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Abstract
Background: Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDA), 
is an aggressive malignancy associated with a low 5-year survival rate. Poor outcomes 
associated with PDA are attributable to late detection and inoperability. Most pa-
tients with PDA are diagnosed with locally advanced and metastatic disease. Such 
cases are primarily treated with chemotherapy and radiotherapy. Because of the lack 
of effective molecular targets, early diagnosis and successful therapies are limited. 
The purpose of this study was to screen key candidate genes for PDA using a bioin-
formatic approach and to research their potential functional, pathway mechanisms as-
sociated with PDA progression. It may help to understand the role of associated genes 
in the development and progression of PDA and identify relevant molecular markers 
with value for early diagnosis and targeted therapy.
Materials and methods: To identify novel genes associated with carcinogenesis and 
progression of PDA, we analyzed the microarray datasets GSE62165, GSE12​5158, 
and GSE71989 from the Gene Expression Omnibus (GEO) database. Differentially ex-
pressed genes (DEGs) were identified, and the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A protein-protein 
interaction (PPI) network was constructed using STRING, and module analysis was 
performed using Cytoscape. Gene Expression Profiling Interactive Analysis (GEPIA) 
was used to evaluate the differential expression of hub genes in patients with PDA. 
In addition, we verified the expression of these genes in PDA cell lines and normal 
pancreatic epithelial cells.
Results: A total of 202 DEGs were identified and these were found to be enriched 
for various functions and pathways, including cell adhesion, leukocyte migration, ex-
tracellular matrix organization, extracellular region, collagen trimer, membrane raft, 
fibronectin-binding, integrin binding, protein digestion, and absorption, and focal ad-
hesion. Among these DEGs, 12 hub genes with high degrees of connectivity were se-
lected. Survival analysis showed that the hub genes (HMMR, CEP55, CDK1, UHRF1, 
ASPM, RAD51AP1, DLGAP5, KIF11, SHCBP1, PBK, and HMGB2) may be involved in 
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1  |  INTRODUC TION

Pancreatic cancer, especially pancreatic ductal adenocarcinoma 
(PDA), which accounts for >90% of pancreatic cancers, is associated 
with a poor prognosis.1 The 5-year overall survival rate remains ap-
proximately 7%.2,3 Despite advancements in our understanding of 
pancreatic cancer, the precise mechanisms underlying tumorigenic-
ity remain unclear.

Approximately 10% of all patients have an inherited predispo-
sition to PDA development, including KRAS activation mutations, 
which are present in >90% of tumors4; inactivating mutations af-
fecting TP53, CDKN2A, and SMAD4, which occur in 50–80% of 
pancreatic cancers5; and mutations affecting other genes, including 
ARID1A, MLL3, and TGFBR2, which affect approximately 10% of 
tumors.6–12 The median survival is 6–9 months for locally advanced 
disease and 3 months for metastatic disease.13

With in-depth research on the molecular mechanism of PDA, the 
serum marker Carbohydrate antigen199 (CA199) has been widely 
used in clinical practice as an adjunctive diagnostic test for PDA and 
postoperative monitoring. Although CA199 has a high sensitivity for 
PDA diagnosis, its lack of specificity is also quite limited.14 About 
75% of patients with PDA have mutations in the p53 gene, which is 
associated with cell cycle arrest and apoptosis.6,15 More than 90% 
of pancreatic cancer patients have vascular epidermal growth factor 
(VEGF) overexpression,16 which has been used as a target for drug 
therapy to inhibit tumor angiogenesis and thus reduce tumor blood 
supply to inhibit tumor growth. However, in one study, treatment 
of PDA with bevacizumab in combination with gemcitabine did not 
significantly improve the survival prognosis of patients.17 With the 
widespread use of next-generation sequencing (NGS) technology, a 
reliable tool for early diagnosis and progression prediction of cancer 
has been provided.18 And a large amount of relevant biological and 
clinical data has been generated by NGS analysis, which provides the 
possibility to study and analyze the bioinformatics of gene expres-
sion and molecular functional characteristics associated with PDA.19

To continue research on the molecular mechanisms of PDA car-
cinogenesis and progression, we identified a total of 202 DEGs and 
12 hub genes. The corresponding bioinformatics analysis revealed 
that HMMR, CEP55, CDK1, UHRF1, ASPM, RAD51AP1, DLGAP5, 
KIF11, SHCBP1, PBK, and HMGB2, in particular, may be potential 
biomarkers and therapeutic targets for PDA.

