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To identify key regulators of subminimum inhibitory concentration (sub-MIC) antibiotic response in the Pasteurella multocida
proteome, we applied systems approaches. Using 2D-LC-ESI-MS2, we achieved 53% proteome coverage. To study the differential
protein expression in response to sub-MIC antibiotics in the context of protein interaction networks, we inferred P. multocida
Pm70 protein interaction network from orthologous proteins. We then overlaid the differential protein expression data onto the P.
multocida protein interaction network to study the bacterial response. We identified proteins that could enhance antimicrobial
activity. Overall compensatory response to antibiotics was characterized by altered expression of proteins involved in purine
metabolism, stress response, and cell envelope permeability.
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1. Introduction

The use of antibiotics is continually being challenged by
the emergence of resistant strains of bacteria [1]. Resistance
has resulted both from mutations associated with bacterial
DNA replication and from horizontal gene transfer [2, 3].
However, while antibiotic resistance is increasing, progress
in the discovery of new antimicrobial compounds is not [4].
The current trends in drug resistance and drug discovery
could result in future crises in treating microbial infections.

Currently, antibiotic therapy is based on achieving and
exceeding a minimum inhibitory concentration (MIC) for
a sufficient amount of time in infected tissues [5]. The
ability to surpass and exceed greater than MIC in target
tissues is influenced by the susceptibility of the pathogen
to a given antibiotic and the ability of the antibiotic to
partition into the target tissue. However, when faced with
an infection caused by an antibiotic-resistant bacterial strain,
it may not be possible to surpass the MIC in the target
tissue. In this situation, one therapeutic option is treatment

with a sub-MIC concentration of the antibiotic. Sub-MIC
antibiotic therapies can, however, lead to treatment failure
and antibiotic resistance [2]. Therefore, careful evaluation of
sub-MIC effects on bacterial physiology is needed prior to
therapeutic use of sub-MICs.

Pasteurella multocida is an important Gram-negative
zoonotic respiratory bacterial pathogen with a broad host
range [6–10], and it is a particularly good model organism to
study antibiotic effects because it has a Gram-negative enve-
lope that is permeable to hydrophobic molecules (includ-
ing antibiotics) [11, 12]. Therefore, investigating antibiotic
effects is possible with fewer confounding effects caused by
permeability differences between antibiotics.

Sub-MICs of antibiotics model the conditions that bac-
teria face in wild environments and have evolved to survive
[13]. Sub-MICs of antibiotics cause defined effects on, and
responses in, bacterial physiology. For example, although
sub-MICs of chlortetracycline reduced virulence factor
expression in the bovine respiratory pathogen Mannheimia
haemolytica [14] they caused secondary or “nontarget”
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effects, in addition to their primary target effects, in Pas-
teurella multocida [15]. Some of these secondary effects may
enhance the primary activity of the antibiotic, while others,
such as an increased expression of recombinase A (RecA)
in response to enrofloxacin, are apparent compensatory
mechanisms.

Molecular systems level analysis including interaction
networks can identify not only direct and indirect global
responses of bacterial genes to sub-MICs, but may also
identify key elements in genetic networks (regulatory hubs)
that, when altered, change the fundamental properties of
these networks [16]. Identification of key targets in the
context of sub-MIC antibiotic effects on virulence factors
necessary for pathogenesis, and leading to antimicrobial
resistance, can help assess the benefit versus risk of sub-
MIC therapeutic usage. Systems approaches can also identify
key molecules as potential targets for novel therapeutic
combinations.

Here, we report a systems analysis of the Pasteurella
multocida Pm70 response to sub-MICs of three different
antibiotics that differ in their mode of action: amoxi-
cillin (AMX), which is a cell wall biosynthesis inhibitor;
chlortetracycline (CTC), which inhibits protein synthesis;
enrofloxacin (ENR), which is a quinolone that inhibits DNA
gyrase and DNA topoisomerase IV [17]. We used three
different classes of antibiotics to find common themes to
antibiotic effects and the bacterial adaptive response. Of
these three antibiotics, resistant strains of P. multocida are
described for penicillins and tetracyclines [18]. Currently,
no fluoroquinolone resistant P. multocida are described;
however, resistance to this antibiotic is documented for other
Gram-negative pathogens [19]. Using a liquid chromatog-
raphy tandem mass spectrometric proteomics approach,
we identified 53% of the predicted P. multocida proteome
expressed under our experimental conditions. The protein
expression data was analyzed in the context of interaction
networks using Pathway Studio (Ariadne, Rockville, Md,
USA), which has canonical bacterial interaction networks.
Overall compensatory response of P. multocida to sub-MICs
was characterized by altered expression of virulence factors;
proteins involved in purine metabolism, stress response, and
cell envelope permeability.

2. Materials and Methods

2.1. Pasteurella Multocida Culture

Pasteurella multocida strain Pm70, a serotype A : 1 poultry
isolate that has a fully sequenced genome [20], was used in
this study. Pm70 was cultivated in brain heart infusion (BHI)
broth at 37◦C with rotary aeration. Minimum inhibitory
concentrations (MICs) of AMX, CTC, and ENR for Pm70
are 0.5 μg/mL, 4 μg/mL, and 0.031 μg/mL, respectively [15].
Growth kinetics of Pm70 in the presence of 1/4 MIC of the
three antibiotics were previously described [15]. Stationary
phase cultures of Pm70 were used to inoculate 50 mL BHI to
an initial A600 of 0.05; antibiotic treated cultures contained
1/4 MIC of AMX, CTC, or ENR, and control cultures
were grown without antibiotics. All cultures were grown in

triplicate to mid-log phase (A600 of 0.8) and harvested by
centrifugation (10 000 × g, 10 minutes, 4◦C). Pellets were
stored at −80◦C.

