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We propose a model of neurite growth to explain the differences in dendrite and

axon specific neurite development. The model implements basic molecular kinetics,

e.g., building protein synthesis and transport to the growth cone, and includes explicit

dependence of the building kinetics on the geometry of the neurite. The basic assumption

was that the radius of the neurite decreases with length. We found that the neurite

dynamics crucially depended on the relationship between the rate of active transport and

the rate of morphological changes. If these rates were in the balance, then the neurite

displayed axon specific development with a constant elongation speed. For dendrite

specific growth, the maximal length was rapidly saturated by degradation of building

protein structures or limited by proximal part expansion reaching the characteristic

cell size.
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INTRODUCTION

Recent theoretical and experimental studies in neuroscience have demonstrated that many
molecular, cellular, network, and system level functions of the brain can be simulated using
computational models in silico. Such models can assist in the understanding of how lower
level dynamics can be projected to a system level outcome. These models involve construction
of large scale networks mimicking the morphology and functions of particular brain circuits,
such as models of thalamocortical system (Izhikevich and Edelman, 2008), cortical column
simulation (Markram, 2006), and many other brain modeling initiatives (Fleischer et al., 2007;
Ananthanarayanan et al., 2009; Markram et al., 2011). The models used in these simulations
collected cell morphology, molecular interactions and connectivity from experimental studies.
Some aspects of network development in silico can be investigated using simulators such as
Netmorph (Koene et al., 2009) and CX3D (Zubler andDouglas, 2009; Zubler et al., 2013) and neural
culture models (Gritsun et al., 2012). However, many fundamental questions, including axon, and
dendrite differentiation and the influence of intra- and extra-cellular factors on the elongation,
navigation, and branching of neurites, are still under discussion. From a computational point of
view, it is also important to generate a minimal biologically relevant cell development model to
simulate large networks.

Neurite growth involves complex molecular machinery responsible for cytoskeleton formation
driven by intracellular and extracellular signaling. One of the main building blocks of the
cytoskeleton are microtubules (Heidemann, 1996). They represent long polymers formed by
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heterodimers of tubulin. Themost active microtubules, which are
capable of joining and contracting, are localized in the end of the
neurite called the growth cone (Shea, 1999; Morrison et al., 2002).
Thus, neurite elongation can be considered as elongation of the
microtubules located in the distant parts of the neurite. Building
proteins (e.g., tubulin) are synthesized in the soma and have to be
transported to the growth cone. In one hypothesis, this transport
is provided by oligomers or microtubule fragments transported
by motor proteins along the neurite (Wang and Brown, 2002;
Vale, 2003; Baas and Buster, 2004; Hirokawa and Takemura,
2007). Another hypothesis is based on heterodimers of tubulin
synthesized in the soma and moved along the neurite due to
both diffusion and active transport (Galbraith et al., 1999; Kimura
et al., 2005).

Different aspects of neurite growth dynamics have been
studied using mathematical models. Most of them are focused
on the description of molecular machinery underlying the
elongation process. Such models usually consider tubulin
microtubule dynamics and its contribution in neurite growth. All
models describing the elongation dynamics, share the concept
mentioned above (tubulin synthesis takes place in the cell body
and then it travels toward the growth cone). The key difference
of the existing models is in description of building protein
delivery to the growth cone. In (Samuels et al., 1996; Van Ooyen
et al., 2001; Toriyama et al., 2010) neurite is considered as a
single compartment, and elongation dynamics is determined by
a fraction of a some shared resource (such as building proteins
or proteins promoting elongation). The competition process
leads to the monopolization of the resource by single neurite
which demonstrates axon-like development, while other neurites
elongation is slowing down.

Another approach has been proposed in Miller and Samuels
(1997). Based on conveyor analogy of active transport process,
accounting the degradation of the protein, linear decrease active
transport velocity has been proposed. Using this assumption, the
estimation of the axon maximum length was performed.

More detailed description of the outgrowth development
involves consideration of the evolution of the building proteins
concentration profile along the neurite. In one approach the
outgrowth is represented as a segments sequence and tubulin
transition toward the growth cone is carried out by the adjacent
compartments interaction (active transport and/or diffusion). It
should be noted that usually the segments radius changes when
the neurite branching occurs. These models reproduce a wide
variety of developmental scenarios, for example dendritic trees
formation accounting the calcium-dependent processes of MAPs
(de-)phosphorylation (Graham and Van Ooyen, 2001, 2004; Hely
et al., 2001; Kiddie et al., 2004; Hjorth et al., 2014; Mironov et al.,
2014).

