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INTRODUCTION 
 

Based on the cancer statistics in the world, thyroid 

cancer is the fifth most common malignancy. It was 

predicted that there would be 52,070 cases of thyroid 

cancer in 2020, with 37,810 cases in female and 14,260 

cases in male [1]. There are various subtypes in thyroid 

cancer, and 85%-90% of them are papillary thyroid 

cancer [2]. Approximately 90% of patients can be cured 

with standard treatment [3]. However, locoregional 

recurrences or distant metastases occur in almost 10% 

of thyroid carcinoma cases, which is still a challenge in 

the treatment of thyroid cancer [4]. Once recurrence and 

metastasis occur, the prognosis and the life quality of 

these patients will become worse. Consequently, it is 

extremely urgent to illustrate the specific mechanism of 

the carcinogenesis and invasion of papillary thyroid 

cancer. 

 

Circular RNAs (circRNAs) are formed by covalently 

closed loops, which are regarded as novel endogenous 

noncoding RNAs [5]. They originate in the back-splice of 

pre-mRNAs (precursor mRNAs) without a head or a tail 

which are abundant in mammalian tissues [6]. Compared 

with linear counterparts, circRNAs show high stability in 

vivo because of their unique circular structure [7]. As 

important mediators of different biological process in  

the cell, circRNAs regulate the expression of vital genes 

via multiple comprehensive molecular mechanisms, 

including binding microRNAs (miRNAs), interacting 
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result showed that it had high expression in papillary thyroid cancer. The functions of circKIF4A were explored by 
CCK-8, transwell, and mouse xenograft experiments. Knockdown of circKIF4A could suppress papillary thyroid cell 
growth and migration. In addition, RIP assays and dual luciferase vector reporter assays were further conducted. 
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with proteins and encoding novel polypeptides [8]. Plenty 

of circRNAs has been discovered as regulators of a 

diversity of diseases, including Alzheimer's disease, heart 

failure, diabetes, and cancers [9–13]. Masses of 

circRNAs has been characterized and validated to  

be mediators of the malignant progress with the 

development made in high-throughput circRNA 

sequencing [14, 15]. For instance, the most thoroughly 

studied circRNA ciRS-7 promotes the growth, invasion, 

drug resistance, and immune escape of various tumors by 

sponging miR-7 [16–21]. CircFBXW7 is low-expressed 

in tumor tissues. By translating a 21kDa novel protein 

(FBXW7-185aa) and sponging miRNA, circFBXW7 can 

suppress cell multiplication and invasion in glioma and 

breast cancer [22, 23]. Additionally, circKIF4A and 

circRAD18 can compete endogenous RNAs to regulate 

triple-negative breast cancer [24, 25]. CircHIPK3 

promotes the development of colorectal cancer via 

upregulating a series of robust oncogenes (FAK, IGF1R, 

EGFR, YY1) [26]. Nevertheless, we still wonder whether 

circRNAs are crucial in papillary thyroid cancer. 

 

In the current study, we explored how circKIF4A 

affected papillary thyroid cancer. We found circKIF4A 

was high-expressed in papillary thyroid tumor, while 

suppression of circKIF4A led to the low growth and 

migration. Generally, we confirmed that the circKIF4A-

miR-1231-GPX4 axis was associated with the malignant 

progress of papillary thyroid cancer. 

 

RESULTS 
 

circKIF4A is upregulated in papillary thyroid cancer 

with circular characteristics 

 

First, we used RT-qPCR to analyze whether circKIF4A 

has different expression in 30 pairs of papillary thyroid 

cancer tissues and the nearby normal thyroid tissues. 

circKIF4A was found upregulated in papillary thyroid 

cancer (Figure 1A). Besides, compared to Nthy-ori3-1 

(normal thyroid cell), especially in TPC-1 and KAT-5 

cell lines, we found circKIF4A was upregulated (Figure 

1B). Then, the circular structure and stability of 

circKIF4A was further examined by specific assays. In 

RNase R digestion experiment, circKIF4A was resisted 

to RNA exonuclease while linear KIF4A mRNA was 

digested after incubated with RNase R in TPC-1 cell 

(Figure 1C). In consistent, in actinomycin D assays, we 

found the circular form of circKIF4A had longer half-

life span than the linear KIF4A mRNA (Figure 1D). 