2.2. Proteomics

Protein extraction, quantification, and trypsin digestion were
done exactly as described [14] from three biological repli-
cates. Briefly, protein solutions (100 μg; <1 M urea; 50 mM
Tris-cl pH 8.0) from untreated control and antibiotic-
treated bacteria were reduced (5 mM dithiothreitol, 65◦C,
5 minutes), alkylated (10 mM iodoacetamide, 30◦C, 30
minutes), and then trypsin-digested until there was no visible
pellet (1 : 50 w/w 37◦C, 16 hours). Peptides were desalted
using a peptide macrotrap (Michrom BioResources, Inc.,
Auburn, Calif, USA) and eluted using a 0.1% triflouroacetic
acid, 95% ACN solution. Desalted peptides were vacuum
dried and resuspended in 20 μl of 0.1% formic acid.

Two-dimensional liquid chromatography (LC) analysis
was done by strong cation exchange (SCX) followed by
reverse phase (RP) coupled directly in line with an electro-
spray ionization (ESI) ion trap tandem mass spectrometer
(LCQ; ThermoElectron Corp., San Jose, Calif, USA) essen-
tially as described in [15]. The salt gradient applied in this
study was different from the published method and was
applied in steps of 0, 10, 15, 20, 25, 30, 35, 40, 45, 50, 57,
64, 90, and 700 mM ammonium acetate in 5% acetonitrile
(ACN) and 0.1% formic acid. The reverse phase gradient
used 0.1% formic acid in ACN and increased the ACN
concentration in a linear gradient from 5% to 30% in 20
minutes and then 30% to 95% in 7 minutes, followed by 5%
for 10 minutes for 0, 10, 15, 25, 30, 45, 64, 90, and 700 mM
salt gradient steps. For 20, 35, 40, 50, and 57 mM salt gradient
steps, ACN concentration was increased in a linear gradient
from 5% to 40% in 65 minutes, 95% for 15 minutes, and 5%
for 20 minutes.

All database searches of tandem mass spectra were
done using TurboSEQUEST (Bioworks Browser 3.2; Ther-
moElectron) [21]. Mass spectra and tandem mass spectra
were searched against an in silico trypsin-digested protein
database of P. multocida Pm70 downloaded from National
Center for Biotechnology Institute (NCBI). Cysteine car-
bamidomethylation and methionine oxidation (single and
double) were included in the search criteria. We used the
reverse database functionality in Bioworks 3.2 and searched
tandem MS (MS2) data against a reversed Pm70 database
using the same search criteria as described above. Peptide
identifications from Pm70 protein database that were >5
amino acids long with Xcorr ≥ 1.5, 2.0, and 2.5 for +1, +2,
and +3 charged ions, respectively, and with delta Cn values of
≥0.1 were used for protein identifications [15]. None of the
proteins identified at the applied Xcorr and delta Cn filters
had peptides identified from the reversed Pm70 database.
Protein identifications have been submitted to PRoteomics
IDEntifications (PRIDE) database [22] and the accession
numbers are 1751, 1752, 1753, and 1754. PRIDE submission
requirements are based on the proposed guidelines by
proteomics standards initiative [23] and include all the



Comparative and Functional Genomics 3

peptides identified for each protein with their sequence,
charge state, Xcorr, and delta cn.

We used an isotope-free quantification method [14] and
a custom program ProtQuant [24] to identify differences in
protein expression between control and sub-MIC antibiotic
treated P. multocida. ProtQuant is a java-based tool for
label-free quantification that uses a spectral counting
method [25] with increased specificity. ProtQuant includes
the quantitative aspects of the Sequest cross correlation
(XCorr) into the spectral counting method and computes the
statistical significance of differential protein expression using
one-way ANOVA (α ≤ 0.05). This method requires at least
3 peptides identified from either the control or treatment
datasets.

2.3. Systems Modeling: Pasteurella Multocida
Pm70 Molecular Interaction Database

To study the effects of antibiotics on Pm70 using sys-
tems biology approaches, we built an information rich
predicted protein interaction network using Pathway Studio
(Ariadne, Rockville, Md, USA) using a bacterial molecular
interaction database. Multiple aspects of protein function,
including protein modifications, cellular location, protein-
protein interactions, gene expression regulation, molecular
transport and synthesis, and regulation of various cellular
processes are included [26].

Although the bacterial molecular interaction database
contains data for Gram-negative and Gram-positive bacteria,
it does not include P. multocida. Therefore, to append
the bacteria database with P. multocida, all 2015 Pm70
proteins were mapped to their corresponding orthologs in
the database by identifying reciprocal-best-BLAST hits with
greater than 30% similarity. Gram-positive orthologs were
removed to ensure that protein interaction networks were
derived only from Gram-negative species. The resulting
ortholog map file was imported into Pathway Studio to allow
prediction of interactions between P. multocida proteins. The
Gram-negative ortholog-only network was used to analyze
sub-MIC antibiotic effects on the P. multocida proteome.
Our protein quantification method did not measure absolute
fold changes in protein expression, but instead indicated
whether the increase or decease in expression was significant.
Therefore, for each antibiotic treatment, we imported all
identified proteins into Pathway Studio along with the
expression values indicating the significance of expression
change; we represented a significant increase in protein
expression compared to the untreated control as +1, while
a significant decrease in expression was represented as −1.

