrate. (D) Kinetics of A2 generation during A6 degraded by PARN. The curve of AMP generation could not
be accurately obtained due to the overlapping of the elution peaks from A6 and AMP.
doi:10.1371/journal.pone.0033700.g006
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concentration was 0.001 mg/ml, AMP was produced linearly

within 8 min reaction (Figure 5C). Under these conditions, the

kinetic parameters were determined using poly(A)-lot3 as the

substrate (Figure 5D). The Km-poly(A)-lot3 and Vmax-poly(A)-lot3

values were 2765 mg/ml and 7.760.5 mM/min, while the those

for poly(A)-lot1 were 2062 mg/ml and 1.960.6 mM/min, respec-

tively. The Km values were similar when determined using different

lots of the poly(A) substrate, while the Vmax values were

significantly different.

It is worth noting that the Vmax-poly(A) value of p60 was close to

Vmax-A20, suggesting that PARN had the same catalytic efficiency

at least for oligo(A) larger than 20-mer. Moreover, the Km-poly(A)-

lot3 value was at the same level as that determined by the

methylene blue method [27,31]. These observations might be

important for the assay using the commercial poly(A) as the

substrate. That is, as long as the major fractions of the commercial

poly(A) is longer than 20-mer, the catalytic properties measured by

either the methylene blue or SEC assay are convincing. Thus for

long poly(A) substrate, the two methods, which are based on the

determination of poly(A) shortening or AMP production, are both

applicable. The same lot product is recommended when using

commercial poly(A) as the substrate for deadenylase assay.

Pattern of deadenylation characterized by the SEC assay
Deadenylases may degrade the poly(A) tail in a processive or

distributive reaction mechanism [14,20]. According to the criteria

to predict a highly processive mode proposed by Martinez et al.

[14], in the ideal highly processive mode, the enzyme catalyzed the

digestion of the polymeric substrates without dissociation from the

substrate until fully deadenylation is achieved. Because A2 is not

degraded efficiently in the presence of Mg2+ [30], the production

of A2 may be similar to that of AMP except that the velocity of A2

production is smaller than that of AMP. The delay time of A2

production is expected to be very short and is dependent on the

length of the poly(A) chain. As for the distributive pattern, the

deadenylase randomly binds to the 39-end of the poly(A) molecule

and dissociates from the substrate after the removal of one

nucleotide. In this case, the substrate molecules are degraded in a

synchronous manner and the partially deadenylated substrates will

be populated during the reaction.

Because AMP and A2 could be well separated by SEC,

monitoring the production curves might be able to determine the

processive or distributive reaction mechanism of deadenylases. As

mentioned above, A2 could hardly be degraded in the presence of

Mg2+, it could be regarded as the fully deadenylated specie. When

5 mM A20 and 0.001 mg/ml p60 were used in the assay, the

concentration of the substrate was more than 300-fold molar

excess over that of p60. The time-course AMP and A2 production

curves are presented in Figure 6. The kinetic curves indicated that

PARN mainly worked in a distributive manner or showed very

weak processivity when using the noncapped oligo(A) as the

substrate because: i) With the reaction time increased, the elution

volume of the substrate shifted to low-molecular-weight position

and there was fractions appeared between the peak of A20 and

AMP; ii) The amount of AMP increased linearly within 10 min

and then remained unchanged, while an about 7.5 min lag time

was observed for the production of A2; iii) When A6 was used as

the substrate, the AMP curve could not obtained due to peak

overlapping problem. Nonetheless, if the elution peaks were

separated by curve fitting, the AMP production reached its

maximum in about 3 min. The delay time for the generation of A2

was about 1–2 min; iv) The delay time of A2 production for the

substrate A20 was 4–5 times longer than that of A6. The

conclusion that PARN degraded non-capped poly(A) distributively

is consistent with the previous observations that the 59-cap

structure is crucial to the processivity of PARN [13–15,20]. It is

worth noting that A2 appeared after A20 or A6 was substantially

degraded accompanied with the AMP production close to its

maximum. This pronounced long lag time might be caused by that

the shorter the substrate, the larger dissociation constants for the

enzyme to bind with the substrate smaller than 6-mer [32]. When

the substrates were shortened to oligo(A) smaller than 6-mer, the

significantly increased dissociation constants delayed the produc-

tion of A2, and the delay time seems to be proportional to the

length of substrates.

PARN can degrade poly(dA) with low catalytic efficiency
PARN is regarded as a deadenylase with high substrate and

metal ion preference [14,19,20], and it has been shown that

PARN can not degrade DNA [20]. However, when using a

Figure 7. SEC assay of PARN using dA20 as the substrate. (A) The elution profiles of the reaction solutions quenched at different time. The
initial dA20 concentration was 2 mM, and the concentration of PARN was 0.1 mg/ml. Details regarding the assay were the same as those in Figure 2.
(B) Time-course changes of the dAMP during reaction.
doi:10.1371/journal.pone.0033700.g007
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relative high enzyme concentration of 0.1 mg/ml, dA20 could be

successfully degraded by PARN into dAMP (Figure 7). Similar to

the degradation of non-capped A20, dA20 was also cleaved by

PARN in a distributive manner as reflected by the peak shift of the

substrate along with the reaction time and the accumulation of

oligo(dA) intermediate states. The enzymatic parameters were

determined by varying the substrate concentration using an

enzyme concentration of 0.05 mg/ml. Under these conditions, the

Km-dA20 and Vmax-dA20 values of p60 were 35.5 mM and

11.8 mM/min, respectively. The Km-dA20 vale was ,130-fold

larger than that of Km-A20, while the Vmax-dA20 was ,35-fold

smaller than that of Vmax-A20. These observations suggested that

PARN could cleave poly(dA) with a dramatically low binding

affinity and catalytic efficiency when compared with the

degradation of poly(A). It is unclear yet whether the DNA

cleavage property of PARN had any physiological relevance.