2  | METHODS AND MATERIAL S

2.1  |  Cell culture

Four PDA cell lines (AsPC-1, SW1990, PANC-1, and BxPC-3) and 
a normal human pancreatic ductal epithelial cell line (HPDE) were 
used in the study. Cell lines were purchased from the Cell Bank of 
the Type Culture Collection of the Chinese Academy of Sciences. 
According to the supplier's protocol, SW1990, PANC-1, and HPDE 
cell lines were cultured in Dulbecco's modified Eagle's medium 
(DMEM; VivaCell), and BxPC-3 and AsPC-1 cells were cultured in 
RPMI 1640 medium (VivaCell). All culture media were supplemented 
with 10% fetal bovine serum (FBS; VivaCell) and 100 U/ml penicillin 
and 100 µg/ml streptomycin, and the cells were maintained under 
standard culture conditions (37°C, 95% humidified air, and 5% CO2).

2.2  | Microarray data

PDA gene expression datasets (GSE62165,20 GSE12​5158,21 and 
GSE7198922) were obtained from the NCBI Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), a pub-
lic functional genomics data repository for storing high-throughput 
gene expression datasets, sequence-based data, and microarrays.23 
GSE62165 (GPL13667 [HG-U219] Affymetrix Human Genome U219 
Array) is based on 118 PDA tissue samples and 13 noncancerous 
samples, GSE12​5158 (GPL6480, Agilent-014850  Whole Human 
Genome Microarray 4x44K G4112F) is based on 17 PDA and 13 
noncancerous samples, GSE71989 (GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array) is based on 13 
PDA and nine noncancer samples. 

2.3  |  Identification of DEGs

A total of 148 tumors and 35 nontumor tissue datasets were iden-
tified. DEGs between PDA and noncancer samples were identified 
using GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r). GEO2R is 
an interactive web tool used to identify DEGs between different 
datasets by comparing them in a GEO series. This tool was also used 
to calculate the p-value and |logFC|, and the cutoff threshold for 

the tumorigenesis and development of PDA, highlighting their potential as diagnostic 
and therapeutic factors in PDA.
Conclusions: In summary, the DEGs and hub genes identified in the present study 
not only contribute to a better understanding of the molecular mechanisms underly-
ing the carcinogenesis and progression of PDA but may also serve as potential new 
biomarkers and targets for PDA.
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identifying DEGs was set at p  <  0.05, and |logFC|≥1.0). Statistical 
analyses were performed on each dataset. Venn diagrams were 
constructed using a web tool (http://bioin​forma​tics.psb.ugent.be/
webto​ols/Venn/).

2.4  | GO and KEGG pathway analysis of DEGs

GO and KEGG pathway enrichment analyses were performed to 
determine the biological functions of DEGs.24 Gene Ontology 
(GO) is widely used in functional annotation and enrichment anal-
ysis; biological process (BP), molecular function (MF), and cellular 

component (CC) are the three major components of gene function. 
KEGG is a database resource for collecting a large amount of data 
on molecular level information, biological pathways, and chemi-
cal substances that are generated by high-throughput experimen-
tal technologies. The database for annotation, visualization, and 
integrated discovery (DAVID; http://david.ncifc​rf.gov) (version 
6.8)25 is an online biological information database that integrates 
biological data and analysis tools and provides a comprehensive 
set of functional annotation information of genes and proteins for 
users to extract biological information. We used DAVID for GO 
and KEGG pathway analyses of DEGs. Statistical significance was 
set at p < 0.05.

Series Platform affymetrix GeneChip Samples

1 GSE62165 GPL13667 Affymetrix Human Genome U219 Array 131

2 GSE12​5158 GPL6480 Agilent−014850 Whole Human Genome 
Microarray 4x44K G4112F

30

3 GSE71989 GPL570 Affymetrix Human Genome U133 Plus 2.0 
Array

22

TA B L E  1 A summary of pancreatic 
cancer microarray datasets from different 
gene expression omnibus datasets