As an initial screening method, we used the Pathway
Studio “Find groups” tool to identify Gene Ontology (GO)
groups that had a significant number of identified proteins
within each paired antibiotic treatment/control protein set.
By doing so we identified GO groups that had good proteome
coverage for analysis of antibiotic effects. Pathway Studio
calculates the statistical significance of the overlap between
the protein list and a GO group using the Fisher exact test.
Thus, the calculated p-value depends on the extent of overlap

between the protein list and a group as well as the sizes of the
list and a group. We used P ≤ .05 to select GO groups with
significant protein coverage.

We built interaction networks in Pathway Studio with
proteins of interest including the upstream regulators and
downstream targets. In the interaction networks, different
colors were used for the nodes to indicate whether a protein
was present in the dataset (pink) and whether there was
a significant increase (red), or decrease (green) in protein
expression in response to sub-MIC of antibiotic. Entities
in the interaction map that were not from Pm70 were
shown in gray color. For each of the three antibiotics,
protein expression was compared between the control (no
antibiotic) and the antibiotic treatment and overlaid onto the
Pm70 interaction network. The individual responses to each
antibiotic were compared to identify overall trends in Pm70
response to the different antibiotics.

3. Results and Discussion

3.1. Proteome Coverage

We identified 1064 (53%) of the 2015 predicted Pm70
proteins [20] from our control (no antibiotic) and antibiotic
treated datasets. The number of identifications with two
or more peptides in at least one dataset was 572 (56%)
(PRIDE datasets (supplementary Table 1)) and this compares
favorably with reported MudPIT results which have as few
as 20% of proteins identified by two or more peptides [27].
Furthermore, compared to the 20% coverage of the accessible
proteome that we reported with ICAT [15], we achieved 2.5
fold higher proteome coverage in this study. This level of
proteome coverage gave us confidence that we could conduct
a systems-wide analysis to formulate new hypothesis for sub-
MIC antibiotic effects on Pm70 physiology.

Furthermore, because protein function depends on cellu-
lar location, a systems-wide analysis requires that we identify
proteins from all cell locations. We used the PSORTb version
2.0 bacterial protein subcellular localization prediction tool
to classify all proteins in our dataset [28]. PSORTb has an
overall precision of 96% and places all Pm70 proteins into
seven categories: extracellular (4), outer membrane (49),
periplasmic (61), cytoplasmic membrane (411), cytoplasmic
(774), unknown (with multiple localization sites) (37), and
unknown (679). To determine the percent coverage in each
of these categories, the number of proteins identified in
each category was compared to the total number of proteins
predicted to be in that category from the genome (Figure 1).
The average coverage for each subcellular compartment in
our data was 59%, and although proteins from all subcellular
compartments were represented, not all subcellular compart-
ments were equally represented. We identified more outer
membrane and periplasmic proteins (84% and 75%, resp.),
than cytoplasmic membrane proteins (36%).

To investigate the lower coverage of cytoplasmic mem-
branes, we estimated the total abundance of cytoplasmic
membrane and outer membrane proteins based on ΣXcorr
[14]. The outer membrane proteins had a ΣXcorr of 1599,
while cytoplasmic membrane proteins had a ΣXcorr of
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Table 1: Significantly overrepresented GO groups in response to
sub-MIC AMX, CTC, and ENR.

GO ID Name

GO:0009257 10-formyltetrahydrofolate biosynthesis

GO:0045733 Acetate catabolism

GO:0006086 Acetyl-CoA biosynthesis from pyruvate

GO:0006418 Amino acid activation

GO:0009063 Amino acid catabolism

GO:0046349 Amino sugar biosynthesis

GO:0009061 Anaerobic respiration

GO:0015986 ATP synthesis coupled proton transport

GO:0030113 Capsule (sensu Bacteria)

GO:0016052 Carbohydrate catabolism

GO:0042280 Cell surface antigen activity, host-interacting

GO:0017004 Cytochrome biogenesis

GO:0005737 Cytoplasm

GO:0009281 Cytosolic ribosome (sensu Bacteria)

