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Molecular analysis of urothelial cancer cell lines for modeling
tumor biology and drug response
ML Nickerson1,9, N Witte2,9, KM Im3, S Turan1, C Owens4, K Misner1, SX Tsang5, Z Cai6, S Wu6, M Dean1, JC Costello2,7,8

and D Theodorescu4,7,8

The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary
tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number
alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a
mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived
from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-
associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes,
including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6
and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins
with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1–SYNE2, 60%.
Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was
commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA)
phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa
cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number
data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin
response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response.
Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study the
pharmacogenomics of BCa.
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INTRODUCTION
Bladder cancer (BCa) is the sixth most common cancer in the United
States with over 74 000 new cases and 16 000 deaths each year.1

Although there are recurrent genetic aberrations in BCa2–6 that relate
to overall patient survival,7 tumor classification4,8 and response to
therapies,9,10 BCa is also characterized by elevated mutational
burden11 and a high degree of molecular heterogeneity.12,13 These
factors complicate the study of molecular mechanisms of disease and
highlight the need to select experimental models that recapitulate
the genomic variation seen in patients.
Human tumor-derived cancer cell lines have long served as

model systems to study the mechanisms driving cancer and to
discover potential therapeutics.14 However, and not uncommonly,
drug response in cell lines does not translate to patient tumors.
One of the many factors contributing to this lack of translatability
is the difference in genomic aberrations between cell lines and
tumors. A systematic comparison of genomic features in cell lines
and tumors has only recently been possible with contributions
from individual research groups5,6 and large collaborative efforts
such as The Cancer Genome Atlas (TCGA) for tumor samples,4 and

the Cancer Cell Line Encyclopedia (CCLE)10 and the Genomics of
Drug Sensitivity in Cancer (GDSC)15 for cancer cell lines. One such
comparison looked at high-grade serous ovarian cancer and found
that the two most commonly used cell line models were hyper-
mutated compared with solid tumors, highlighting a potential
disconnect between the genomic features of commonly used
cell lines and primary tumors. Furthermore, cross-contamination
of cell lines has been well documented and likely also contributes
to confounding results.16 For all of these reasons, the choice of
cell line models is critical if results from in vivo experiments are to
have biological and clinical relevance. A number of investigators
have explored similar concepts in ovarian,17 head and neck,18

colorectal,19 melanoma,20 and non-small cell lung21 cancers. Here,
we provide the data and analyses to include BCa in this growing
list, a necessary step to strengthen the analysis of all cancer types.
Although the CCLE and GDSC are valuable pharmacogenomics

resources, they have limited mutational profiling data and are
under-represented for BCa cell lines. Previous efforts characterized
a panel of 40 BCa cell lines for gene expression and response
to chemotherapy,22 and analyzed copy number alterations (CNAs)

1Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; 2Computational Bioscience Program, University of Colorado,
Aurora, CO, USA; 3Data Science for Genomics, LLC, Ellicott City, MD, USA; 4Department of Surgery (Urology), University of Colorado, Aurora, CO, USA; 5BGI-Shenzhen, Shenzhen,
China; 6Shenzhen Second People's Hospital, Shenzhen, China; 7Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA and 8University
of Colorado Comprehensive Cancer Center, Aurora, CO, USA. Correspondence: Dr JC Costello, Department of Pharmacology, University of Colorado Anschutz Medical Campus,
12801 E 17th Avenue, Room L18-6114, MailStop 8303, Aurora, CO 80045, USA or Dr D Theodorescu, University of Colorado Comprehensive Cancer Center, University of Colorado
Anschutz Medical Campus, 13001 E 17th Place, F-434, Building 500, Room C6004, Aurora, CO 80045, USA.
E-mail: james.costello@ucdenver.edu or dan.theodorescu@ucdenver.edu
9These authors contributed equally to this work.
Received 24 November 2015; revised 4 March 2016; accepted 7 March 2016; published online 6 June 2016

Oncogene (2017) 36, 35–46
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-9232/17

www.nature.com/onc

http://dx.doi.org/10.1038/onc.2016.172
mailto:james.costello@ucdenver.edu
mailto:dan.theodorescu@ucdenver.edu
http://www.nature.com/onc


using single-nucleotide polymorphism (SNP) arrays.23 Here we
present mutational and CNA profiling using exome sequencing on
25 BCa cell lines, along with an integrative analysis of mutations,
CNA and mRNA expression to compare the cell lines with primary
human bladder tumors. We use the genomic and pathway profiles
of the cell lines to stratify human BCa patients according to
treatment response and identify a set of pathways that are
predictive of platinum chemotherapy response. To help investi-
gators select the appropriate cell model for experimental
functional studies, we make our data, analysis results and scripts
publically available: https://www.synapse.org/UC25.

