organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Amino-4-bromo-2,3-dihydro-1Hinden-1-one

Ísmail Çelik,^a Mehmet Akkurt,^b* Makbule Yılmaz,^c Ahmet Tutar,^c Ramazan Erenler^d and Santiago García-Granda^e

^aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Faculty of Art and Science, Sakarya University, 54187 Adapazarı, Turkey, ^dDepartment of Chemistry, Faculty of Art and Science, Gaziosmanpaşa University, 60240 Tokat, Turkey, and ^eDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain Correspondence e-mail: akkurt@erciyes.edu.tr

Received 14 February 2012; accepted 19 February 2012

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.134; data-to-parameter ratio = 13.6.

In the title compound, C₉H₈BrNO, the non-H-atom framework is essentially planar, with a maximum deviation of 0.087(3) Å. In the crystal, molecules are interconnected into a three-dimensional network by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds. In addition, $C-H \cdots \pi$ interactions and a π - π stacking interaction, with a centroid-centroid distance of 3.5535 (19) Å, are also observed.

Related literature

For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
C ₉ H ₈ BrNO
$M_r = 226.06$
Monoclinic, C2/c
a = 12.6362 (4) Å
b = 8.3655 (2) Å
c = 17.4913 (5) Å
$\beta = 113.128 \ (4)^{\circ}$

 $V = 1700.37 (10) \text{ Å}^3$ Z = 8Cu Ka radiation $\mu = 6.16 \text{ mm}^{-1}$ T = 297 K0.77 \times 0.60 \times 0.08 mm

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.031, T_{\max} = 0.616$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$
$wR(F^2) = 0.134$
S = 1.06
1594 reflections
117 parameters
3 restraints

3085 measured reflections 1594 independent reflections 1544 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 1.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.89 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1-C6 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot O1^{i}$	0.83 (4)	2.14 (5)	2.915 (4)	155 (4)
$C8-H8B\cdots O1^{ii}$	0.97	2.50	3.448 (4)	166
$C7 - H7B \cdot \cdot \cdot Cg2^{iii}$	0.97	2.85	3.659 (4)	141
Symmetry codes:	(i) $x, -y +$	$1, z + \frac{1}{2};$ (ii)	$-x + \frac{1}{2}, y - \frac{1}{2},$	$-z + \frac{1}{2};$ (iii)
-x + 1, -v + 1, -z +	1.	2		-

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2519).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o833 [doi:10.1107/S1600536812007489]

5-Amino-4-bromo-2,3-dihydro-1H-inden-1-one

Ísmail Çelik, Mehmet Akkurt, Makbule Yılmaz, Ahmet Tutar, Ramazan Erenler and Santiago García-Granda

Comment

In ¹H-NMR spectrum, H7 appeared at δ 7.53 as a doublet with coupling constant 8.3 Hz and H6 appeared at δ 6.73 (*J* = 8.3 Hz) as doublet. NH2 protons were observed at δ 4.82 with broad singlet. Two signal groups (δ 2.98, δ 2.70) observed at aliphatic region fit with the aliphatic protons. In the present study, we describe the molecular and crystal structures of 5-amino-4-bromo-2,3-dihydro-1*H*-inden-1-one (I), using X-ray diffraction.

As shown in Fig. 1, the molecule of (I), except H atoms, is essentially planar with a maximum deviation of -0.087 (3) Å for O1 atom. Bond lengths and angles observed in (I) are normal (Allen *et al.*, 1987).

The crystal packing is stabilized by intermolecular C—H···O and N—H···O hydrogen bonds (Table 1, Fig. 2) forming a three-dimensional network. In addition, π - π stacking interactions [centroid-centroid distance = 3.5535 (19) Å] between the centroids of the C1–C6 benzene rings of the neighbouring molecules stacking interactions are also observed. C—H··· π interactions further help in stabilizing the supramolecular structure (Table 1).

Experimental

To a stirred solution of 5- acetoaminoindanone (0.4 g, 1.95 mmol) in PEG (2.5 g) was added NBS (1.0 g, 5.6 mmol), SiO₂ (1.0 g) and NaClO₄ (0.2 g). The reaction mixture was stirred for 30 days at room temperature, diluted with water (15 ml), extracted with diethyl ether (3×25 ml), dried (Na₂SO₄). After removal of the solvent, the residue was chromatographed on silica gel eluted with chloroform/hexane (4/1) afforded the title compound which was crystallized from dichloromethane-hexane yielded the colourless plate crystal (0.11 g, 25%), ¹H-NMR (400 MHz, CDCl₃); δ 7.53 (d, *J* = 8.3 Hz, 1H, H7), 6.74 (d, *J* = 8.3 Hz, 1H, H6), 4.82 (brs, 2H, NH₂), 2.98 (m, 2H, H2), 2.70 (m, 2H, H3).