Another models type suggests the most detailed study of the
tubulin transport along non-branching process. To this end, the
PDE describing the concentration of tubulin as a function of time
and distance from the soma along the axon to the growth cone
is used (McLean et al., 2004; Diehl et al., 2014). The analysis
of PDE provides the stationary tubulin distribution along the
process and allows making estimations of neurite maximum
length.

Here, a novel mathematical model reproducing experimental
data of dendrite and axon specific development is proposed.
The main focus is made on the relationship between geometrical
characteristics and effective rate of tubulin transport of the
neurite. In particular, the balance of these rates predicts a neurite
projected over a very long distance, i.e., reproducing the axon
specificity.

RESULTS

Geometry Independent Model
We propose a mathematical model of non-branching neurite
elongation based on the dynamics of cytoskeleton microtubules
under the following assumptions. The elongation depends on
tubulin concentration in the growth cone. Building proteins are
synthesized only in the cell soma, and there is no additional
tubulin production occur in other compartments (e.g., in
the axon and dendrites). We assumed that the intracellular
machinery regulating the synthesis compensates for building
proteins utilized for the elongation (moreover, as we shall
see, together with geometrical changes it forms a positive
feedback that supports the neurite growth). In other words, the
concentration of tubulin heterodimers in the soma is sustained
near a constant level (Cleveland et al., 1981; Theodorakis and
Cleveland, 1992). In the cell soma, the tubulin forms quite
massive structures (e.g., oligomers or microtubule fragments),
hence the contribution of their passive diffusion to the neurite
elongation is negligibly small. Therefore, we assumed that tubulin
transport from the cell soma to the growth cone was provided
by active transport only. It is implemented by motor proteins
binding tubulin structures and bringing them to the growth cone.
For our purposes, we do not explore further details of these
mechanisms, assuming only that the active transport occurs with
a certain constant speed.

Also, it should be mentioned that the neurite elongation rate
(Keenan et al., 2006; Rizzo et al., 2013) is usually several times
lower than the active transport velocity (Table 1) and it makes
possible to consider the growth process using quasi-steady-state
approximation (i.e., in the form of alternating stationary states).

To describe the evolution of the tubulin concentration along
the neurite, the following approach was used. Let’s consider
number of tubulin structures moving along toward growth cone
at constant velocity Vat . There is also the degradation of the
building material (e.g., oligomers or fragments of microtubules)
during their transport. Consequently, the number of structures
can be formulated in the following form:

{

dN(x)
dt

= −τN(x)
dx
dt

= Vat
⇒ dN (x) = −

τN (x)

Vat
dx

⇒ N (x) = N0e
−

τx
Vat (1)

Where, N0 is the number of structures localized in the proximal
part of the neurite (near the cell soma), N(x)—at the distance
x along the neurite

(

x ∈ [0, L] , L is a total length of neurite
)

,
Vat is the speed of the active transport, and τ is a constant
describing the rate of building material (tubulin structures)
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TABLE 1 | Estimation of model parameters value.

Parameter Value Units

α Neurite growth rate 1.5–22 µm
µM·h

The rate for GTP-tubulin association with microtubule is generally considered in

the range of 106 − 107 M−1
· s−1 (Mitchison and Kirschner, 1984; Desai and

Mitchison, 1997). Using estimation of microtubule structural parameters (tubulin

dimer size is 8 nm; microtubules are formed by the parallel association of 13

protofilaments, so 1µm of microtubule consist 1625 tubulin dimers), neurite

growth rate can be calculated:

106 − 107 1
M·s

=

(

106 − 107
)

· 10−6
·
3600
1625

µm
µM·h

= 2.2− 22 µm
µM·h

It should be noted that the estimation was performed in assumption than all

microtubules grow simultaneously, but in practice their dynamics is highly

desynchronized (some microtubules are shrinking, giving building material for

neighbors’ polymerization). Thus, the lower limit of neurite elongation rate should

be decreased. In this paper the values in the range of 1.5–22 are considered.

β Neurite contraction rate 0.2–99 µm
h

According to experimental data of tubulin dissociation rate measurement it lies in

the range 0.1 to 45 dimers s−1 (Walker et al., 1988; Drechsel et al., 1992; Desai

and Mitchison, 1997). Using the algorithm described above the interval

mentioned can be projected to 0.2–99µM·h−1.

C0 Tubulin concentration in the proximal part of

neurite

5–20 µM

Values are reported in (Gard and Kirschner, 1987; Walker et al., 1988).

τ The rate of building material (tubulin structures)

degradation

0.0004–4 h−1

The range of acceptable values is determined by the individual microtubules

half-life, which is 5–10min. On the other hand, the upper bound is limited by the

tubulin dimer degradation constant—several days (Sjöstrand and Karlsson,

1969; Hoffman and Lasek, 1975; Miller and Samuels, 1997).