 

Knockout of circKIF4A attenuates the proliferation 

of papillary thyroid cancer cells  

 

We used loss-of-function assays to figure out the function 

of circKIF4A. An siRNA was designed to silence 

circKIF4A by targeting the back-splicing junction  

region of circRNA. Validating by RT-qPCR analysis, 

circKIF4A had decreased after siRNA transfection, 

which showed the efficacy of the knockdown  

assay (Figure 2A). We found downregulation  

of circKIF4A attenuated proliferation in CCK-8  

assays (Figure 2B). Similarly, circKIF4A silencing 

suppressed cell colony formatting ability, according  

to the colony formation assays (Figure 2C). Besides, 

we established mouse xenograft models to explore 

whether circKIF4A plays a role in vivo. We measured 

the tumor volumes at each time point, and the  

result showed that depletion of circKIF4A could 

inhibit tumor growth (Figure 2D). Reduction of  

the glutathione (GSH)/oxidized glutathione (GSSG) 

ratio was observed after knockdown of circKIF4A 

(Figure 2E). 

 

Downregulation of circKIF4A inhibits the metastasis 

of papillary thyroid cancer cells 

 

We next performed assays to investigate if the 

metastasis of papillary thyroid cancer is influenced by 

circKIF4A. The result showed that cells had low 

activity to migrate by silencing the expression of 

circKIF4A (Figure 3A). In consistent with this result, 

suppression of circKIF4A could also inhibit the 

metastasis in lung metastasis experiment in vivo, 

indicating that circKIF4A is vital in the metastasis of 

thyroid cancer (Figure 3B). 

 

circKIF4A acts as a sponge of miR-1231 in papillary 

thyroid cancer 

 

Next, we determined the subcellular location of 

circKIF4A by isolating of the cytoplasmic and nuclear 

portions of cellular RNA. The result showed that 

circKIF4A predominantly existed in the cytoplasm, 

which might indicate that it interacted with miRNA in 

the cytoplasm (Figure 4A). We furtherly used Circular 

RNA Interactome to predict whether there is a potential 

interaction between circRNA and miRNAs. Among the 

candidates, we found miR-1231 might have the ability 

to bind circKIF4A sequence (Figure 4B). By RT-qPCR 

analysis, we found there was a decreasing tendency of 

miR-1231 in papillary thyroid cancer cell lines (Figure 

4C). The transfection of WT reporter and miR-1231 

caused the deactivation of relative luciferase, according 

to dual luciferase reporter assays (Figure 4D). Then, we 

conducted RIP assays to prove the direct relationship 

between circKIF4A and miR-1231. We also noticed that 

miR-1231 was mainly enriched in the MS2bs-

circKIF4A group (Figure 4E). Overexpression of miR-
1231 could increase the GSH level which could be 

reversed by silencing circKIF4A in TPC-1 and KAT-5 

papillary thyroid cancer cells (Figure 4F).  



 

www.aging-us.com 16502 AGING 

CircKIF4A promotes papillary thyroid cancer 

progression through circKIF4A-miR-1231-GPX4 axis 

 
We used TargetScan to further find out the potential 

targets of miR-1231. We found GPX4 was a downstream 

target oncogene among the candidates (Figure 5A). 

GPX4 encodes a protein and protects cells against 

oxidative damage which plays an important role in 

multiple cancers, certainly including papillary thyroid 

cancer [27–31]. By RT-qPCR analysis, we found GPX4 

overexpressed in papillary thyroid cancer cell lines, 

detected (Figure 5B). The next step was to explore 

whether miR-1231 could bind the 3’-UTR of GPX4 

mRNA directly. We found that the relative luciferase 

activity of cells was significantly decreased after 

transfecting miR-1231 and WT 3’-UTR-GPX4  

vector. However, this phenomenon was not observed 

when mutant vector was transfected (Figure 5C). 