Refinement

The H atoms of the amino group was located in a difference Fourier map and were isotropically refined with the distance restraints (N—H = 0.86 (2) Å and H···H = 1.30 (2) Å). C-bound H-atoms were positioned geometrically and refined using a riding model [C—H = 0.93 and 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$]. The highest residual electron density peak and the deepest hole are located 1.03 Å and 0.89 Å from Br1, respectively.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1997) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

The packing and hydrogen bonding of (I), viewing down the *b* axis. H atoms not involved in hydrogen bonding have been omitted.

5-Amino-4-bromo-2,3-dihydro-1H-inden-1-one

Crystal data

C₉H₈BrNO $M_r = 226.06$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.6362 (4) Å b = 8.3655 (2) Å c = 17.4913 (5) Å $\beta = 113.128$ (4)° V = 1700.37 (10) Å³ Z = 8

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.2673 pixels mm⁻¹ ω scans F(000) = 896 $D_x = 1.766 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 2518 reflections $\theta = 5.5-70.2^{\circ}$ $\mu = 6.16 \text{ mm}^{-1}$ T = 297 KPlate, colourless $0.77 \times 0.60 \times 0.08 \text{ mm}$

Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.031$, $T_{max} = 0.616$ 3085 measured reflections 1594 independent reflections 1544 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

$\theta_{\rm max} = 70.4^\circ, \theta_{\rm min} = 5.5^\circ$	$k = -6 \rightarrow 10$
$h = -13 \rightarrow 15$	$l = -19 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$ wR(F^2) = 0.134	Hydrogen site location: inferred from neighbouring sites
S = 1.06 1594 reflections	H atoms treated by a mixture of independent and constrained refinement
117 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1063P)^2 + 1.0273P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.31 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.89 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}_{2}^{2}	²)
---	----------------