Vat The rate of active transport 12–100 µm
hour

Values are reported in (Lasek et al., 1984; Brown, 2000).

degradation. The resulting equation can be expressed in terms
of concentration. Thus a concentration profile in case of shape
independent model (the cross-sectional area is constant along the
neurite) can be represented as

C (x) = C0e
−

τx
Vat (2)

Where, C0 denotes the tubulin concentration in the proximal
part of the neurite (its value is equal to concentration of building
proteins in the cell soma) and C(x) is the profile of the tubulin
concentration along the neuronal outgrowth. The concentration
of the building material localized in a growth cone (Cgc) available
for neurite elongation can be obtained from Equation (2) asCgc =

C(L) (where L is a total length of the neurite). Assuming that the
intensity of microtubule polymerization is a function of available
building protein, the rate of the elongation process in a quasi-
steady-state approximation can be expressed in the following
form:

dL

dt
= αCgc − β = αC0e

−
τL
Vat −β (3)

Where, α and β are constants representing rates of neurite
growth and contraction, respectively.

It follows from Equation (3) that the elongation rate decreases
exponentially with increasing neurite length. Moreover, when the
concentration in the growth cone reaches some critical level (Cgc

= Ccr = b/a ) the neurite growth stops (microtubule assembly
is fully compensated by depolymerization process). Thus, the
maximum neurite length is defined by the following value

L∗ =
Vat

τ
ln

(

C0

Ccr

)

(4)

Note that the model accounts indirectly for mechanisms specific
for dendrite and axon development. In particular, in defining
the different values for the active transport velocity, one can
take into account the influence of the microtubule orientation in
dendrites and in axons (Heidemann et al., 1981; Baas et al., 1988)
and the contribution of tubulin post-translational modification,
which determines the spectrum of molecular motors that may
participate in the cargo transport along microtubules (Reed et al.,
2006; Bulinski, 2007; Konishi and Setou, 2009). Variations of the
tubulin structure degradation rate reflect specific mechanisms
of the axon and dendrite development associated with different
proteins (maps/tau proteins) involved in the stabilization of the
microtubules.

Shape-Dependent Model
Next, we analyzed the effect of neurite geometry on the
elongation dynamics. Our results suggested that the shape, e.g.,
neurite tapering with the distance from cell soma, may have a
significant impact on the developmental dynamics. To account
for this we made the following assumptions. First we assumed
that the neurite cross-section near the growth cone is fixed and
does not depend on the neurite length. Second, a possible source
of soluble tubulin for neurite caliber enlargement may be a
building material, which is released during depolymerization of
microtubules transported. Thus, it does not reach the growth
cone, while it can be used for the local changes in the neurite.
Third, for simplicity, we assumed that the cross-section at any
distance from the soma has a circular shape with a radius, R(x,
L), which changes with the distance from the soma and total
neurite length. Because cross-sectional area near the growth cone
is assumed to be constant, the following boundary condition
should be satisfied: R(x, L)

∣

∣

x= L
= r. Thus, using Equation (1),

we obtained the following relationship:

C (x, L) S (x, L) = C (0, L) S(0, L) e
−

τx
Vat

⇒ C (x, L) = C0
S (0, L)

S (x, L)
e
−

τx
Vat (5)

Where S(x, L) is the cross-section area and C(x, L) is the
concentration profile along the neurite (x ∈ [0, L]), S(0, L)
denotes the cross-section area of the proximal part of the
neuronal outgrowth. In this case, the concentration of building
material localized in the growth cone (x = L) and available for
neurite elongation is defined by the following Equation:
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CR =

{

R(0,L)
r , if R(0,L)

r <GR

GR = const, otherwise
(6a)

Cgc = C0 · CR
2
· e

−
τL
Vat ⇒

dL

dt
= αC0 · CR

2
· e

−
τL
Vat −β (6b)

where R(0, L) and r denote the radius of the cross-section near
the cell soma and the growth cone, respectively. Also geometrical
restriction (GR) introduced here meaning that proximal segment
radius cannot exceed the soma size. Thus, tubulin concentration
in the growth cone depends on the caliber ratio (CR) R(0, L)/r.