F I G U R E  1 Volcano plots of genes that are different expressions between PDA tissues and noncancerous samples. Each symbol 
represents a different gene. The red color of the symbols means upregulated, whereas the green color of the symbols means downregulated, 
and dark color represents not significantly changed genes. X-axis is log2-fold changes of genes in PDA compared with normal pancreas 
samples. Y-axis is-log10 (p-values). (A) Volcano plots of GSE12​5158. (B) Volcano plots of GSE71989. (C) Volcano plots of GSE62165. (D) 
Venn diagram. The DEGs were selected with a fold change ≥1 and p-value <0.05 among the mRNA expression profile sets GSE12​5158, 
GSE71989, and GSE62165. The three datasets showed an overlap of 202 genes. DEGs, differentially expressed genes; PDA, pancreatic 
ductal adenocarcinoma
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2.5  |  PPI network construction and hub gene 
identification

The PPI network was constructed using STRING (http://strin​g-db.
org), which integrates both known and predicted PPIs. PPI pairs 
with combined scores of >0.4 were extracted and the PPI network 
was visualized using Cytoscape version 3.7.2. The most significant 
PPI network modules were identified using the Molecular Complex 
Detection (MCODE) plug-in of Cytoscape (version 1.6.1) using the 
following cutoff thresholds: MCODE degree cutoff = 2, node score 
cutoff = 0.2, Max depth = 100, and k-score = 2.

2.6  |  Selection and analysis of hub genes

The hub genes were selected with the hub gene module, and their 
co-expression network was analyzed using Coexpedia (https://www.
coexp​edia.org/). Hierarchical clustering of the hub genes was per-
formed using the UCSC Cancer Genomics Browser (http://genom​
e-cancer.ucsc.edu). Differential expression of hub genes in PAAD 
patients was evaluated using Gene Expression Profiling Interactive 
Analysis (GEPIA) (http://gepia.cance​r-pku.cn/), which is a newly de-
veloped interactive web server for analyzing the RNA sequencing 
expression data of 9736 tumors and 8587 normal samples from the 
TCGA and GTEx projects, using a standard processing pipeline.26 
The association between hub genes and overall survival was evalu-
ated using Kaplan-Meier analysis.

2.7  |  RNA isolation and quantitative real-time PCR

Total RNA was isolated using TRIzol reagent (TaKaRa) and tran-
scribed into cDNA using the PrimeScript RT Reagent Kit (TaKaRa). 
Quantitative real-time PCR was carried out using an RT-PCR 
amplifier system (Bio-Rad, USA) using an SYBR Green PCR Kit 
(Takara). Relative quantitation of mRNA expression was per-
formed using the 2ΔΔCt method after normalization to the endog-
enous reference GAPDH. Table S1 S1 shows the primers used in this 
study.

2.8  |  Statistical analysis

In this study, the relevant data were analyzed using GraphPad Prism 
8.0 and GEPIA online tools. The box diagram in GEPIA was used to 
analyze the expression of related genes, and Kaplan-Meier survival 
analysis with log-rank test was used to analyze the overall survival 
as well as to plot the survival curves. qRT-PCR data are expressed 
as mean  ±  standard deviation (SD). Comparisons among multi-
ple groups were performed using a one-way analysis of variance. 
Statistical significance was set at p < 0.05.

3  |  RESULTS

3.1  |  Identification of DEGs

In this study, we selected three gene expression datasets (GSE62165, 
GSE12​5158, and GSE71989). As shown in Table 1, GSE62165 con-
tained 118 PDA specimens and 13 normal pancreatic specimens, 
GSE12​5158 contained 17 PDA specimens and 13 normal pancreatic 
specimens, and GSE71989 contained 13 PDA samples and nine nor-
mal pancreatic samples. Using GEO2R, 6887, 1770, and 4367 DEGs 
were identified in datasets GSE62165, GSE12​5158, and GSE71989, 
respectively, with 202 overlapping DEGs between the three data-
sets (Figure 1).

3.2  |  KEGG and GO enrichment analyses of DEGs

Next, we used DAVID to perform the GO and KEGG pathway analy-
ses (Table 2). For BP, DEGs were enriched mainly in cell adhesion, 
collagen, leukocyte migration, endodermal cell differentiation, main-
tenance of gastrointestinal epithelium, regulation of glucose meta-
bolic processes, positive regulation of transcription, DNA-templated, 
and wound healing. MF was mainly enriched in calcium ion bind-
ing, fibronectin-binding, translation repressor activity, nucleic acid 
binding, integrin binding, insulin-like growth factor I binding, and 
serine-type endopeptidase activity. For CC, DEGs were enriched in 
extracellular space, matrix, extracellular exosome, and membrane 
raft. KEGG pathway analysis revealed that the DEGs were associ-
ated with pathways related to cancer, extracellular matrix (ECM) 
receptor interaction, protein digestion, absorption, tumor necrosis 
factor (TNF) signaling pathway, and focal adhesion.