RESULTS
We performed whole-exome sequencing (WES) on 25 BCa cell
lines derived from 21 muscle-invasive (MI) and 4 non-MI (NMI)
tumors; these lines were authenticated using DNA fingerprinting
(Supplementary Table 1). Exomes were sequenced to a mean depth
of ~ 60X coverage with 86% of exonic bases sequenced to a depth
of ⩾10X (Supplementary Table 2). All WES-predicted variants
passing the mutational pipeline described in the Materials and
Methods section are reported in Supplementary Table 3. A
previously observed high rate of somatic BCa mutations predomi-
nated by single-nucleotide variants in CpGs and associated with the
apolipoprotein B mRNA editing (APOBEC) family of DNA cytosine
deaminases has been described and prompted us to examine the
tri-nucleotide context of the cell line variants.4,24 This revealed a
common signature in both the 21 MI tumor-derived lines
(Figure 1a) and the 4 NMI tumor-derived lines (Figure 1b) that
was dominated by C4T transitions in CpGs, and by C4T and
C4G APOBEC-mediated changes in a T-C-W context, where the
underlined cytosine is altered and W=A/T. The signature
represented 16.9% and 12.3% of all alterations, respectively, in
the MI tumor-derived lines. Significantly, 204 single-nucleotide

variants in known or putative BCa genes were validated in the cell
line exomes as described below and can be similarly analyzed
(Supplementary Table 4). Exome variants associated with APOBEC
enzymes and altered CpGs comprised 50/204 (24.5%) and 33/204
(16.2%) of variants, respectively, indicating a likely mechanism(s)
underlying a large fraction (40.7%) of cancer-associated alterations
in the exome. The proportions of the signature-associated variants
in the cell lines are within the distribution reported from the
analysis of somatic alterations in MI primary tumors.4,24 Consider-
ing the cell line analysis unavoidably incorporates both germline
and somatic variants, these results indicate the strength of the
APOBEC- and CpG-associated signature in the exome.
We tested a total of 309 next-generation sequencing (NGS)-

predicted variants identified in known cancer genes using PCR
and Sanger sequencing, and 237 (83%) NGS-predicted variants
were confirmed (Supplementary Table 4). The majority of variants
that were not confirmed had a low number of variant read counts.
Validated variants were then computationally assessed using the
Annotation, Visualization and Analysis (AVIA) pipeline, v2.0;25,26

more than half (128/237, 54%) were predicted to be deleterious by
more than one functional analysis algorithm.

Mutational landscape of BCa cell lines
Nineteen genes have NGS-predicted, Sanger sequencing-validated
alterations in ⩾ 4 of the 25 lines, including the lysine-specific
methyltransferase 2C (MLL3/KMT2C; altered in 40% of lines), FAT
atypical cadherin 4 (FAT4; 24%) and retinoblastoma 1 (RB1; 20%)
(Figure 2). Using Sanger sequencing, we identified telomerase
reverse transcriptase (TERT) promoter variants in 84% of lines. We
also detected previously unreported variants in less frequently
altered, but well-known cancer-associated genes including breast
cancer 1 (BRCA1) and Kirsten Rat Sarcoma homolog (KRAS). New
potentially deleterious variants such as a G4T, p.E66X were
detected in tumor protein p53 (TP53) in cell line UM-UC-6 and in

Figure 1. Mutation signatures in MI tumor- and NMI tumor-derived bladder cell lines. (a) Mutation signatures in 21 MI tumor-derived lines.
NGS variants (29 557 single-nucleotide variants (SNVs)) were grouped by the tri-nucleotide context. Arrows indicate motifs associated with
altered CpGs (white) and APOBEC-family enzymes (black); arrow size indicates the relative contribution of specific motifs to variants observed
in 238 MI primary tumors.24 (b) Motifs observed in 6472 SNVs in 4 NMI tumor-derived lines (MGH-U3, MGH-U4, RT4 and SW-780).
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genes encoding chromatin remodeling functions, such as a C4T,
p.R4139X in MLL3 in cell line MGH-U3, an insertion and frameshift,
p.D1850fs, in the chr 1p36 locus AT-rich interactive domain 1A
(ARID1A) in cell line UM-UC-6, and a deletion and frameshift, p.
P1139fs, in the chr X lysine-specific demethylase 6A (KDM6A) in cell
line UM-UC-13. Details are in Supplementary Table 4.
We evaluated the effect of reduced TERT mRNA expression in

two bladder lines with predicted activating promoter mutations.
We selected the TCCSUP and UM-UC-3 lines to evaluate because
they have previously been reported to have high TERT mRNA
expression, high TERT protein levels and high telomerase activity.3