GO:0006308 DNA catabolism

GO:0006261 DNA dependent DNA replication

GO:0006310 DNA recombination

GO:0006113 Fermentation

GO:0006012 Galactose metabolism

GO:0006094 Gluconeogenesis

GO:0006096 Glycolysis

GO:0009436 Glyoxylate catabolism

GO:0009089 Lysine biosynthesis via diaminopimelate

GO:0009086 Methionine biosynthesis

GO:0006777 Mo-molybdopterin cofactor biosynthesis

GO:0015949 Nucleobase, nucleoside and nucleotide
interconversion

GO:0009052 Pentose-phosphate shunt, non-oxidative branch

GO:0009051 Pentose-phosphate shunt, oxidative branch

GO:0008233 Peptidase activity

GO:0009252 Peptidoglycan biosynthesis

GO:0000270 Peptidoglycan metabolism

GO:0042597 Periplasmic space

GO:0006412 Protein biosynthesis

GO:0006457 Protein folding

GO:0006508 Proteolysis and peptidolysis

GO:0006164 Purine nucleotide biosynthesis

GO:0009152 Purine ribonucleotide biosynthesis

GO:0042867 Pyruvate catabolism

GO:0009269 Response to dessication

GO:0006401 RNA catabolism

GO:0009451 RNA modification

GO:0003735 Structural constituent of ribosome

GO:0009088 Threonine biosynthesis

GO:0006350 Transcription

GO:0009386 Translational attenuation

GO:0006099 Tricarboxylic acid cycle

AMX: amoxicillin; CTC: chlortetracycline; ENR: enrofloxacin.

Table 2: GO slims common to sub-MIC AMX, CTC, and ENR
response of P. multocida.

GO ID GO TERM

Cellular Component

GO:0005737 Cytoplasm

GO:0005829 Cytosol

GO:0030312 External encapsulating structure

Biological Process

GO:0006519 Amino acid and derivative metabolism

GO:0005975 Carbohydrate metabolism

GO:0009056 Catabolism

GO:0006259 DNA metabolism

GO:0006091 Generation of precursor metabolites and
energy

GO:0008152 Metabolism

GO:0006139 Nucleobase, nucleoside, nucleotide and
nucleic acid metabolism

GO:0006412 Protein biosynthesis

GO:0019538 Protein metabolism

GO:0006950 Response to stress

GO:0006350 Transcription

Molecular Function

GO:0008233 Peptidase activity

GO:0005198 Structural molecule activity

AMX: amoxicillin; CTC: chlortetracycline; ENR: enrofloxacin.
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Figure 1: Representation of P. multocida proteins in PSORTb
subcellular locations. Percent coverage for each PSORTb predicted
subcellular localization for P.multocida proteins identified in this
study is shown. Percent representation was calculated by comparing
the number of proteins identified in each category to the total
number of proteins predicted to be in that category from P.
multocida genome. PSORTb prediction “unknown∗” indicates that
the proteins may have multiple subcellular localizations while
unknown refers to location unknown.

1424. Therefore, although a lower percentage of cytoplasmic
membrane proteins were identified, there was a very similar
amount of protein isolated from the cytoplasmic and outer
membrane fractions. This suggests that although the Pm70
cytoplasmic membrane contains a greater variety of proteins
than the outer membrane, cytoplasmic membrane proteins
are present in relatively low abundance compared to the
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Table 3: Differential P. multocida protein expression in response to a quarter-MIC AMX, CTC, and ENR in different GO categories.