3.3  |  PPI network construction and 
module analysis

The probability of relationships between the pathways was evalu-
ated using STRING and a PPI network was constructed. A PPI net-
work of DEGs that included 138 nodes and 640 interactions was 
constructed to identify gene interactions, as shown in Figure 2. The 
most important module was confirmed using Cytoscape (Figure 3A), 
and 12 hub genes were identified (Table 3). This analysis revealed 
that HMGB2 had the lowest degree (8), whereas all the others had a 
degree of 10. These hub genes were upregulated in PDA.

3.4  | Hub gene selection and analysis

A total of 12 genes with degrees ≥5 were identified as hub genes, 
and hub gene networks and hub gene co-expression were assessed 
using Coexpedia (Figure  3B). Hierarchical clustering showed that 
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TA B L E  2 GO and KEGG pathway enrichment analysis of DEGs in PDA samples

Category Term Count p-Value

GOTERM_BP_DIRECT GO:0007155~cell adhesion 19 3.61E−06

GOTERM_BP_DIRECT GO:0030574~collagen catabolic process 8 6.66E−06

GOTERM_BP_DIRECT GO:0050900~leukocyte migration 9 6.40E−05

GOTERM_BP_DIRECT GO:0030199~collagen fibril organization 6 6.70E−05

GOTERM_BP_DIRECT GO:0035987~endodermal cell differentiation 5 2.10E−04

GOTERM_BP_DIRECT GO:0030277~maintenance of gastrointestinal epithelium 4 2.73E−04

GOTERM_BP_DIRECT GO:0030198~extracellular matrix organization 10 3.42E−04

GOTERM_BP_DIRECT GO:0010906~regulation of glucose metabolic process 4 0.001763481

GOTERM_BP_DIRECT GO:0045893~positive regulation of transcription, DNA-templated 15 0.001824127

GOTERM_BP_DIRECT GO:0042060~wound healing 6 0.001941507

GOTERM_BP_DIRECT GO:0008284~positive regulation of cell proliferation 14 0.002110314

GOTERM_BP_DIRECT GO:0090090~negative regulation of canonical Wnt signaling pathway 8 0.00228459

GOTERM_BP_DIRECT GO:0010628~positive regulation of gene expression 10 0.00262849

GOTERM_BP_DIRECT GO:0042475~odontogenesis of dentin-containing tooth 5 0.003200207

GOTERM_BP_DIRECT GO:0006508~proteolysis 14 0.003853736

GOTERM_BP_DIRECT GO:0071407~cellular response to organic cyclic compound 5 0.00412687

GOTERM_BP_DIRECT GO:0043586~tongue development 3 0.005179886

GOTERM_BP_DIRECT GO:1902042~negative regulation of extrinsic apoptotic signaling 
pathway via death domain receptors

4 0.005714744

GOTERM_BP_DIRECT GO:0001649~osteoblast differentiation 6 0.006006712

GOTERM_BP_DIRECT GO:0050919~negative chemotaxis 4 0.006217342

GOTERM_BP_DIRECT GO:0097192~extrinsic apoptotic signaling pathway in absence of ligand 4 0.006217342

GOTERM_BP_DIRECT GO:0060394~negative regulation of pathway-restricted SMAD protein 
phosphorylation

3 0.007487389

GOTERM_CC_DIRECT GO:0005615~extracellular space 35 1.41E−06

GOTERM_CC_DIRECT GO:0005576~extracellular region 39 1.56E−06

GOTERM_CC_DIRECT GO:0031012~extracellular matrix 15 3.04E−06

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular matrix 14 5.22E−06

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 52 3.99E−05

GOTERM_CC_DIRECT GO:0005581~collagen trimer 8 5.14E−05

GOTERM_CC_DIRECT GO:0009897~external side of plasma membrane 9 0.001863917

GOTERM_CC_DIRECT GO:0045121~membrane raft 8 0.006117264

GOTERM_MF_DIRECT GO:0005509~calcium ion binding 22 5.53E−05

GOTERM_MF_DIRECT GO:0001968~fibronectin binding 4 0.002970899

GOTERM_MF_DIRECT GO:0000900~translation repressor activity, nucleic acid binding 3 0.005289145