The UM-UC-3 line contains a heterozygous c.-124C4T variant
and the TCCSUP line contains a homozygous c.-124C4T variant,

both suggesting increased TERT expression.3 After TERT mRNA
knockdown, both lines showed a significant decrease in growth
after 5 days (Supplementary Figure 1), supporting a functional
impact of the promoter mutations on overall TERT expression and
the BCa cell phenotype.
We mapped proteins encoded by genes with sequence variants to

putative pathways to identify potentially altered signaling networks
(Figure 3). Eleven genes encoding proteins involved in phosphatidy-
linositol-4,5-bisphosphate 3-kinase (PI3K)/mammalian target of rapa-
mycin (mTOR) signaling were altered in 60% of the lines, most
frequently by altered PI3K regulatory subunit (PIK3CA) and the tyrosine
kinase gene, ERBB2. In agreement with previous observations,2,27 the
BRCA DNA repair pathway, including BRCA1 and ATM, were altered in

Figure 2. Cancer-associated gene alterations in 25 BCa cell lines. Top histogram, WES-predicted variants by nucleotide change. Right histogram,
percentage of cell lines with confirmed alterations by gene. Central panel, distribution of gene alterations by cell line; missense, nonsense, coding
indels, UTR, promoter, and splice site alterations are displayed. Gray, no data. Mutation details are contained in Supplementary Table 4.
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Figure 3. Cell lines with altered signaling pathways and related protein functions. (a) PI3K/mTOR alterations in 15/25 (60%) cell lines. (b) BRCA
pathway alterations in 11/25 (44%) cell lines. (c) Sister chromatid cohesion and segregation alterations in 6/25 (24%) cell lines. Variants are
shown in an Oncoprint format (left) to identify genes that are co- or exclusively mutated; and as a pathway diagram (right) to show the
frequency of altered protein components in each pathway. (d) SYNE1 and SYNE2 alterations in 15/25 (60%) cell lines. Colored boxes indicate
protein domains: green, calponin homology domain; orange, spectrin repeat; blue, nuclear envelope localization domain. (e) MLL-family
alterations in 12/25 (48% ) cell lines. Colored boxes indicate protein domains: green, PHD-like zinc-binding domain; orange, PHD-finger; blue,
F/Y-rich N-terminus; yellow, F/Y-rich C-terminus; purple, SET domain. Variant annotation: green, missense; black, truncating (nonsense,
deletion/insertion frameshift and splice junction).
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44% of lines in a predominantly mutually exclusive manner. This is
similar to 40/127 (32%) of tumors from patients in the TCGA,4 which
also exhibited BRCA pathway gene alterations that were predomi-
nantly mutually exclusive. Cell lines exhibited variants in genes
encoding related proteins and/or functions, including the spectrin
repeat containing, nuclear envelope 1 and 2 (SYNE1 and SYNE2) in 60%
of lines; and the lysine-specific methyltransferases MLL3, MLL2/
KMT2D, MLL5/KMT2E, and MLL/KMT2A in 52% of lines. Many of the
alterations we confirmed occur in genes that are frequently mutated
in primary bladder tumors,2,4 thus enabling future experimental study
of these genes and pathways using these BCa cell lines.
Several recent studies have examined genomic aberrations

in the BCa cell lines.3,23 There was complete overlap of TERT
promoter mutations observed in our study and those reported
in Borah et al.3 including c.-348G4C and c.-269G4A, both
observed in a single line, and c.-57A4C observed in two lines.
For the 25 lines studied here, Earl et al.23 reported 68 mutations
in 10 genes and we confirmed 53 (78%) variants in our WES
data (Supplementary Table 5). Our analysis also improved
the annotation of several previously reported mutations.23 We
determined that a deletion in the phosphatase and tensin
homolog (PTEN) in line J82 was a homozygous loss of exons 7
and 8 (codons 212-342, NM_000314) and a deletion in RB1 in line
TCCSUP was a homozygous loss of exons 18–27 (NM_000321).
This comparison revealed that our knowledge of cancer gene
alterations in these cell lines was far from complete, and
accurate mutation detection and annotation is required to

overcome inter-study variability that could have a significant
impact on experiments investigating BCa cell biology and
response to therapy.

Global and local copy number analysis
In addition to characterizing sequence alterations, we used WES to
identify CNAs. Using the ExomeDepth method,28 we identified
duplications and deletions in each of the 25 BCa cell lines.
The median length of duplications was 307 kb and was 51 kb for
deletions. Similarly, the CCLE analyzed a total of 26 BCa cell lines
using Affymetrix SNP6.0 chips10 and Earl et al.23 assayed 40 BCa
cell lines using Illumina Beadarrays. A total of 13 cell lines were
assayed using all three platforms. Despite the different platforms
and underlying data analyses, we found a high degree of overlap
between loci with CNA using ExomeDepth (Figure 4). On average,
75% of ExomeDepth-identified duplications overlapped with
amplified regions detected in the CCLE and with 53% of those
detected by Earl et al. ExomeDepth deletions overlapped with
64% of the depleted regions identified in the CCLE and 75%
of those in Earl et al. (Figures 4b and c). For the same 13 cell lines,
we compared CCLE and Earl et al. copy number values on a gene-
by-gene basis. For 12 of these lines, we found an average Pearson
correlation coefficient of 0.68 ranging from 0.47 to 0.81. The one
exception was the UM-UC-3 line that showed a poor correlation of
0.17, potentially because of a misidentification in either the CCLE
or Earl et al. (Supplementary Figure 2).