Accession GO Slims

∑
Xcorr

Pm70 AMX CTC ENR

Glycolysis/Gluconeogenesis

15603407 Phosphoenolpyruvate carboxykinase,
PckA

264.2 ns 120 112.9

15603725 Phosphoglycerate kinase, Pgk 218.1 ns 170.2 161

15603726 Fructose-bisphosphate aldolase, FbaA 504.9 566.6 450.1 436.8

15602789 Glyceraldehyde-3-phosphate
dehydrogenase, GapA

253.6 ns 125.5 70.1

15603371 Phosphoglyceromutase, GpmA 98.3 124.9 130.3 ns

15602518 Pyruvate kinase, PykA 28.6 51.4 54.9 ns

15602688 Fumarate hydratase, FumC 42.2 80.5 19.1 ns

15602146 SucD bdt 7.8 ns ns

Response to stress

15602972 Chaperonin GroEL 148.6 246.8 ns 177.1

15602971 Co-chaperonin GroES 23 42.7 56.3 56.6

15602601 DnaK 97.6 132.7 ns 72.6

15602303 FtsH 21.9 7.9 4.7 3.9

Peptidoglycon biosynthesis and cell envelope permeability

15603596 D-fructose-6-phosphate
amidotransferase, GlmS

bdt 31.3 12.4 6.8

15603671 GlmU 8.5 20.2 ns ns

15602548 NagC 14.4 ns 5.3 5

15602651 Hypothetical protein PM0786, OmpA 262.8 ns 172.5 76

15602419 Lpp 7.2 ns 18.7 ns

Purine metabolism

15602149 Adenylate kinase, Adk 2.8 22.3 42.2 11.3

15602803 Adenylosuccinate synthetase, PurA 2.4 ns 11.2 19.2

15602109 Ribose-phosphate pyrophosphokinase,
PrsA

bdt 9.2 8.4 ns

RNA metabolism

15603255 DNA-directed RNA polymerase alpha
subunit, RpoA

32.8 76.1 51.9 ns

15603602 DNA-directed RNA polymerase beta
subunit, RpoB

17 34.5 ns ns

15603601 DNA-directed RNA polymerase beta∼
subunit, RpoC

56.2 85.2 ns ns

15602786 DNA-directed RNA polymerase omega
subunit, RpoZ

bdt 11 ns 9.6

15602119 Lrp 8.7 ns 25.1 ns

15603209 DeoR bdt 10.6 ns ns

15603785 Transcription termination factor Rho 42.4 15.9 20.5 21.3

Xenobiotic metabolism

15601866 SodA 153.5 ns 66 85.4

15601897 HktE/KatE 26.1 ns 3 6.1

Lipopolysaccharide biosynthesis

15603862 Lipid-A-disaccharide synthase, LpxB bdt 12.1 ns ns

15602423 2-dehydro-3-deoxyphosphooctonate
aldolase, KdsA

9.2 23.2 ns ns

15602749 RfaE bdt 12.9 ns ns

15603154 GalU 3.7 18.7 ns ns
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Table 3: Continued.

Accession GO Slims

∑
Xcorr

Pm70 AMX CTC ENR

Cell division

15603384 FtsY bdt 8.2 ns ns

15602012 Cell division protein FtsZ 11.5 22.1 ns ns

Protein translation

15603222 Elongation factor Tu 875.7 ns 936 ns

15602977 DeaD 4.7 ns 13.3 ns

15602168 Methionyl-tRNA synthetase 2.4 ns 11.5 ns

DNA repair

15603682 Recombinase A, RecA bdt ns ns 19.5

AMX: amoxicillin; CTC: chlortetracycline; ENR: enrofloxacin.
Pm70: P. multocida cultured without sub-MICs.
bdt: below detectable threshold.
ns: differential expression not significant compared to Pm70.

outer membrane. Because we used the mass spectrometer in
a data-dependent way to maximize proteome coverage, it is
logical that we achieved greater coverage of bacterial com-
partments that have proteins with higher abundance. These
results also show that our methods for protein isolation
solubilized relatively hydrophobic membrane proteins. Our
previously published ICAT methodology [15] and the cur-
rent label-free 2D-LC ESI MS2 approach utilized the same
protein isolation method. Nonisotopic relative quantitative
proteomics methods are as good (or better) than isotopic
methods [14, 29] but have the advantage of far greater pro-
teome coverage. We confirm this observation in the current
work; compared to our previous ICAT study we identified
tenfold more membrane proteins, which is 38.6% of the
predicted membrane proteome of P. multocida compared
with 3.7% identified using the ICAT method.

3.2. Pasteurella Multocida Pm70 Molecular
Interaction Database

Predicted protein interaction networks for P. multocida
(based on computational comparative genomics) are avail-
able [30]. However, these interactions have edges that have
no directionality or any biological information. System
analysis can be a powerful tool to identify global trends so
long as the protein interaction network under investigation
is information rich. Therefore, to enable system analysis of
our protein expression data, we chose to build a protein
interaction network for P. multocida where all nodes had
all possible biological information associated with them.
Reciprocal-BLASTp searches of Pm70 proteins against both
Gram-negative and Gram-positive bacterial proteins iden-
tified unique orthologs for only 1595 proteins. Of these,
1525 were from Gram-negative bacteria (Escherichia coli
CFT 073, E. coli K12, E. coli O157:H7, Synechocystis sp.
PCC6803 (mean e-value and percent identity were 2.03e-
06 and 65.2%) of which 848 orthologs were identified in
our datasets. We constructed a network with 848 proteins
in which the nodes (proteins) had predicted functional

annotation and the edges (links) between proteins described
regulation, expression, binding, and chemical reactions.

3.3. Systems Modeling: Data Analysis

To determine the effects of 1/4 MIC of each of the three
antibiotics, AMX, CTC, and ENR, on the Pm70 pro-
teome, protein expression from each of the three antibiotic
treatments was compared to protein expression from the
nonantibiotic control. We did not compare protein expres-
sion changes between antibiotic treatments. The paired
control antibiotic-treated samples contained 913, 781, and
762 proteins, representing 143, 133, and 137 GO groups,
from AMX-, CTC-, and ENR-treated cultures, respectively.
Each GO group is a unique GO term that corresponds
to a biological process, molecular function, or a cellular
component annotation.

At P ≤ .05, 69, 61, and 58 GO groups for AMX,
CTC, and ENR, respectively had significant proteome cov-
erage. Of these, 46 GO groups were common to all three
antibiotics (Table 1). To identify the underlying higher level
themes involved in the response to antibiotics, we used the
GoSlimViewer at AgBase [31] and found that the 46 common
GO groups had 16 higher level GO terms (Table 2).

We identified 147, 126, and 134 significant changes in
protein expression with sub-MIC AMX, CTC, and ENR,
respectively (Table 3, and supplementary Table 2, all proteins
were identified with at least three peptides in one dataset).
A number of proteins differentially expressed in response
to sub-MIC antibiotics in our previous ICAT study were
also identified in this study. Although the general trend of
expression was similar (i.e., increase or decrease) compared
to ICAT, many of the differences were not statistically
significant in this study. This could be due to the data
dependent acquisition inherent to ESI MS2 methodology
combined with the differences in both the amount of the pro-
teome accessible by ICAT and label-free proteomics and the
difference in total coverage (numbers of peptides/protein).
We suggest that this nonisotopic proteomics workflow and
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analysis offer more comprehensive coverage and a greater
probability of accurate representation of the Pm70 proteome
than did our ICAT study.

To identify common themes in the response to sub-
MICs of antibiotics, we superimposed significant changes
in protein expression for each antibiotic onto the Pm70
protein interaction network (supplementary figure). For
more detailed analysis of selected proteins, we used the Pm70
protein interaction network to iteratively build and visualize
networks around the proteins of interest. The network built
around RecA in response to ENR is shown in Figure 3 as an
example of the type of analysis that was used to identify the
trends described in the following paragraphs.