To illustrate how the neurite geometry influences the
elongation dynamics, we investigated two options of R(x, L)
dependence. First, we considered the linear dependence of the
radius on the total length of the neurite, i.e., R(x, L) = r (1 + k
(L - x)), R (0, L) = r (1 + k L) where k is a tapering constant. It
follows from Equation (6) that

Cgc = C0

(

1+ kL
)2
e
−

τL
Vat ⇒

dL

dt
= αC0

(

1+ kL
)2
e
−

τL
Vat −β (7)

Resulting curves for maximal length and elongation dynamics
depending on different parameters of the model are illustrated
in Figure 1. Note that initially the elongation speed increases
with the factor (1 + kL)2, i.e., providing positive feedback. This
is a cooperative effect of two processes. The first one is an

increase of tubulin influx due to expansion of the proximal part.
On the other hand, the increase of tubulin synthesis occurs,
since, as previously noted, intracellular machinery maintains
the tubulin concentration in soma at a fixed level. Thus, a
feedback, stimulating the elongation process emerges. However,
with increasing length, the portion of available tubulin decreases
(building proteins need more time to travel from the cell soma
to the growth cone, therefore, more tubulin structures degrade),
hence slowing the elongation process. Note that this model
prediction is in good agreement with experimental observations
of dendrite growth (Dotti et al., 1988; Teichmann and Shen,
2011). Figure 2 illustrates the dendrite elongation dynamics of
DA9 motor neuron in wild-type C. elegans. Analysis of the
dendrite development of such type neuronal cells is interesting
in the context of this paper, primarily because it forms single
unbranched outgrowth. Thus, mentioned experimental model is
very useful for verification of simulation results. It demonstrates
the existence of a distinct phase of accelerated elongation that,
in accordance with the proposed model can be explained by
the presence of positive feedback, and the phase of slowing
down growth, caused by the building protein degradation. Thus,
it supports the prediction that the dendritic tapering with
increasing distance to the cell somamay be linear or nearly linear.

Second, let us assume that the neurite radius transformation
has the following form:

FIGURE 1 | The evolution of neurite maximal length depending on model parameters. In subsequent panels results for the case of linear tapering are

presented. The geometrical restriction (GR) represents the case when the proximal segment radius reaches the soma size. Parameter k characterizing neurite

narrowing is varied: (A) k = 0.005, (B) k = 0.015, (C) k = 0.05. All calculations are performed with GR = 15. Point marked corresponds to the case considered in

Figure 2.
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FIGURE 2 | Comparison of model predictions [(A) elongation dynamics and (B) rate for the case of linear tapering] with experimental data of dendrite

growth (modified from (Teichmann and Shen, 2011), data represents the development of the DA9 motor neuron in wild-type C. elegans). Parameter

values: α = 1.58, β = 9.38, C0 = 6, τ = 0.54, Vat = 30, k = 0.015. The value of caliber ratio represent the relationship between size of proximal and distal neurite part

(R(0, L)/r) depending on time.

R (x, L) = re
k(L−x)

2 (8)

i.e., the neurite cross-sectional area decreases exponentially with
distance from the cell soma, and elongation dynamics can be
described by the following expression:

dL

dt
=

{

αC0e

(

k− τ
Vat

)

L
−β, if it is less than Vat

Vat, otherwise
(9)

Note that the rate of elongation is limited by the geometric
restriction, GR, and by the limit of active transport velocity, Vat .
Since neurite elongation requires tubulin, the overall growth rate
is determined by building protein transport to the growth cone.

The dependence of the neurite elongation dynamics on model
parameters is illustrated in Figure 3. Interestingly, depending
on the value k - τ/Vat , one of three possible scenarios for the
development processes can be realized (Figure 4).

Let us focus on the case of exact balance, i.e., k = τ /Vat . As
we noted earlier, typically, tubulin structures decay exponentially
with increasing distance from the soma. However, in this case, the
proximal segment increases exponentially during the elongation
process. This effect provides the additional building protein
influx from the cell soma (but, the tubulin concentration in
the neurite proximal part C0 remains constant) sufficient to
compensate for the loss of tubulin associated with degradation
during the transport over longer distances. Note also that the
neurite segment cross-sectional area and its volume decrease with
distance at the same rate as the number of tubulin structures
moving toward the growth cone. Therefore, the building protein
concentration in the growth cone can be sustained at some
constant level regardless of the distance from the cell soma. Thus,
in the case where k = τ /Vat , the model predicts a sustainable
elongation process with a fixed elongation rate:

dL

dt
= αC0 − β (9a)

As a validation of the presented hypothesis the comparison of
numerical calculation results and experimental studies of axonal

outgrowth is performed. Figure 4 shows the growth dynamics
of axons of retinal ganglion cells isolated from the rat CNS

(Karten et al., 2005). The experimental data demonstrate a linear

neurite elongation throughout the experiment (Dotti et al.,
1988; Rochlin et al., 1996; Karten et al., 2005) indicating that

the building material flow remains unchanged. Nevertheless,
the model predicts that the outgrowth length is again limited

even in the balanced condition. In contrast to previous cases,

we obtain geometrical restriction because the proximal segment
radius cannot exceed the soma size. As a result, the building
proteins inflow is saturated, since the further expansion of the
neurite proximal part is impossible. Thus, the positive feedback
which supports the neurite elongation disappears and finally the
growth stops.