Figure 4. Global copy number comparison. (a) A total of 13 cell lines were examined for CNA across three data sets: exome sequencing
presented here, the CCLE10 and Earl et al.23 Copy number data are shown for each of the three data sets with copy number deletions colored
blue and copy number amplifications colored red. The percentage of amplifications and deletions was determined using the program
ExomeDepth28 that overlapped with data from (b) Earl et al. or (c) the CCLE.
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We identified homozygous sequence alterations using WES read
counts and the relative signal intensity (RSI) of mutant and WT
alleles29 in Sanger sequence chromatograms produced during
variant validation (Supplementary Table 4). This produced evidence
of sequence and CNAs at nucleotide resolution at the sites of
sequence variation (Figure 5). Seven genes, including oncogenes
TERT and KRAS, and the tumor suppressors, TP53, KDM6A, SYNE1, RB1
and MLL2, exhibit allelic imbalance (RSI⩾0.7) in multiple (4 2) lines.
Homozygous alterations occurred in a unique pattern in each line
and likely represent irreversible commitment by each cell line to the
altered function.

Loss of BCa genes on chromosome 9p21
Previously characterized in BCa, chr 9p21.3 is a genomic loci
frequently altered by somatic loss that likely targets the tumor
suppressors, CDKN2A and CDKN2B.4,28,30,31 These genes encode
proteins that form a complex with CDK4 to block cell cycle G1
progression, and an alternative transcript in the CDKN2A locus
(p14/alternative reading frame (ARF)) encodes a stabilizer of TP53
through sequestration of the oncogenic ubiquitin ligase, MDM2.32,33

Given the importance of chr 9p21.3 in human BCa, we sought
to identify the cell lines with homozygous deletion of this locus
for use as experimental models. To define the deletion borders,
we examined WES read depth using the Integrative Genomics
Viewer (IGV).34 As shown in Figure 6a, and consistent with
previous human BCa data from primary tumors,4,30 we found
genes that were coordinately lost with CDKN2A/2B, which should
also be considered when using these lines as experimental

reagents. Homozygous deletions extending to all or part of
neighboring genes were observed in 12 of the 25 lines. CDKN2A
was lost in all 12 and CDKN2B in 9 of the lines. Homozygous
deletions included all (six lines) or part (three lines) of MTAP,
encoding a key enzyme in polyamine metabolism, indicating
it is likely completely inactive in nine lines with a frequency of
alteration similar to CDKN2B. The transcription factor, DMRTA1,
was lost in seven lines and deletions in five lines included
a microRNA, mir31, and interferon epsilon (IFNE). The remaining
deletions removed varying numbers of up to 16 genes residing in
an alpha interferon gene cluster, and two lines possessed
deletions extending to the RNA binding protein, ELAVL2.
To determine the impact of these deletions on gene expression,22

we compared the normalized expression levels for MTAP, CDKN2A
and CDKN2B in lines with a homozygous deletion to lines without a
deletion (Figures 6b-d). In each comparison, loss of the gene
was associated with a significant reduction of expression: MTAP by
1.3-fold, CDKN2A by 8.1-fold and CDKN2B by 1.3-fold (GSE5845).22

These findings were confirmed using independent expression
values generated from 15 of the same BCa cell lines in the CCLE
(Supplementary Figure 3). We were unable to analyze IFNE
expression because the Affymetrix gene expression array lacked
IFNE probes.
Finally, we examined the expression of proteins encoded

by genes deleted on chr 9p21 using publically available data
(http://www.proteinatlas.org). DMRTA1 was expressed at medium
and high levels in normal urothelial tissue and in 52% of bladder
tumors. IFNE was expressed in fewer healthy tissues and in 23%
of cancers, including moderate expression in BCa, but not in
healthy urothelium. IFNA1 showed limited expression in healthy
tissues and in 7% of cancers, whereas IFNB1, located outside
the deletions detected in the cell lines, was expressed in almost
all healthy tissues and 100% of cancers, including BCa. No protein
expression data were available for MTAP, however, we were
able to confirm MTAP loss in tumors from 34/127 (27%) patients
analyzed by the TCGA,4 confirming the relevance of MTAP
deficiency in both cell lines and primary disease.