_	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.52857 (3)	0.21900 (4)	0.63347 (2)	0.0470 (2)	
01	0.2303 (2)	0.4628 (3)	0.26770 (13)	0.0544 (8)	
N1	0.3501 (3)	0.4337 (4)	0.66390 (17)	0.0535 (9)	
C1	0.3037 (3)	0.4330 (4)	0.41603 (17)	0.0381 (8)	
C2	0.2318 (3)	0.5262 (4)	0.44160 (18)	0.0422 (8)	
C3	0.2489 (3)	0.5253 (4)	0.5240 (2)	0.0431 (9)	
C4	0.3357 (3)	0.4322 (4)	0.58293 (17)	0.0399 (8)	
C5	0.4086 (2)	0.3422 (3)	0.55556 (16)	0.0368 (8)	
C6	0.3917 (2)	0.3426 (3)	0.47291 (16)	0.0345 (8)	
C7	0.4597 (3)	0.2542 (4)	0.4321 (2)	0.0430 (9)	
C8	0.4016 (3)	0.3016 (4)	0.3399 (2)	0.0493 (10)	
С9	0.3006 (3)	0.4086 (4)	0.33249 (17)	0.0425 (8)	
H1N	0.301 (3)	0.472 (5)	0.679 (3)	0.062 (12)*	
H2	0.17350	0.58760	0.40350	0.0510*	
H2N	0.387 (4)	0.369 (6)	0.701 (3)	0.10 (2)*	
H3	0.20180	0.58790	0.54150	0.0520*	
H7A	0.45550	0.13960	0.43890	0.0520*	
H7B	0.53980	0.28670	0.45540	0.0520*	
H8A	0.45530	0.35870	0.32260	0.0590*	
H8B	0.37490	0.20740	0.30530	0.0590*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0466 (3)	0.0552 (4)	0.0315 (3)	0.0060(1)	0.0070 (2)	0.0028 (1)
01	0.0541 (13)	0.0741 (16)	0.0303 (10)	-0.0051 (12)	0.0114 (10)	0.0072 (10)
N1	0.0619 (17)	0.0712 (18)	0.0322 (13)	0.0012 (15)	0.0237 (13)	-0.0070 (12)
C1	0.0412 (14)	0.0433 (13)	0.0290 (13)	-0.0056 (12)	0.0128 (11)	0.0001 (10)
C2	0.0393 (14)	0.0471 (15)	0.0368 (15)	0.0014 (12)	0.0114 (12)	0.0050 (12)
C3	0.0443 (15)	0.0451 (14)	0.0443 (16)	0.0013 (13)	0.0221 (13)	-0.0033 (12)
C4	0.0444 (14)	0.0451 (14)	0.0305 (14)	-0.0062 (12)	0.0152 (12)	-0.0046 (11)
C5	0.0386 (13)	0.0414 (14)	0.0274 (12)	-0.0026 (12)	0.0098 (10)	-0.0017 (10)
C6	0.0371 (13)	0.0362 (13)	0.0298 (13)	-0.0009 (10)	0.0126 (11)	-0.0008 (10)
C7	0.0438 (17)	0.0496 (13)	0.0376 (17)	0.0024 (14)	0.0182 (14)	-0.0045 (13)
C8	0.0578 (19)	0.0602 (18)	0.0344 (16)	-0.0064 (15)	0.0230 (15)	-0.0064 (13)
С9	0.0474 (15)	0.0501 (15)	0.0299 (14)	-0.0140 (13)	0.0151 (12)	-0.0006 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C5	1.896 (3)	C5—C6	1.376 (4)	
01—С9	1.220 (4)	C6—C7	1.509 (5)	
N1—C4	1.355 (4)	C7—C8	1.539 (5)	
N1—H1N	0.83 (4)	C8—C9	1.522 (5)	
N1—H2N	0.83 (5)	C2—H2	0.9300	
С1—С9	1.461 (4)	С3—Н3	0.9300	
C1—C2	1.397 (5)	С7—Н7А	0.9700	
C1—C6	1.389 (4)	С7—Н7В	0.9700	
С2—С3	1.371 (4)	C8—H8A	0.9700	
C3—C4	1.409 (5)	C8—H8B	0.9700	
C4—C5	1.411 (5)			
H1N—N1—H2N	105 (5)	C7—C8—C9	106.3 (3)	
C4—N1—H1N	122 (3)	O1—C9—C1	126.9 (3)	
C4—N1—H2N	128 (3)	O1—C9—C8	125.3 (3)	
C2—C1—C6	120.9 (3)	C1—C9—C8	107.8 (3)	
C2—C1—C9	129.3 (3)	C1—C2—H2	121.00	
C6—C1—C9	109.9 (3)	C3—C2—H2	121.00	
C1—C2—C3	118.7 (3)	С2—С3—Н3	119.00	
C2—C3—C4	121.9 (3)	С4—С3—Н3	119.00	
C3—C4—C5	118.1 (3)	C6—C7—H7A	111.00	
N1-C4-C5	121.5 (3)	C6—C7—H7B	111.00	
N1—C4—C3	120.4 (3)	С8—С7—Н7А	111.00	
Br1—C5—C4	119.4 (2)	C8—C7—H7B	111.00	
Br1—C5—C6	120.5 (2)	H7A—C7—H7B	109.00	
C4—C5—C6	120.2 (2)	C7—C8—H8A	110.00	
C1—C6—C5	120.3 (3)	C7—C8—H8B	111.00	
C1—C6—C7	111.9 (3)	C9—C8—H8A	110.00	
C5—C6—C7	127.9 (3)	C9—C8—H8B	110.00	
C6—C7—C8	104.1 (3)	H8A—C8—H8B	109.00	
C6-C1-C2-C3	-0.8 (5)	N1—C4—C5—Br1	0.6 (4)	

C9—C1—C2—C3	177.4 (4)	N1—C4—C5—C6	179.8 (3)
C2—C1—C6—C5	0.7 (5)	C3—C4—C5—Br1	178.7 (2)
C2-C1-C6-C7	-178.9 (3)	C3—C4—C5—C6	-2.1 (5)
C9—C1—C6—C5	-177.8 (3)	Br1-C5-C6-C1	180.0 (2)
C9—C1—C6—C7	2.7 (4)	Br1C5C7	-0.5 (4)
C2-C1-C9-O1	-2.6 (6)	C4—C5—C6—C1	0.8 (4)
C2-C1-C9-C8	177.6 (4)	C4—C5—C6—C7	-179.7 (3)
C6-C1-C9-O1	175.7 (3)	C1—C6—C7—C8	-0.1 (4)
C6—C1—C9—C8	-4.1 (4)	C5—C6—C7—C8	-179.7 (3)
C1—C2—C3—C4	-0.7 (5)	C6—C7—C8—C9	-2.4 (3)
C2-C3-C4-N1	-179.8 (4)	C7—C8—C9—O1	-175.9 (3)
C2—C3—C4—C5	2.1 (5)	C7—C8—C9—C1	4.0 (4)

Hydrogen-bond geometry (Å, °)

Cg2 is a centroid of the C1–C6 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1N····O1 ⁱ	0.83 (4)	2.14 (5)	2.915 (4)	155 (4)
N1—H2 <i>N</i> ···Br1	0.83 (5)	2.80 (5)	3.088 (4)	103 (4)
C8—H8B···O1 ⁱⁱ	0.97	2.50	3.448 (4)	166
C7—H7 <i>B</i> … <i>Cg</i> 2 ⁱⁱⁱ	0.97	2.85	3.659 (4)	141

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1.