3.4. Common Adaptive Responses to AMX,
CTC, and ENR

We examined the overall trends of antibiotic effects on
the 16 GO groups that were identified by GO SlimViewer
(Table 2). After excluding general GO terms like cytoplasm,
metabolism and so forth, 13 GO groups were evaluated. For
each GO group, we calculated the percentage of proteins
whose expression either increased or decreased, compared
to the total entities in that GO group, for each antibiotic
treatment. The trend of AMX was an overall increase in
protein expression, which could indicate the induction of
an adaptive response (Figure 2). Conversely, CTC and ENR
had an overall suppressive effect on protein expression,
potentially indicating that CTC and ENR detrimentally affect
P. multocida fitness at doses below MIC. Alternatively, this
could be a compensatory response by slowing metabolism.

The overall suppressive effects of CTC and ENR on
P. multocida metabolism are further substantiated by their
effects on individual protein expression in central metabolic
pathways. In glycolysis/gluconeogenesis, CTC and ENR sig-
nificantly decreased the expression of phosphoenolpyruvate
carboxykinase, phosphoglycerate kinase, fructose bisphos-
phate aldolase, and glyceraldehyde-3-phosphate dehydroge-
nase. By contrast, AMX significantly increased the expression
of fructose bisphosphate aldolase, pyruvate kinase, and phos-
phoglyceromutase, and it significantly increased expression
of fumarate hydratase and succinyl-CoA synthetase from the
TCA cycle (Table 3).

The differential protein expression profiles of P. mul-
tocida in response to antibiotic sub-MICs were analyzed
to delineate the underlying physiological response. A pre-
dictable stress response was indicated by increased GroES
expression after treatment with all three antibiotics and
increased GroEL and DnaK expression after AMX treatment.
The GroEL/GroES chaperone system is induced by different
forms of environmental stress in various bacterial species
and functions to maintain appropriate protein folding
[32]. All antibiotics reduced the expression of FtsH, a
zinc metalloprotease that degrades cellular proteins, includ-
ing heat shock promoter protein sigma 32 (RpoH) [33].
Therefore, sub-MICs of antibiotics may reduce expression
of P. multocida genes under the control of heat shock
promoters.

Sub-MICs of antibiotics induce a response that appears
to decrease cell envelope permeability by increasing the
availability of N-acetyl glucosamine, a necessary precursor
for peptidoglycan and lipid A biosynthesis. E. coli mutants
that are defective in lipid A biosynthesis are permeable to
hydrophobic molecules and highly susceptible to antibiotics
[34, 35]; therefore, increasing the amount of lipid A would
be a logical response to decrease permeability. All three
antibiotics increased GlmS expression, which catalyzes the
first reaction in the pathway for N-acetylglucosamine biosyn-
thesis, and AMX increased GlmU expression, which catalyzes
the last two reactions in the pathway. NagC, is a transcrip-
tional regulator controlling glmUS operon expression [36],
its expression decreased after CTC and ENR treatment. In
addition to increasing N-acetylglucosamine availability, CTC
and ENR decreased expression of OmpA, a multifunctional
outer membrane porin that allows diffusion of small solutes
across the outer membrane [37, 38] (Table 3).

Purine metabolism was another common cellular func-
tion affected by all three antibiotics. AMX, CTC, and
ENR increased adenylate kinase expression. CTC and ENR
increased adenylosuccinate synthetase expression. Adenylate
kinase and adenylosuccinate synthetase catalyze the first and
last steps in the conversion of inosine monophosphate to
adenosine diphosphate [39], respectively. AMX and CTC also
significantly increased expression of PrsA, which catalyzes
formation of phosphoribosyl pyrophosphate, a necessary
metabolite for synthesis of purines, pyrimidines, and histi-
dine.

RNA metabolism was affected by antibiotics; all increased
RNA polymerase expression; AMX increased RpoA, RpoB,
RpoC, and RpoZ expression; CTC increased RpoA expres-
sion; and ENR increased RpoZ expression. In addition,
all three antibiotics decreased expression of transcriptional
terminator Rho, which may cause polarity suppression.
Decreased expression of Rho may also decrease the half life
of mRNA in the bacterial cell [40].

It is possible that these protein expression trends in
P. multocida that were common for all three antibiotics
could reflect a general response to stress. These changes
could be induced by other nonantibiotic stressors; further
experiments with nonantibiotic stress conditions would be
required to confirm that these trends are in fact a common
response to antibiotic-induced stress.

