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Background: Study have shown that atrial fibrillation (AF) is a disease with genetic risk, and its 
pathogenesis is still unclear. This study sought to screen the gene microarray data of AF patients and to 
perform a bioinformatics analysis to identify AF signature diagnostic genes.
Methods: The AF gene sets from the Gene Expression Omnibus (GEO) database were screened, and the 
differentially expressed genes (DEGs) were identified after the normalization of the data set by R software. 
We conducted a gene set enrichment analysis, a protein-protein interaction (PPI) network analysis, a 
gene-gene interaction (GGI) network analysis, and an immuno-infiltration analysis. The core genes were 
identified from the DEGs, and base on receiver operating characteristic, the top 5 core genes in the 2 data 
sets were selected as diagnostic factors and a nomogram was constructed. The miRNA of the core genes 
were predicted and an immune cell correlation analysis was performed.
Results: A total of 20 DEGs were identified. The functions of these DEGs were mainly related to muscle 
contraction, autophagosome, and bone morphogenetic protein (BMP) binding, and focused on the calcium 
signaling pathway, ferroptosis, the extracellular matrix-receptor interaction, and other pathways. A total of 5 
core genes [i.e., GPR22 (G protein-coupled receptor 22), COG5 (component of oligomeric golgi complex 5),  
GALNT16 (polypeptide N-acetylgalactosaminyltransferase 16), OTOGL (otogelin-like), and MCOLN3  
(mucolipin 3)] were identified, and a linear model for risk prediction was constructed, which has good 
prediction ability. Plasma cells and Macrophages M2 were significantly increased in AF, while T cells 
follicular helper and Dendritic cells activated were significantly decreased.
Conclusions: In our study, we identified 5 potential diagnostic key genes (i.e., GPR22, COG5, GALNT16, 
OTOGL, and MCOLN3). Our findings may provide a theoretical basis for susceptibility analyses and target 
drug development in AF.
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Introduction

Atrial fibrillation (AF) is one of the most common clinical 
arrhythmias, AF can easily lead to complications, such 
as thromboembolism, heart failure and stroke, and can 
seriously affect patients’ quality of life and safety. In a recent 
study, an analysis of electrocardiograms of middle-aged 
adults showed that 250 of every 100,000 people suffer from 
AF, China ranks 3rd in terms of the incidence of AF, and 
due to the aging population, the incidence of AF continues 
to increase (1-3).

Study on the etiology of familial AF have shown that 
AF has a certain heredity (4). Similarly, etiological studies 
of patients with isolated AF without organic or systemic 
disease confirmed that AF is a disease of a genetic nature 
(5,6). A large meta-analysis of >60,000 AF patients and 
>500,000 reference subjects identified 97 genetic loci that 
were significantly associated with AF, and a genetic analysis 
showed that genetic variants among them accounted for 
42% of the heritability of AF (7). All of these studies 
suggest that genetic factors may play an important role in 
the development of AF.

Epidemiological findings suggest that smoking, obesity, 
hypertension, and obstructive sleep apnea are risk factors 
for AF (8-10). Recent research suggests that inflammatory 
markers, such as interleukin 6, tumor necrosis factor-α, 
and myeloperoxidase), are positively associated with AF 
progression and predict AF outcomes (11-13). Several 
clinical studies have shown that inflammatory factors can 
predict the onset and prognosis of AF and may be able to 

be used as biomarkers of AF (14,15). The above evidence 
suggests a close association between inflammation and the 
development of AF. However, there are few reports on the 
potential pathogenesis and biomarkers of AF.

In recent years, following the application of molecular 
biology and cellular electrophysiology techniques, great 
advances have been made in determining the molecular 
genetic etiology of AF, and while more and more pathogenic 
genes have been identified, the relationship between these 
genes and AF is still not completely clear. Thus, this study 
sought to identify the causative genes of AF and their 
relationship with the pathogenesis of AF, and to explore the 
relationship and role of inflammation-associated immune 
cells in AF. Our findings may help in the early detection 
of individuals at high risk of AF, provide a theoretical basis 
for finding new targets for AF, facilitate the early diagnosis 
and treatment of AF, improve clinical outcomes, and 
reduce the burden and suffering of patients. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-1457/rc).