Considering that the full length PARN is located in the nucleus of

the cell [20], it is worth investigating whether PARN has

additional physiological functions besides acting as a deadenylase.

The SEC assay is applicable to complex protein mixtures
and cell extracts

To test whether the SEC assay is also applicable to complex

reaction conditions, we tested the assay using protein mixtures and

crude cell extracts as the samples. As shown in Figure 8A, when

the reaction solution contained 0.2 mg/ml BSA, about 200-fold

higher than the concentration of the enzyme PARN, the SEC

profile revealed good signal-to-noise ratio for both the substrate

and the product with no significant difference with the sample in

the absence of BSA. Although BSA has absorption at 254 nm, the

influence from the high concentration of proteins could be

removed by constructing the difference SEC profiles (data not

shown). Moreover, the protein concentration used in the assay is

usually much lower than 0.2 mg/ml. For 0.001 mg/ml PARN, no

Figure 8. SEC assay of deadenylases in protein mixtures or crude cell extracts. (A) SEC profiles of reaction solutions in the presence or
absence of BSA. The final concentrations of PARN, BSA and poly(A)-lot1 were 0.001, 0.2 and 0.1 mg/ml, respectively. The other assay conditions were
the same as those in Figure 2. (B) SEC assay of the total cell lysates (TCL, 1:5 dilution) of HEK-293T cells using a non-poly(A) substrate (designated as
RNA-1, 59-GGAGCUCUGUCCUAUGUAU-39). The concentration of RNA-1 was 10 mM. The HEK-293T cells were transfected by either the pcDNA3.1
control vector (TCL-mock) or FLAG-PARN (TCL-PARN). The inset shows the high-magnification images of the peaks around the volume where the AMP
eluted (20.3 ml). (C) SEC assay of poly(A) degraded by TCL-mock or TCL-PARN. The concentration of the substrate poly(A)-lot1 was 0.1 mg/ml. The
inset shows the high-magnification images of SEC profiles of TCL without the addition of the substrate. (D) The difference profiles obtained by
subtracting the SEC profiles recorded after 10 min reaction by that at 0 min.
doi:10.1371/journal.pone.0033700.g008
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obvious peak could be identified in the SEC profile, suggesting

that the SEC assay will not significantly affect by the enzyme or

protein mixtures in the reaction solutions. A more complex

condition for the assay is the usage of crude cell extracts, which

contains various macromolecules and small organic solutes. As

presented in Figure 8B, the solutes in the total cell lysates (TCL)

only slightly affected the SEC profile of the substrate with a peak

eluted at around the void volume and a minor peak appeared at

around 15.5 ml. When using a non-poly(A) RNA as the substrate,

no significant degradation of the RNA molecule was observed.

Considering that PARN is a poly(A)-specific enzyme, the results in

Figure 8B indicated that the influence of non-specific ribonucle-

ases on the SEC assay could be neglected under our conditions.

The TCL of cells with the transfection of the pcDNA3.1 control

vector (TCL-mock) exhibited the deadenylase activity (Figure 8C),

which is consistent with the fact that the eukaryotic cells contain

several classes of endogenous deadenylases such as PARN,

CCR4/CAF1 and Pan2/Pan3 [6,7]. The observation that the

poly(A) but not the non-poly(A) substrate could be degraded by

TCL-mock within 10 min reaction might be caused by that

deadenylation is the initial step of mRNA decay and mRNA

turnover is a fundamental physiological process of the cells.

Compared with TCL-mock, the TCL of cells with the overex-

pression of exogenous PARN had more pronounced ability (,4

fold) in the degradation of the poly(A) substrate. Similar results

could be obtained when using A20 as the substrate (data not

shown). The possible interference of the solutes in the TCL could

be avoided by the construction of the difference profiles

(Figure 8D), which had the same signal-to-noise ratio as the ideal

reaction system using the purified recombinant protein.

In conclusion, we found that SEC could be successfully used as

a deadenylase assay for both the simple reaction solutions using

the purified enzymes and complex conditions such as protein

mixtures or crude cell extracts. Since nucleic acid and proteins are

distinct in their UV absorbance spectra, the SEC assay could be

used for investigating the effects of deadenylase binding partners

on deadenylase activity and their association/dissociation in the

presence of substrate simultaneously. The SEC assay could also be

applied to study the deadenylation pattern of deadenylases by

monitoring the status of the substrate and the production of AMP

and A2. We also found that the different lots of commercial

poly(A) are distinct in their size distributions, structures and

activities when determined by the methylene blue or SEC assay. It

is suggested that the same lot of commercial sample should be used

to ensure the experimental accuracy and reproducibility.
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