BCa cell lines recapitulate genomic aberrations in tumors
Small insertions and deletions (indels), and larger CNAs have been
comprehensively characterized in both cell lines and BCa patient
tumors. We used patient data from TCGA,4 cell line CNAs from
Earl et al.,23 and the WES data presented here to calculate the
‘fraction of genome altered’ and ‘mutations per million bases.’
As shown in Figure 7a, the cell lines have a higher number of
mutations, but lower overall number of CNAs (both significant
Po0.01, Wilcoxon rank sum test). The numbers of alterations in
the cell lines were within the range of genomic aberrations
observed in the tumors. This is in contrast to the results reported
by Domcke et al.17 for high-grade serous ovarian cancer where
they found a set of commonly used cell lines were significantly
hyper-mutated compared with patient tumors.
We also observed that many of the well-known BCa driver

genes defined by TCGA4 showed similar frequencies of alterations
in the cell lines when compared with patient tumors, suggesting
that the cell lines are appropriate as experimental reagents to
model bladder tumors (Figure 7b). The difference in frequency of
alterations between the tumors and cell lines that are observed for
some genes may be specific to the samples that were examined,
but may also be biologically relevant and reflect the effects of
selection during cell culture. For example, forkhead box Q1
encodes a transcription factor that regulates epithelial–mesench-
ymal transition35 and the reduced number of alterations in the cell
lines as compared with patient tumors may reflect an essential
role in cell line formation. Figure 7b also demonstrates that
sequence alterations and CNAs occur as distinct mechanisms

Figure 5. Homozygous alterations. Allelic imbalance across
sequence alterations in BCa genes was detected in 21/25 cell lines
showing it is frequently observed. Filled boxes ⩾ 1 alteration with
⩾ 70% variant signal by NGS read counts or relative signal intensity
(RSI) in Sanger chromatograms.
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acting on individual cancer genes, with most genes primarily
altered by a single mechanism, such as CDKN2A by CNA.

Cell line-derived signatures predict patient treatment response
Cell lines are commonly used as pre-clinical drug screening
platforms and are associated with large amounts of data
generated across many cell lines and cancer types.10,14,15 It has
been recognized that alignment of genomic profiles between
cell lines and patients can be used to more effectively translate
cell line drug response to patient cohorts.14 We took an
integrative approach to characterize pathway activity including
gene expression22,36 and CNAs23 as inputs to PARADIGM to
calculate inferred pathway activity (IPA)37 (Supplementary Table
6). We used elastic net regression38 and IPAs to build a
predictive model of cisplatin response (Figure 8a). We used
three-fold cross-validation to tune model parameters and ran
10 000 iterations to identify the most consistently selected IPAs.
We built a final model using IPAs selected in 80% of the
iterations, then used the model to predict platinum-based drug
sensitivity in TCGA patient cohorts that were either treated with
a platinum drug (n = 44) or were not treated with chemotherapy

as defined in the TCGA clinical information files (n = 104). TCGA
patient IPAs can be found in Supplementary Table 7. Kaplan–
Meier survival analysis showed significant separation among
patients treated with platinum-based drugs between those
predicted to be sensitive and those predicted to be resistant
(P = 0.05, log-rank test). The patient cohort not treated with
chemotherapy showed no separation between patients pre-
dicted to be either sensitive or resistant, consistent with this
patient cohort being a negative control (Figure 8b).

DISCUSSION
There has been little advance in chemotherapeutic or targeted
therapies for BCa in the past 20 years and robust pharmacogenomic
models are needed to study molecular mechanisms of response and
resistance. Here, we show that BCa cell lines model the genomic
features of patient tumors and these features can be used to model
response to platinum drugs. The generation of genomic data and
clinical trials that leverage these data are increasing (for example,
MATCH (NCT02465060) and SWOG1314 (NCT02177695)), high-
lighting the importance of model systems such as cell lines to
study the mechanisms of drug response and resistance.

Figure 6. Deletion of chromosome 9p21.3 locus genes. (a) NGS of genes on chr 9 near CDKN2A and CDKN2B were manually examined using
the IGV34 for homozygous deletions. Lines with evidence of a homozygous deletion in an exon are displayed (green). The analysis
was inconclusive for ELAVL2 exon 1 (right side) but no deletions were observed that extended to the neighboring gene, IZUMO family member
3. (b-d) The expression of the indicated chr 9 gene in lines with no homozygous deletion (left) as compared with lines with ⩾ 1 exon exhibiting
a homozygous deletion (right). (b) MTAP expression in 18 WT lines and 7 lines with a deletion. (c) CDKN2A expression in 13 WT lines and 12
lines with a deletion. (d) CDKN2B expression in 16 WT lines and 9 lines with a deletion. Wilcoxon rank sum test was used to calculate P-values.
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The GDSC and CCLE remain the most comprehensive pharma-
cogenomic cell line collections, yet both data sets lack comprehen-
sive mutational profiling. According to a recent survey of major BCa
genomics data sets, there are 34 genes frequently and significantly
mutated by somatic alterations in BCa tumors.24 Many of these
newly identified cancer genes have not been characterized in
commonly utilized BCa cell lines, including important chromatin-
associated genes such as STAG2 and MLL2.10,39 Over the 25 bladder
cell lines analyzed using WES, we report 9042 genes that have at
least one sequence variant or indel (Supplementary Table 3), many
of which remain to be further studied, and representing a major
improvement to the current state of mutational profiling for
these lines.
Importantly, we found that the bladder lines replicate many