Methods

Data collection and normalization

We downloaded the AF and control data sets from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). The GSE41177 and GSE115574 
data sets were used in the follow-up study. The data sets 
were based on the GPL570 microarray platform, and R 
software (version 3.6.3) was employed to normalize the data 
using the “limma” package. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Identification of DEGs

We used the limma package of R software to screen the 
normalized data and identify the differentially expressed 
genes (DEGs). DEGs with a fold-change value >0.5 and an 
adjusted P value <0.5 were considered statistically significant 
DEGs. Volcano maps were drawn for the DEGs using 
the ggplot2 package. The volcano maps were visualized 
by pheatmap maps for the DEGs and visualized using the 
venny tool Wayne plots (version 2.1, https://bioinfogp.
cnb.csic.es/tools/venny/). The core DEGs were identified, 
undefined genes were removed, and the remaining core 
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DEGs were included in the next step of the study.

Protein-protein interaction (PPI) and gene-gene 
interaction (GGI) network analyses

A GGI network of the DEGs was constructed using data 
from the Genemania (http://genemania.org/) database. A 
PPI network was constructed using the STRING (https://
string-db.org) database, and a medium confidence was 
(0.400).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis

The core genes were analyzed using the clusterProfiler 
package in R language for the GO and KEGG analysis. A 
P value <0.05 indicated significant functional enrichment. 
The GO analysis revealed the potential biological functions 
in terms of the biological processes, cellular compositions, 
and molecular functions, and the KEGG analysis was used 
to analyze the potential mechanisms of the core gene action.

Gene set enrichment analysis (GSEA) analysis

The core genes and their log fold-change values were 
analyzed by a GSEA through clusterProfi ler  and 
ReactomePA in R language, and the top 5 GO and KEGG 
results were visualized by C2 and C5 according to the 
adjusted P values from low to high.

Diagnostic model

The pROC package in R language was used to construct the 
receiver operating characteristic (ROC) curves to determine 
the area under the curves (AUCs) of the core genes to assess 
the diagnostic efficacy of the core genes for the diagnosis of 
AF. Based on the AUCs, the top 5 core genes in the 2 data 
sets were selected as diagnostic factors and a nomogram was 
constructed. We used GSE115574 dataset as the training set 
and GSE41177 as the validation set to evaluate the stability 
of the model. The accuracy of the model was assessed based 
on the concordance index (C-index), and the correction 
curve was plotted to evaluate the performance of the model.

Immune infiltration

After normalization, the data from the GSE41177 data set 
were imported into the CIBERSORT website (https://

cibersort.stanford.edu/). The expression matrix of 
human immune cell subtypes was deconvolved, and the 
proportion of 22 kinds of immune cells was obtained by 500 
permutation calculations. The results were visualized using 
R language.

Immunological correlation analysis

The core genes in the GSE41177 data set and the genes 
calculated by CIBERSORT were subjected to a correlation 
analysis, and the results were visualized using the 
R language psych package to assess the potential regulatory 
roles of the core genes on the immune cells.

Regulatory gene miRNA prediction

The regulatory micro ribonucleic acids (miRNAs) for the 
diagnostic factors were obtained from the FunRich (http://
www.funrich.org/, version 3.1.3). The data were visualized 
using Cytoscape.

Statistical analysis

The pheatmap package was applied to construct the 
expression heat map of important genes in AF and control. 
Statistical tests were performed using the R language 
limma package to compare the differences in expression 
of important genes in AF and control, and P<0.05 was 
considered a statistically significant difference.

Results

Data pre-processing and DEG identification

The present study included 2 data sets (i.e., GSE41177 and 
GSE115574) that were normalized separately (Figure S1).  
The results of the volcano plot and cluster analyses 
indicated that the DEGs were more significant in the 
GSE41177 data set (Figure 1). Subsequently, we analyzed 
the gene expression matrixes of these 2  data sets and 
identified a total of 20 DEGs (Figure 2).