GOTERM_MF_DIRECT GO:0005178~integrin binding 6 0.006536482

GOTERM_MF_DIRECT GO:0031994~insulin-like growth factor I binding 3 0.007644107

GOTERM_MF_DIRECT GO:0004252~serine-type endopeptidase activity 9 0.008138653

KEGG_PATHWAY hsa05200:Pathways in cancer 15 1.11E−04

KEGG_PATHWAY hsa04512:ECM-receptor interaction 7 4.26E−04

KEGG_PATHWAY hsa04974:Protein digestion and absorption 7 4.53E−04

KEGG_PATHWAY hsa04668:TNF signaling pathway 6 0.007120596

KEGG_PATHWAY hsa04510:Focal adhesion 8 0.008530044

Abbreviations: DEGs, differentially expressed genes; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; PDA, pancreatic ductal 
adenocarcinoma.
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F I G U R E  2 The PPI network of DEGs was constructed using STRING database. The PPI network of DEGs that included 138 nodes and 
640 edges. DEGs, differentially expressed genes; PPI, protein-protein interaction; STRING, search tool for the retrieval of interacting genes

F I G U R E  3 Hub genes module and 
co-expression network. (A) The most 
significant module was obtained from 
PPI network with 12 nodes and 126 
edges, including all the hub genes. (B) The 
co-expression network of hub genes was 
analyzed using Coexpedia online platform
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the hub genes could differentiate PDA samples from noncancer-
ous samples (Figure  4). Evaluation of the expression of these hub 
genes in PDA and noncancerous samples using GEPIA revealed that 
the expression of 12 hub genes was higher in PDA samples than in 
noncancerous samples (Figure 5, p < 0.05). Next, we used GEPIA to 
evaluate the relationship between the 12 hub genes and PDA sur-
vival and found that upregulation of HMMR, CEP55, CDK1, UHRF1, 
ASPM, RAD51AP1, DLGAP5, KIF11, SHCBP1, PBK, and HMGB2 
was correlated with poor PDA prognosis (Figure 6). However, there 
was no significant correlation between DTL expression and progno-
sis (p > 0.05). Collectively, these findings highlight the therapeutic 
and diagnostic potential of these hub genes.

qRT-PCR revealed that contrary to bioinformatics predictions 
CDK1, ASPM, and SHCBP1 were expressed at low levels in pan-
creatic cancer cell lines (AsPC-1, SW1990, PANC-1, and BxPC-3) 
compared to that in HPDE cells (Figure  7). KIF11 was highly ex-
pressed in PANC-1 compared to HPDE (p < 0.05); HMMR was highly 
expressed in AsPC-1 and PANC-1; CEP55 was highly expressed 
(p  <  0.05); UHRF1 was highly expressed in AsPC-1 and PANC-1 
(p < 0.05); DLGAP5 was highly expressed in AsPC-1, BxPC-3, and 
PANC-1 (p < 0.05); PBK was highly expressed in AsPC-1 and BxPC-3; 
RAD51AP1 was highly expressed in AsPC-1; and HMGB2 was highly 
expressed in AsPC-1 (p < 0.05).

4  | DISCUSSION

Here, we examined three GEO datasets using gene expression and 
protein-protein interaction analyses and identified 202 DEGs in PDA 
versus noncancerous samples. A PPI network was constructed to 
evaluate the relationship between the DEGs and HMMR, CEP55, 
CDK1, UHRF1, ASPM, RAD51AP1, DLGAP5, KIF11, SHCBP1, DTL, 
PBK, and HMGB2 that were identified as hub genes (degrees ≥5). 
HMMR is involved in cell motility and ECM-receptor interactions. 
Intracellular HMMR is an actin- and microtubule-associated protein 
that maintains spindle integrity.27 Increased HMMR expression has 
been associated with progression and poor prognosis in various can-
cer types.28,29 CEP55 is involved in mitotic exit and cytokinesis,30,31 
as well as in mitotic nuclear division. It is located on 10q23.33 and 
contains nine exons.30 CEP55 is upregulated in ovarian epithelial 
carcinoma, gastric cancer, and breast cancer, and influences cell 
proliferation, cancer aggressiveness, and prognosis.32–34 CDK1 in-
teracts with various cyclins to regulate the cell cycle by regulating 
the centrosome cycle, mitotic onset, G2-M transition, G1 progres-
sion, and G1-S transition.35,36 It phosphorylates p53.37,38 CDK1 can 
substitute other CDKs and is sufficient to drive the mammalian cell 
cycle.39 UHRF1 positively regulates gene expression and DNA topoi-
somerase (ATP hydrolyzing) activity, nuclear chromatin, and protein 