aberrations associated with BCa tumor development. Analysis of the
alterations in the cell lines revealed remarkably similar overall
proportions of altered sequence motifs when compared with MI
primary tumors;24 this demonstrates a larger fraction of cancer-

associated variants (40.7%) are associated with APOBEC enzymes
and altered CpG sites. This analysis likely underestimates the
significance of these alterations as we did not count variants that
create new CpGs with unknown regulatory impact, and there is an
unknown proportion of germline variants in the cell lines that will
dilute the somatic mutation signal.
The chr 9p21.3 deletion typically associated with CDKN2A,

p14ARF and CDKN2B loss31 was frequently observed in the cell
lines, similar to primary tumors; however, to date the presence,
extent and effect of the deletions on the surrounding genes
has been unclear in BCa and in these lines, representing key
experimental gaps in these important reagents. Thus, these data
indicate these genes—MTAP and possibly others on chr 9p21- are
BCa-associated genes that are distinct from CDKN2A, p14ARF
and CDKN2B. A review of published studies confirms they are
targeted for frequent alteration in a wide range of cancers
primarily by CNA loss, including BCa in agreement with our data40

(Supplementary Figure 4). Additionally, recent work by Mavrakis
et al.41 supports the importance of MTAP independent of CDKN2A.
These findings have implications for BCa etiology and

treatment, and require consideration for future experiments in
the ~ 50% of lines with homozygous deletions extending beyond
CDKN2A and CDKN2B. For example, MTAP encodes a key enzyme
in the salvage of adenine and methionine in polyamine
metabolism and loss may contribute to metabolic changes that
are commonly observed in cancer.42 Loss of MTAP leads to
increased concentrations of its substrate, methylthioadenosine
(MTA), which drives the reverse reactions in polyamine synthesis
producing damaging hydrogen peroxide. These data indicate
MTAP deficiency in tumor cells occurs at an appreciable frequency
and polyamine synthesis may be an attractive therapeutic target
that is particularly effective when applied to MTAP-deficient
BCa.43,44 Although a previous attempt to target polyamine
biosynthesis through inhibition of ornithine decarboxylase (ODC1)
did not prevent recurrence in low-risk superficial BCas,45 MTAP-
deficient tumors were not analyzed and this distinction may have
clarified a stratified patient response.
The alpha interferon gene cluster residing next to CDKN2A and

MTAP, including the recently described IFNE, encodes cytokines that
maintain interferon-regulated gene expression, inhibit cell prolifera-
tion, and protect against viral and bacterial infection.46,47 The
constitutive expression of IFNE in epithelial cells of the female and
male reproductive tract appears to indicate an essential role to
protect against viral and microbial infection, and common sexually
transmitted disease.45,48 Thus, as IFNE is the most frequently lost
type I interferon gene at the chr 9p21 locus, the loss may be
associated with increased viral and microbial infections of the
urinary tract and bladder. We hypothesize that anti-microbial
agents, such as the Bacillus Calmette-Guérin (BCG) vaccine already
used in BCa, or antiviral therapy may be particularly effective in
IFNE-deficient BCa.
These data indicate sequence changes and CNA affects both

copies of an unexpected number of cancer genes across BCa cell
lines. The combinations of homozygous losses and gains shown
in Figures 4 and 6 represent, in theory, complete commitment of
a cell line to the altered functions and therefore represent
a unique combination of therapeutic targets (a therapeutic
fingerprint) that is specific to each individual cancer from which
the cell lines are derived. Thus, this high-resolution WES analysis
vastly improves the utility of these cell lines as experimental
reagents for combinatorial testing of new and existing therapies
against altered BCa genes. Comparisons of tumor-derived cell
lines with patient samples have been performed in ovarian,17

head and neck,18 colorectal,19 melanoma20 and non-small cell
lung21 cancers. Here we report a genomics resource for the BCa
community (https://www.synapse.org/UC25) and demonstrate its
use for a pharmacogenomics analysis that can be applied to other
cancer types based on cell line profiling.