Analysis of PPIs and GGIs

The PPI network analysis of the 20 DEGs by the STRING 
database revealed that GPR22 was closely related to COG5 
(Figure 3A). The GGI network analysis revealed that the 
DEGs interacted with 19 genes (Figure 3B).

https://string-db.org
https://string-db.org
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
http://www.funrich.org/
http://www.funrich.org/
https://cdn.amegroups.cn/static/public/JTD-22-1457-Supplementary.pdf
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DEG enrichment analysis

We conducted a GO analysis to examine the main functions 
of the DEGs. The biological processes mainly involved 

muscle contraction, post-synaptic membrane organization, 

and sulfur compound transport. The cellular molecular 

functions mainly involved bone morphogenetic protein 

Figure 1 Differential expression analysis of the GEO data set. (A,B) Heat map and volcano plot of the differential expression analysis 
of the GSE41177 data set. (C,D) Heat map and volcano plot of the differential expression analysis of the GSE115574 data set. AF, atrial 
fibrillation; GEO, Gene Expression Omnibus.
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(BMP) binding, anon anti-porter activity, and sulfur 
compound transmigration. The molecular functions mainly 
involved BMP binding, anon anti-porter activity and sulfur 
compound transmembrane transporter activity (Figure 4A). 

The subsequent KEGG analysis showed that the DEGs 
focused on the calcium signaling pathway, ferroptosis, and 
the extracellular matrix–receptor interaction (Figure 4B).  
Due to the differences in the DEGs between the 2 data 
sets, we analyzed the functions of the DEGs in the data 
sets separately. In the GSE41177 data set, the DEGs 
were mainly involved in molecular function, binding, 
and metabolic process (Figure 5A). Conversely, in the 
GSE115574 data set, the DEGs were mainly involved in 
cellular components, the metabolic process, and biological 
regulation (Figure 5B).

Identification of key genes and risk model construction

We evaluated the diagnostic efficacy of the DEGs in both 
data sets (Figures S2-S4), and identified a total of 5 core 
genes; that is, GPR22, COG5, GALNT16, OTOGL, and 
MCOLN3 (Figure 6). In the training set, the correction 
C-index of the constructed model was 0.99, while in the 
validation set, the correction C-index of the model was 
also 0.94, indicating that our model has high stability and 
accuracy.

Immune infiltration analysis

We analyzed the abundance of immune infiltration 
in the GSE41177 data, and the results showed that 

Figure 2 Wayne diagram. Intersection of differentially expressed genes in GSE41177 and GSE115574 datasets. DEG, differentially 
expressed gene.
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M1 macrophages, gamma delta T cells, resting mast 
cells, cluster of differentiation (CD) 8 T cells, and M2 
macrophages were more variable in the AF patients than the 
normal patients (Figure 7). Additionally, plasma cells and M2 
macrophages were significantly more increased in the AF 
patients than the normal patients, and follicular helper T cells 
and activated dendritic cells were significantly more decreased 
in the AF patients than the normal patients (Figure 7).

Functional analysis of model genes

We predicted the targeting miRNAs of the model genes, 
and found that GPR22 and OTOGL had the most potential 

miRNAs, especially GPR22, which had 14 miRNAs, 
while COG5 and MCOLN3 had no potential miRNAs  
(Figure 8A). We then analyzed the correlations between 
these model genes and immune cells and found that GPR22 
was positively correlated with M2 macrophages and CD4 
memory resting T cells, COG5 was positively correlated 
with M2 macrophages, activated dendritic cells, and mast 
cells, and GALNT16 was negatively correlated with plasma 
cells (Figure 8B).