TA B L E  3 Functional roles of 12 hub genes with degree ≥5

No. Gene symbol Full name Function Degree

1 CDK1 Cyclin-dependent kinase 1 CDK1 is essential for G1/S and G2/M phase 
transitions of eukaryotic cell cycle, and 
associated with breast cancer

32

2 ASPM Assembly factor for spindle microtubules ASPM is essential for normal mitotic spindle function 
in embryonic neuroblasts, poor prognosis, and 
regulates cell proliferation in bladder cancer

28

3 KIF11 Kinesin family member 11 KIF11 encodes a motor protein, and associated with 
colorectal cancer

28

4 HMMR Hyaluronan-mediated motility receptor HMMR is involved in cell motility, potentially 
associated with higher risk of breast cancer

24

5 CEP55 Centrosomal protein 55 Plays a role in mitotic exit and cytokinesis, may 
regulate breast cancer spinal metastases

24

6 UHRF1 Ubiquitin like with PHD and ring finger 
domains 1

UHRF1 plays a major role in the G1/S transition and 
retinoblastoma gene expression, and is up-
regulated in various cancers

24

7 DLGAP5 DLG-associated protein 5 DLGAP5 is a potential cell cycle regulator, and 
overexpressed in hepatocellular carcinoma

24

8 PBK PDZ-binding kinase PBK overexpression in tumorigenesis, and drives 
androgen-independent growth in prostate cancer

24

9 RAD51AP1 RAD51-associated protein 1 Structure-specific DNA-binding protein involved in 
DNA repair, and promotes progression of ovarian 
cancer

22

10 SHCBP1 SHC binding and spindle-associated 1 SHCBP1 promotes the progression of prostate 
cancer

20

11 DTL Denticleless E3 ubiquitin protein ligase 
homolog

DTL is involved in cell cycle control, and associated 
with endometrial squamous cell carcinoma

20

12 HMGB2 High mobility group box 2 HMGB2 may promote proliferation and invasion of 
renal tumor

16
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binding. Several studies have shown that UHRF1 influences apop-
tosis in cancer cells.40–42 ASPM is involved in forebrain neuroblast 
division, neuron migration, mitotic spindle regulation, coordination 
of mitotic processes, and maintenance of neural progenitor cells.43 
ASPM mutations have been implicated in microcephaly.44

RAD51AP1 is a structure-specific DNA-binding protein involved 
in DNA repair via the promotion of RAD51-mediated homologous 
recombination.45,46 Upregulation of DNA repair genes is associated 
with metastatic cancer.47 RAD51AP1 is upregulated in advanced 
breast cancer.48 DLGAP5 plays a role in spindle assembly, kineto-
chore fiber stabilization, and chromosomal segregation.49–51 It is 
upregulated in hepatocellular carcinoma, colorectal cancer, urinary 
bladder transitional cell carcinoma, prostate cancer, meningioma, 
and adrenocortical carcinoma.49,52 KIF11 is associated with mitotic 
nuclear division, and its upregulation is associated with premature 
separation of sister chromatids and unequal chromosome segre-
gation,53 which contributes to invasion and metastasis.54 KIF11 is 
upregulated in various cancers with poor prognosis, including pan-
creatic, and gastric cancer.55,56 SHCBP1 (located on 16q11.2) is a 
member of the Shc adaptor downstream protein family.57 SHCBP1 
phosphorylation is required for cleavage furrow separation,58 and it 
promotes the growth of hepatocellular carcinoma via the MEK/ERK 
pathway.59 DTL, which is located on chromosome 1q32, encodes 
a putative 730 amino acid protein60 associated with intracellular 