3.5. Virulence Factor Expression

Sub-MICs of antibiotics can potentially impact the outcome
of infection by altering bacterial virulence factor expres-
sion [14, 41–43]. In the current study, antibiotics altered
expression of known and putative virulence proteins in
Pasteurella multocida. For example, CTC and ENR reduced
the expression of OmpA, which in addition to allowing small
molecule diffusion across the outer membrane, is also a
known virulence factor of P. multocida and is involved in
binding to host cells [44]. In addition, sub-MICs of CTC and
ENR decreased expression of detoxifying enzymes superox-
ide dismutase and catalase, which constitute a major defense
mechanism of bacteria against reactive oxygen species and
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Figure 2: Overall trends in protein expression in GO Slims common to sub-MICs. For each GO Slim, the percentage of proteins whose
expression was either up (black bars) or down regulated (gray bars) is compared to the total entities in that GO Slim are shown for amoxicillin
(a), chlortetracycline (b), and enrofloxacin (c). GO Slim categories are as follows: 1, external encapsulating structure; 2, DNA metabolism;
3, nucleobase, nucleoside, nucleotide, and nucleic acid metabolism; 4, protein metabolism; 5, transcription; 6, protein biosynthesis; 7,
response to stress; 8, carbohydrate metabolism; 9, catabolism; 10, structure molecule activity; 11, peptidase activity; 12, amino acid derivative
metabolism; 13, generation of precursor metabolites and energy.

play a role in pathogenesis in certain bacteria [45, 46]. Other
putative P. multocida virulence factors whose expression
was decreased by CTC and ENR included glyceraldehyde-
3-phosphate dehydrogenase, which is a virulence factor in
Gram-positive bacteria and has been recently implicated in
pathogenesis of Gram-negative bacteria [47], and phospho-
enolpyruvate carboxykinase, which is required for M. bovis
virulence in mice [48]. Stress response chaperone protein
Hsp90 was decreased by CTC and ENR, and DnaK was
decreased by ENR. These proteins are required for virulence
in a number of bacterial pathogens including S. enterica and
L. pneumophila [49, 50].

3.6. Amoxicillin Specific Effects

The AMX mode of action involves binding and inactivation
of peptidoglycan cross-linking transpeptidases with subse-
quent inhibition of cell wall biosynthesis. The transpepti-
dases, also known as penicillin binding proteins (Pbps), are
known targets of AMX [51] and the P. multocida genome
has eight Pbps [20]. Logically, the bacterial compensatory
response to AMX could involve increasing Pbp expression.
Though we identified 5 Pbps in our dataset; there were no
significant changes in expression of any of these. Therefore,
it appears that the adaptive response to AMX treatment does
not entail over expression of Pbps. Alternatively, more than

1/4 MIC of AMX may be required to elicit over expression of
Pbps in P. multocida.

There was good evidence that the P. multocida compen-
satory response to AMX involves decreasing cell envelope
permeability. In addition to the previously described effects
on GlmU and GlmS, expression of several enzymes respon-
sible for synthesis of lipopolysaccharide was significantly
increased. LpxB, an enzyme in the lipid A biosynthetic
pathway, had significantly increased expression. KdsA and
RfaE, both of which are involved in synthesis of core
oligosaccharide [52], were significantly increased. Expression
of GalU, which is responsible for the synthesis of cell
envelope precursor UDP-galactose, was also increased.

The compensatory response to AMX also appeared to
involve upregulation of cell division proteins. Both FtsZ
(essential for cell division) and FtsY had increased expres-
sion. AMX also caused increased expression of DeoR: a DNA-
binding transcriptional regulator involved in the negative
regulation of genes encoding nucleotide catabolism enzymes.

3.7. Chlortetracycline Specific Effects

As could be predicted, the response to CTC involved the
compensation against its inhibition of protein translation.
Elongation factor Tu was increased, as was methionyl-
tRNA synthetase (MetG), which initiates translation through
tRNA(fMet) aminoacylation. In addition, DeaD (CsdA),
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Figure 3: P. multocida RecA protein interaction network. P. multocida sub-MIC ENR response was marked by significant change in RecA
expression. We built interaction network iteratively with RecA as primer and identified RecA, GroEL, and GroES subnetwork. Red nodes are
proteins with increased expression and green nodes are proteins with decreased expression in response to ENR. Proteins with no significant
changes in expression are shown in pink, and gray nodes are proteins from P. multocida interaction network that were not identified in our
dataset.

which participates in the assembly of the large subunit of the
ribosome [53], also had increased expression.

CTC also appeared to induce a protective response
for the cell envelope. In addition to its effects on GlmS,
NagC, and OmpA, it caused an increase in expression of
murein lipoprotein Lpp, which is required for stabilization
and integrity of the cell envelope [54]. Lpp mutants are
hypersensitive to toxic compounds [55]. Finally, CTC caused
increased expression of Lrp, a transcriptional regulator that
is a global mediator of the leucine response, specifically
branched amino acid transport [56].

3.8. Enrofloxacin Specific Effects

Results from the current study agree with our earlier findings
[15] that the compensatory response to ENR entails recruit-
ment of double stranded DNA damage repair machinery
to overcome the quinolone-mediated block on progression
of the replication fork. This response is logical because
blockage of the replication fork by quinolones is caused

by accumulation of inactive quinolone-bound intermediate
with double stranded DNA breaks. We previously reported
an increase in expression of RecA, which catalyzes DNA
strand exchange during homologous recombination and
double-stranded DNA break repair [15], in response to ENR.
Here we found that expression of RecA and RecN, another
enzyme required for repair of double stranded breaks in the
chromosome, increased.