Discussion

Research has shown that the ectopic origin site of AF is 

Figure 4 GO and KEGG analysis of DEGs. (A) GO analysis. (B) KEGG analysis. BP, biological processes; CC, cellular components; MF, 
molecular functions; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene.
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mainly located in the left atrium, while the right atrium is 
only involved in the formation of foldback, and the degree 
of structural remodeling of the left auricle and the flow 
rate are significantly correlated with post-operative AF 
recurrence (16-19). Thus, the systematic study of left heart 

tissue in AF patients is particularly important. 
In our study, an analysis of the high-throughput 

sequencing results of the left atrium revealed 20 DEGs in 
AF and normal atrial tissue, and an enrichment analysis of 
the functions of these genes revealed that certain DEGs are 

Figure 5 GSEA analysis of DEGs. (A) GSE41177 data set. (B) GSE115574 data set. GSEA, gene set enrichment analysis; DEG, 
differentially expressed gene.

Figure 6 Core gene construction risk prediction model. (A) GSE41177 data set. (B) GSE115574 data set. 

Molecular_function

Binding

Metabolic process

Organelle

Protein binding

Cellular_component

Metabolic process

Biological regulation

Regulation of biological 
process

Membrane

−2                 −1                   0                    1                    2 −1.0          −0.5            0.0             0.5             1.0            1.5

A B

A

B

Points

GPR22

COG5

GALNT16

OTOGL

MCOLN3

Total points

Risk of atrial fibrillation

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0                      0.2                     0.4                      0.6                     0.8                     1.0

0          10        20         30        40         50        60         70        80         90       100

0          10         20         30        40         50         60        70         80         90       100

5.4   5.2    5     4.8   4.6   4.4  4.2    4     3.8   3.6  3.4   3.2

7       6.5       6        5.5       5       4.5      4       3.5       3

0        20      40       60       80      100    120     140     160    180    200     220     240

6.8    6.6    6.4     6.2     6      5.8    5.6    5.4    5.2     5      4.8    4.6     4.4    4.2     4

4  5  6  7  8

0.1           0.6         0.95   0.99

7 5.5 4

7.8         8          8.2       8.4        8.6       8.8         9         9.2       9.4        9.6       9.8

0             20           40            60            80           100         120          140         160

0.1 0.6                                                 1

9.5 7.5 5.5 3.5

6.4   6.8    7.2   7.6    8     8.4

3     4     5    6     7

4  4.6 5.2 5.8 6.4

Nomogram-predicted probability of atrial fibrillation

A
ct

ua
l a

tr
ia

l f
ib

ril
la

tio
n

Apparent
Bias-corrected
ldeal

Apparent
Bias-corrected
ldeal

A
ct

ua
l a

tr
ia

l f
ib

ril
la

tio
n

Nomogram-predicted probability of atrial fibrillation

0.0                      0.2                     0.4                      0.6                     0.8                     1.0

Points

GPR22

COG5

GALNT16

OTOGL

MCOLN3

Total points

Risk of atrial fibrillation



Nong et al. AF biomarkers4780

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(12):4773-4784 | https://dx.doi.org/10.21037/jtd-22-1457

Figure 7 Immune infiltration analysis of the GSE41177 data set. (A) Bar graph. (B) Heat map. (C) Immune cell correlation analysis. (D) 
Violin plot of immune cell infiltration levels in healthy individuals and patients with AF. NK, natural killer; AF, atrial fibrillation.
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involved in regulating muscle contraction and the calcium 
signaling pathway, and are closely associated with immune 
cells. Subsequently, we constructed a prediction model 
comprising 5 genes that could predict the occurrence of AF.

Electrical remodeling is the most common alteration in 
AF, and occurs as a result of a decrease in L-type calcium 
current conductance and an increase in inward rectifier 
current conductance (20). Molina et al. suggested that AF is 
associated with calcium overload and that abnormal calcium 
plays an important role in increasing patients’ susceptibility 
to AF in various models of heart failure (21). A large body 
of evidence from recent studies suggests that intracellular 
calcium ions play an important role in the development and 
maintenance of AF (22,23). It has been inferred that the 
calcium signaling pathway plays an important role in the 

development of AF, but the specific regulatory mechanisms 
are not yet clear.