Figure 7. Genomic comparison of BCa cell lines to tumors. (a) Mutation
frequency (x axis) compared with the fraction of the genome altered
(y axis) for bladder tumors (blue) and cell lines (red). (b) Frequently
altered genes identified from the TCGA analysis of BCa tumors4 are
ordered by the percentage of samples with mutations in TCGA tumors
as compared with the cell lines. Amplified, red; deleted, blue.
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MATERIALS AND METHODS
Exome capture, sequencing, and variant analysis
All cell lines were fingerprinted using 15 short tandem repeat loci at
the University of Colorado core facility. DNA from cell lines (3 μg) was
quantitated by fluorimeter and agarose gel electrophoresis and fragmen-
ted. Exome capture was performed using the Agilent SureSelect Human All
Exon 38 Mb kit (Santa Clara, CA, USA). The exome of the T24 cell line
was collected using the Agilent SureSelect Human All Exon 50 Mb kit
and was sequenced to a greater depth than the other cell lines for future
comparative studies to related derivative lines. NGS was used to generate
100 bp, paired-end reads using a HiSeq 2000 platform (Illumina Inc., San
Diego, CA, USA) and was analyzed using the Genome Analyzer Pipeline, v.
1.3 (Illumina Inc.) with standard parameters. Base calls produced by
Illumina base calling software 1.7 were aligned to the human genome
(hg19) reference sequence using BWA,49 and duplicate reads were
removed by SAMtools.50 SOAPsnp51 and SAMtools were used to identify
SNPs and short indels, respectively, and variants were annotated using
ANNOVAR.52 We removed SNPs with a base quality o20 and/or covered
by fewer than four high-quality sequence reads. We intentionally used
liberal filtering as we intended to validate all variants of interest by a

second method (PCR and Sanger sequencing). Identical variants called in
45 cell lines or in known segmental duplications (segdups) were also
excluded from further analysis (Supplementary Table 3). The tri-nucleotide
context of variants that were not observed in the 1000 Genomes Project
samples53 was examined using twoBitToFa (http://hgdownload.soe.ucsc.
edu/admin/exe/linux.x86_64/twoBitToFa). NGS analysis utilized the high-
performance computational capabilities of the Biowulf Linux cluster at the
National Institutes of Health (Bethesda, MD, USA) (http://biowulf.nih.gov). A
subset of NGS-predicted variants that altered proteins (n= 309) were
examined using PCR and Sanger sequencing as previously described.2

Cell growth assay and quantitative reverse transcriptase–PCR
UM-UC-3 and TCCSUP cells were split at 1x105 cells per well onto a 24-well
plate. After 24 h, cells were transfected with Smartpool of 4 different
siRNAs (Dharmacon, Lafayette, CO, USA) for non-target control and hTERT
at 25 nM conc. using Lipofectamine RNAiMax transfection reagent from
Thermo Fisher Scientific (Waltham, MA, USA). After 5 days of transfection,
cells were trypsinized, resuspended in 1 ml culture media and live cells
were counted by Trypan blue exclusion method. To confirm the
knockdown of hTERT, cells were harvested 24 h after transfection and

Figure 8. Pathway signature from cisplatin-treated cell lines predicts patient response. (a) Cell lines are ranked ordered according to measured
response to cisplatin. Heatmap of PARADIGM scores for the top concepts from the elastic net analysis. The PARADIGM class is in parentheses
and the fraction of times the concept was selected over 10 000 iterations of model training is shown in brackets. Concepts selected in over
80% of the iterations were used in the final model. (c) Patients from the TCGA were separated into two groups according to whether they
received a platinum-based chemotherapy or not treated with chemotherapy. The cisplatin signature derived from the cell lines was used to
predict sensitive and resistance in the two patient populations. Predictions were evaluated using a Kaplan–Meier survival plot (log-rank test).
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quantitative reverse transcriptase–PCR was performed. Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as an internal control gene.
Expression was normalized to control-treated cells to determine gene
expression in knockdown cells. Primer sets used for quantitative reverse
transcriptase–PCR are, hTERT forward 5′-CATTTCATCAGCAAGTTTGGAAG-3′
and reverse 5′-TTTCAGGATGGAGTAGCAGAGG-3′ and GAPDH forward
5′-TCTTTTGCGTCGCCAGCCGA-3′ and reverse 5′-ACCAGGCGCCCAATACGACC-3′.
Triplicates were run for each cell line and values are indicated as mean± s.e.

Copy number and gene expression analysis
To identify deletions on chr 9, we examined NGS sequence depth for each
exon in genes in a 3-Mb region of chr 9p21.3 encompassing CDKN2A and
CDKN2B and visualized using the IGV.32 We observed 495% fewer NGS
reads in a subset of lines that likely indicated homozygous deletions. On
average, o3 NGS reads per exon were observed in the deleted region,
which was used as the cutoff to define a homozygous deleted exon.
Putative heterozygous losses of one allele were noted in additional cell
lines, however, determining the borders of the deletions (our goal) was
lower confidence.28 The gene expression (GSE5845)22 for CDKN2A, CDKN2B,
MTAP and IFNA8 were available, but other genes and miRNAs were not.
IFNA8 was not analyzed because of few lines with a deletion (n= 4) and a
low IFNA8 expression across all lines. Gene expression differences between
groups of cell lines were tested using the Wilcoxon rank sum test.
For copy number comparisons, the gene coordinates were mapped to the

copy number segments defined in the CCLE and Earl et al.10,23 The log-fold
change measures were transferred to the genes in the copy number
segments and genes overlapping segments were removed. These values were
used to compare CNA measurements in the CCLE with those in Earl et al.