4. Conclusions

We achieved greatly improved coverage of the P. multocida
proteome by detecting unlabeled peptides using 2D LC
with ESI MS2 compared to a similar study we conducted
using isotope coded affinity tag labeled (ICAT) peptides
[15]. The advantage of ICAT labeling is that we were able
to report fold changes in protein expression; however, the
increased proteome coverage in the current study enabled us
to conduct systems analysis, which was not possible in the
ICAT study.
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Systems analysis improved our study of P. multocida pro-
tein expression and enabled the identification of antibiotic-
mediated mechanisms and pathways. In particular, visualiz-
ing proteins as interacting networks enabled us to identify
proteins with high connectivity that could be important
targets for modulation. However, although proteome cov-
erage was not a major limitation in conducting systems
analysis with our P. multocida protein expression data, the
paucity of experimental evidence from this nonmodel species
did limit our analysis. The strategy we used to identify
orthologs and import experimental evidence based on E. coli
and other model species greatly enhanced our analysis, but
extrapolation of protein functions across species must be
interpreted in the light of this electronic inference.

Despite this limitation, our systems analysis identified
several proteins to target in future studies. In particular, we
speculate that inactivating P. multocida proteins in the heat
shock response, cell envelope biosynthesis/integrity, purine
metabolism, or RNA metabolism may be viable strategies
to enhance antimicrobial activity. In addition, inactivation
of specific cell division proteins, translation proteins, and
DNA repair enzymes may impair bacterial adaptation to
antibiotics in the penicillin, tetracycline, and quinolone
classes, respectively. Inactivation of specific transcriptional
regulators, such as DeoR or Lrp, may also be an effective
method to impair the P. multocida adaptive response against
AMX and CTC. These targets would not have been predicted
a priori based on the known mechanisms of action of these
antibiotics; their identification was facilitated by our global
systems analysis.

In summary, our findings could lead to the develop-
ment of new antimicrobial potentiating drugs aimed at
inactivating antibiotic compensatory mechanisms to prevent
occurrence and emergence of antimicrobial resistance. In
addition, our results indicate that systems analysis in non-
model bacterial species can be used with high-throughput
proteomics data to identify protein targets for further
functional investigations.
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glyceraldehyde-3-phosphate dehydrogenase in the infection
mechanism of enterohemorrhagic and enteropathogenic
Escherichia coli: interaction of the extracellular enzyme with
human plasminogen and fibrinogen,” The International Jour-
nal of Biochemistry & Cell Biology, vol. 39, no. 6, pp. 1190–
1203, 2007.

[48] K. Liu, J. Yu, and D. G. Russell, “ pckA-deficient Mycobac-
terium bovis BCG shows attenuated virulence in mice and in
macrophages,” Microbiology, vol. 149, no. 7, pp. 1829–1835,
2003.

[49] R. A. Garduño, E. Garduño, and P. S. Hoffman, “Surface-
associated Hsp60 chaperonin of Legionella pneumophila medi-
ates invasion in a HeLa cell model,” Infection and Immunity,
vol. 66, no. 10, pp. 4602–4610, 1998.

[50] A. Takaya, T. Tomoyasu, H. Matsui, and T. Yamamoto,
“The DnaK/DnaJ chaperone machinery of Salmonella enterica
serovar Typhimurium is essential for invasion of epithelial
cells and survival within macrophages, leading to systemic
infection,” Infection and Immunity, vol. 72, no. 3, pp. 1364–
1373, 2004.

[51] K. Poole, “Resistance to β-lactam antibiotics,” Cellular and
Molecular Life Sciences, vol. 61, no. 17, pp. 2200–2223, 2004.

[52] J. A. Yethon and C. Whitfield, “Lipopolysaccharide as a target
for the development of novel therapeutics in Gram-negative
bacteria,” Current Drug Targets. Infectious Disorders, vol. 1,
no. 2, pp. 91–106, 2001.

[53] J. Charollais, M. Dreyfus, and I. Iost, “CsdA, a cold-shock RNA
helicase from Escherichia coli, is involved in the biogenesis of
50S ribosomal subunit,” Nucleic Acids Research, vol. 32, no. 9,
pp. 2751–2759, 2004.

[54] E. Cascales, A. Bernadac, M. Gavioli, J.-C. Lazzaroni, and R.
Lloubes, “Pal lipoprotein of Escherichia coli plays a major role
in outer membrane integrity,” Journal of Bacteriology, vol. 184,
no. 3, pp. 754–759, 2002.

[55] H. Suzuki, Y. Nishimura, S. Yasuda, A. Nishimura, M. Yamada,
and Y. Hirota, “Murein-lipoprotein of Escherichia coli: a
protein involved in the stabilization of bacterial cell envelope,”
Molecular and General Genetics, vol. 167, no. 1, pp. 1–9, 1978.

[56] S. A. Haney, J. V. Platko, D. L. Oxender, and J. M. Calvo,
“Lrp, a leucine-responsive protein, regulates branched-chain
amino acid transport genes in Escherichia coli,” Journal of
Bacteriology, vol. 174, no. 1, pp. 108–115, 1992.


	Introduction
	Materials and Methods
	Pasteurella Multocida Culture
	Proteomics
	Systems Modeling: Pasteurella Multocida Pm70 Molecular Interaction Database

	Results and Discussion
	Proteome Coverage
	Pasteurella Multocida Pm70 Molecular Interaction Database
	Systems Modeling: Data Analysis
	Common Adaptive Responses to AMX, CTC, and ENR
	Virulence Factor Expression
	Amoxicillin Specific Effects
	Chlortetracycline Specific Effects
	Enrofloxacin Specific Effects

	Conclusions
	Abbreviations
	Acknowledgments
	References