Ferroptosis, a novel form of cell death regulation caused 
by the accumulation of iron-triggered lipid peroxidation, has 
recently been revealed to play a key role in the pathogenesis 
of various cardiovascular diseases and the existence of 
potential therapeutic targets (24,25). Conversely, studies 
of AF have shown that the inhibition of iron death 
reduces patients’ susceptibility to frequent excessive 
alcohol consumption-induced AF (26). Additionally, iron 
transporter protein-mediated iron death has been shown to 
be associated with the new-onset AF in lipopolysaccharide-
induced endotoxemia (27). In our study, the KEGG results 
suggested that the identified DEGs may be associated with 
the above pathways, and the current study yielded similar 



Nong et al. AF biomarkers4782

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(12):4773-4784 | https://dx.doi.org/10.21037/jtd-22-1457

findings, providing further evidence of the key role of these 
DEGs in AF.

A number of risk models constructed from GPR22, 
COG5, GALNT16, OTOGL, but MCOLN3, OTOGL 
has not been reported and thus should be the focus of 
subsequent studies. GPR22 is a member of the G protein-
coupled receptor 1 family and is selectively highly expressed 
in the brain and heart (28-30). Research has shown that 
expression level of GPR22 may be associated with heart 
failure progression and thus is a potential therapeutic target 
of AF (28-30). Conversely, COG5 and GALNT16 have been 
shown to be associated with atheromatous plaque and lipid 
metabolism, respectively, and are involved in the regulation 
of cardiovascular disease (31,32). The mucin subfamily 
is also known as transient receptor potential channels, is 
highly expressed in cardiac fibroblasts, and MCOLN3, a 
member of the mucin subfamily, plays an important role 
in the regulation of calcium ion homeostasis (33). The 
downregulation of MCOLN3 has been shown to be closely 
associated with AF related to chronic primary mitral valve 
closure insufficiency (34).

Recent studies have revealed that immune cell 
populations are involved in the development of AF and that 
cytokines released by lymphocytes can affect the conduction 
system of the heart, especially with a greater potential effect 
on AF (35). T lymphocytes and their subpopulations are 
important factors in the body’s immunity system and are 
involved in regulating the inflammatory response, thus 
affecting the maintenance and progression of AF (36).

A study has shown that the number of CD45+ and CD3+ 
cells is significantly elevated in the atrial adipose tissue of 
all AF patients, and that the degree of atrial inflammation 
affects the clinical prognosis of patients and may lead to 
a shift in the type of AF (37). Smorodinova et al. analyzed 
atrial myocardial tissue from 46 AF patients and showed 
that in addition to a significant increase in the number of 
both CD45+ and CD3+ cells, the number of inflammatory 
cells, such as macrophages and dendritic cells, was also 
significantly elevated (38).

In addition, the programmed cell death 1 (PD-1) and 
programmed cell death-Ligand 1 (PD-L1) pathways may 
play immunomodulatory roles in the pathogenesis of AF by 
regulating T cell excitation and thus promoting cytokine 
excretion (39). The above-mentioned findings suggest that 
the helper T cell population and its cytokines are closely 
associated with the progression of AF. Similar results were 
observed in our study, and GPR22, COG5, and GALNT16 
were found to be closely associated with the expression of T 

lymphocyte subsets and macrophages.
In our present study, 5 potential key genes were 

identified by mining DEGs. These genes may represent 
potential therapeutic targets for AF. A resulting risk model 
was constructed to show the predictive ability. It should be 
noted that this study had some limitations. First, AF onset 
results from multiple genetic and environmental factors 
and co-actions that were not included in the analysis. 
Second, due to the lack of clinical samples, we were unable 
to perform gene expression validation, and more basic 
experiments need to be conducted to validate the functions 
and regulatory mechanisms of these genes. Third, the 
diagnosis model was based on a comparison between sinus 
rhythm and AF, which may have limitations in clinical 
application.

Conclusions

Our study identified a total of 5 potential key genes; that is, 
GPR22, COG5, GALNT16, OTOGL, and MCOLN3. Our 
findings may provide a theoretical basis for susceptibility 
analyses and target drug development in AF.
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