When k < τ /Vat , the neurite elongation dynamics were
quite similar to the linear case considered earlier. The proximal
segment expansion resulted in an increase in the amount of
building proteins transported from the soma to the growth cone.
However, this increase compensated for only a part of the tubulin
loss due to degradation. As a result, the elongation process slows
down over time and stops when a maximal length is reached
(Figure 4).

For k > τ /Vat , neurite growth dynamics occurred with
increasing elongation speed. This effect can be explained as
follows. The rate of the tubulin flow increase depends on the
proximal segment size and in the case of k> τ /Vat , it grows faster
than losses occur due to the degradation of building proteins.

This functions as positive feedback, accelerating the elongation
process (Figure 4). However, similar to the case of constant
speed elongation (k= τ /Vat), the geometric constraint of limited
proximal segment size provides a growth saturation factor.

Note that for this case there is a bias of the balance toward
positive feedback, e.g., building proteins influx exceeds the
amount of tubulin needed to compensate its degradation with
increasing the neurite length. Thus, the outgrowth elongation
accelerates with the course of time. However, the growth rate is
limited by the active transport velocity and accelerated growth is
replaced by the steady elongation.
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FIGURE 3 | The evolution of neurite maximal length depending on model parameters. In subsequent panels results for the case of exponential decay of

neurite cross-sectional area are presented. Tapering parameter k is varied: (A) k = 0.00015, (B) k = 0.00025, (C) k = 0.00035, geometrical restriction GR = 15. Point

marked corresponds to the case considered in Figure 4.

FIGURE 4 | Comparison of model predictions in case of exponential

tapering with experimental data of axon growth (modified from Karten

et al., 2005). Parameter values: α = 2.81, β = 14.06, C0 = 10, τ = 0.005, Vat
= 40. Different elongation dynamics are illustrated for different values of

parameter k: k = 0.00015 < τ /Vat; k = 0.00025 = τ /Vat; k = 0.00035 >

τ /Vat. The ER restriction means that the upper limit of neurite elongation rate

determined by the active transport rate is achieved (dL/dt = Vat ).

DISCUSSION

We proposed a mathematical model of neurite development
based on the microtubule cytoskeleton dynamics. The model

incorporated basic molecular mechanisms underlying the
elongation and demonstrated growth dynamics which is
consistent with experimental studies of neural development
(Dotti et al., 1988; Rochlin et al., 1996; Karten et al., 2005;
Teichmann and Shen, 2011). In contrast to classical model
approaches and existing experimental hypotheses considered
differences in neurite structural organization (Baas et al., 1988;
Sharp et al., 1997; Yu et al., 2000), selective post-translational
microtubule modifications (Witte et al., 2008; Kollins et al.,
2009) or accumulation of specific proteins (Takei et al., 2000;
Gonzalez-Billault et al., 2001) as factors causing differences in
the dynamics of dendrites and axons development (Bartlett
and Banker, 1984) the main focus of the presented work is
done on the effect of geometric changes occurring during
the neurite elongation, and related scenarios of the outgrowth
development.

Particularly, we found that the growth process can
significantly depend on the neurite geometry. The geometrical
transformation of the growth, e.g., changing the neurite radius
with length, permitted us to delineate different types of the
elongation dynamics. A dynamic mechanism of the geometry
specific growth is concerned with interplay between factors
promoting neurite growth and those suppressing it. Indeed,
by the neurite elongation the proximal part expansion occurs
and additional tubulin structures influx arise. At the same
time, the tubulin synthesis increases since the intracellular
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machinery maintains its concentration at a fixed level in the
cell soma. Thus, raising tubulin outflow to the neurite induced
by geometrical changes and its consumption for elongation
process is fully compensated by intracellular synthesis. As a
result, the positive feedback promoting the neurite growth
arises. On the other hand, the fraction of tubulin structures
reaching growth cone decrease by the neurite elongation hence
slows down the growth process. Moreover model implicitly
accounts the consumption of the soluble tubulin released from
degraded structures for the radial expansion (positive feedback
formation).

Hence, depending on the parameters of the growth kinetics,
several scenarios corresponding to dendrite or axon growth can
be achieved. These types include the dendrite specific kinematics
with slowing speed and axon growth specificity with constant
elongation speed over long distances.
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