Focal CNAs from exome sequencing data
WES data for all cell lines were pooled and simultaneously analyzed using
ExomeDepth28 according to the script provided in the Supplementary Text.
As described in Plagnol et al.,28 CNAs were called according to the
expected vs observed reads based on a beta-binomial model. The
reference set of cell lines was constructed by ranking all cells against the
test cell line using correlation, then sequentially adding cell lines, fitting
the model and testing the posterior probability in favor of a single-exon
heterozygous deletion model. CNAs predicted by ExomeDepth were
compared with segmented copy number profiles from the CCLE10 and Earl
et al.23 Data processing, normalization and segmentation from CCLE and
Earl et al. were done according to the associated publications. A total of 13
cell lines were shared across all 3 data sets (WES, CCLE and Earl et al.). An
ExomeDepth CNA was called a positive overlap if the segment mapped to
CCLE or Earl et al. showed a positive sign for duplications and negative sign
for deletions.

TCGA patient data
RNAseq V2 gene expression, SNP6 CNAs, clinical and survival data of BCa
(BLCA) patients was collected from TCGA.4 For further analyses, the data
were filtered to only include patients with MI disease (T2–T4) according to
the TCGA clinical file. Drug treatment information for all patients in the
TCGA cohort was taken from a clinical data file (https://tcga-data.nci.nih.
gov/tcga/dataAccessMatrix.htm).

Calculating fraction of genome altered and mutations per million
bases
The calculations of the fraction of genome altered and mutations per million
bases was described by Domcke et al.17 Cell line CNAs were smoothed and
segmented using the DNAcopy R package54 for the processed Illumina
Human1M-Duov3 DNA Analysis BeadChip (GSE64572),23 along with the
probe locations (GPL6984). The TCGA patient segmentation files were
downloaded from the GDAC Firehose website (doi:10.7908/C16T0KXB).
A threshold of 0.3 was used for the cell lines and 0.2 for the patient tumors.
The TCGA patient mutation rates were taken from previous

calculations.11 For each cell line, the number of bases with at least eight
reads that mapped to the SureSelect Human All Exon 38 Mb Kit BED file
defined the number of bases covered. Mutations were counted if they met
the following criteria: quality score ⩾ 10, allele frequency ⩾ 0.1, depth ⩾ 8,
missense, stopgain, or frameshift mutation, and not found in dbSNP (v138).
The Wilcoxon rank sum test was used to compare the distribution of
mutations and copy numbers between patient and cell lines.

UC40 gene expression and dose response
We used the gene expression (GSE5845) and dose response for cisplatin for
the UC40 BCa cell lines as reported in Lee et al.22

PARADIGM analyses
PARADIGM (http://sbenz.github.io/Paradigm/), an integrative -omics tool
for inferring pathway activities, was used to calculate IPA by integrating
CNA and gene expression data for each patient and cell line.37 Patient
input data consisted of the TCGA gene expression (RSEM55 normalized
RNAseq) and segmented, log-transformed copy number values from
GISTIC2.4 Cell line input data consisted of RMA-normalized gene
expression22 and segmented, log-transformed copy number values from
Earl et al.23 using GISTIC2. A total of 20 (of the 25) cell lines had both gene
expression and CNA data. Gene expression and CNA data were normalized
according to the PARADIGM documentation.37 The UCSC ‘Super Pathway’
input file was used: https://www.synapse.org/#!Synapse:syn1528312.

Elastic net predictions and survival analysis
The elastic net model (glmnet R package)56 was trained on cell line
PARADIGM scores (IPAs) with the response variable being the correspond-
ing cisplatin GI50 values.

9 Only IPAs that showed a Spearman correlation P-
value ⩽ 0.05 when compared with the GI50 values were included. Optimal α
and λ values were selected using glmnet’s cross-validation function by
looping through α between 0 and 1 at a 0.05 interval. Mean squared error
was used to evaluate performance and λ values were the largest value
within 1 s.e. of the minimum error. The α and λ values with the smallest
mean three-fold cross-validation error were chosen to train the final elastic
net model. We performed 10 000 iterations of model training and built a
final elastic net model using IPAs that were selected in over 80% of the
iterations. The final model was used to predict drug response for each
patient in the TCGA cohort.
Based on predicted drug response, patients were rank ordered and

median-split into two cohorts, predicted sensitive and resistant to
treatment. Using the TCGA clinical information, patients were grouped
into platinum-treated (n= 44) and no evidence of chemotherapy treatment
(n=104) cohorts. Kaplan–Meier survival curves were calculated separately
for the platinum-treated and no evidence of drug treatment cohorts (log-
rank statistical test).

Code availability
The code used to generate the copy number calls is available as
Supplementary Text and at: https://www.synapse.org/UC25. The code
used to generate the predictions of cisplatin sensitivity is available at:
https://www.synapse.org/UC25.
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