membrane-bound organelles and regulates p53 protein stability.61 
DTL promotes metastatic potential in HCC as well as tumorigenesis 
in breast cancer cells.60,62 PBK, a novel serine-threonine kinase, is 
a member of the mitogen-activated protein kinase (MAPK) family 
and a negative modulator of the inflammatory response and mitotic 
nuclear division. It influences cytokinesis, DNA damage, and DNA 
repair.63–65 PBK has been implicated in various cancers.66 HMGB2 is 
a positive modulator of transcription, DNA-templated, and negative 
regulation of extrinsic apoptosis via death domain receptors, as well 
as DNA binding, bending, and transcription factor binding. HMGB2 
promotes breast cancer progression by regulating proliferation and 
glycolysis.67

The expression of these genes was verified by qRT-PCR in pan-
creatic cancer and normal pancreatic cell lines. The results showed 
that CDK1, ASPM, and SHCBP1 were expressed at low levels in 
pancreatic cancer cells relative to normal pancreatic cell lines. The 
remaining eight genes were all or partially highly expressed in pan-
creatic cancer cell lines, consistent with those predicted by bioinfor-
matic methods. We found that the expression of some genes was 
contrary to the bioinformatics prediction; therefore, they need to 
be validated at the tissue and protein levels during the next stage of 
subsequent experiments.

By reviewing the relevant literature, we found that PIAO J 
et al.68 performed immunohistochemical staining of CDK1 in 99 

F I G U R E  4 Hierarchical clustering 
of hub genes was constructed using 
UCSC Xena. The samples under the 
pink bar are noncancerous samples, 
and the samples under the blue bar are 
PDA samples. Upregulation of genes is 
marked in red; downregulation of genes 
is marked in blue. PDA, pancreatic ductal 
adenocarcinoma
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F I G U R E  5 The expression of 12 hub genes in PDA samples and noncancerous samples through GAPIA database (*p < 0.01). All hub 
genes were upregulated in the tumors of patients with PDA. Red represents tumor tissue and black represents normal tissue. PAAD or PDA, 
pancreatic ductal adenocarcinoma; GAPIA, gene expression profiling interactive analysis
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PDA tissues and 71 normal pancreatic tissues to analyze its ex-
pression and found that the CDK1 positivity rate (97/99, 98%) was 
significantly higher than that of normal pancreatic tissues (40/71, 
56.3%). HSU C-C et al.69 found that ASPM isoform I (ASPM-iI) 
and ASPM-iII, were differentially and heterogeneously expressed 
in various PDAC cell lines, while ASPM-iIII and ASPM-iIV were 
hardly expressed. YANG C et al.70 performed immunohistochemi-
cal staining of SHCBP1 in 186 PDA specimens and paracancerous 
tissues and showed that SHCBP1 (115/186, 62%) was expressed 
at higher levels in PDA samples than in paracancerous tissues.

Here, we identified HMMR, CEP55, CDK1, UHRF1, ASPM, 
RAD51AP1, DLGAP5, KIF11, SHCBP1, PBK, and HMGB2 as poten-
tial biomarkers for early diagnosis and treatment of PDA.

5  |  CONCLUSION

Using bioinformatic analysis, we identified 202 DEGs and HMMR, 
CEP55, CDK1, UHRF1, ASPM, RAD51AP1, DLGAP5, KIF11, 
SHCBP1, PBK, and HMGB2 as hub genes with diagnostic and 

F I G U R E  6 Kaplan-Meier survival curve analysis. The overall survival of twelve hub genes (HMMR, CEP55, CDK1, UHRF1, ASPM, 
RAD51AP1, DLGAP5, KIF11, SHCBP1, DTL, PBK and HMGB2) expression in PAD using GEPIA. Red line depicts genes with higher 
expression associated with poor overall survival and blue line depicts genes with lower expression associated with good survival. PDA, 
pancreatic ductal adenocarcinoma

F I G U R E  7 Results of quantitative real-time PCR revealed that CDK1, ASPM, KIF11, HMMR, CEP55, UHRF1, DLGAP5, PBK, RAD51AP1, 
SHCBP1, and HMGB2 transcription levels in four cancerous cell lines (AsPC-1, SW1990, PANC-1, BxPC-3) and benign cells (HPDE). 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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therapeutic potential in PDA. However, further studies are required 
to elucidate the biological functions of these genes in PDA.
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