 

 
 

Figure 1. circKIF4A is upregulated in papillary thyroid cancer with circular characteristics. (A) circKIF4A expression in adjacent 

normal tissues and papillary thyroid cancer. (B) The relative expression of circKIF4A in cell lines. (C) RNase R assay examined the circular 
structure of circKIF4A in TPC-1 cell line. (D) Circular transcripts of KIF4A (circKIF4A) was more stable than its linear mRNA transcripts 
determined by actinomycin D treated assay. 
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Additionally, miR-1231 mimics significantly reduced 

the expression level of GPX4 mRNA, which indicates 

that GPX4 is downregulated by miR-1231 (Figure 

5D). Moreover, AGO2 related RIP assays were  

carried out. We found that circKIF4A, GPX4 and miR-

1231 gathered to AGO2 RNA binding protein  

(Figure 5E). Suppression of circKIF4A could 

significantly increase GPX4 enrichment to RNA 

induced silencing complex (Figure 5E). Knockdown  

of circKIF4A could reduce the protein expression  

of GPX4, while inhibition of miR-1231 could lead  

to the reversion of the protein expression of  

GPX4, analyzed by western blot assay (Figure 5F). 

Knockdown of circKIF4A significantly decreased the 

expression level of GPX4 detected by western-blot 

analysis (Figure 5G). 

 

 
 

Figure 2. Knockdown of circKIF4A attenuates the proliferation of papillary thyroid cancer cells. (A) Knockdown effect of circKIF4A 
was assessed in TPC-1 and KAT-5 cell line. (B) CCK-8 assays evaluated cell proliferation after knockdown of circKIF4A. (C) Colony formation 
assays revealed that circKIF4A silencing suppressed cell colony formatting ability. (D) Mouse xenograft models were established. Tumor 
volume was estimated in every four days. (E) GSH/GSSG ratio was detected. 
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Figure 3. Downregulation of circKIF4A suppresses the metastasis of papillary thyroid cancer cells. (A) Transwell experiments 

were conducted in TPC-1 and KAT-5 cell line. (B) The number of lung metastases was counted and recorded. HE-stained sections of lung 
metastases were presented. 
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Figure 4. circKIF4A acts as a sponge of miR-1231 in papillary thyroid cancer. (A) 18S, GAPDH, circKIF4A and KIF4A in nuclear and 

cytoplasmic part analyzed by RT-qPCR. (B) Predicted interaction site of miR-1231 within the circKIF4A sequence. (C) miR-1231 expression in 
papillary thyroid cancer cell lines. (D) Luciferase reporter assay of TPC-1 and KAT-5 cells transfected with miR-1231 mimics and circKIF4A.  
(E) MS2-based RIP assay transfected with MS2bs-circKIF4A, MS2bs-circKIF4A-mt or Rluc control. (F) GSH/GSSG ratio was detected. GSH/GSSG 
ratio was increased after overexpression of miR-1231 which could be reversed by silencing circKIF4A. 
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DISCUSSION 
 

CircRNAs have become popular topics in RNA 

biological field and have attracted the eyes of many 

scientists. The high-throughput sequencing technology 

and bioinformatics analysis enabled scientists to discover 

and investigate various kinds of circRNAs [14, 15]. 

Researchers have come to realized that these special  

non-coding RNAs with circular structures are integral 

parts in multiple biological processes rather than 

worthless product of pre-mRNA splicing [32]. 

circPRKCI is upregulated in lung adenocarcinoma which 

promotes tumorigenesis by sponging miR-589 and  

miR-545 [33]. By translating a novel 370-aa β-catenin 

 

 
 

Figure 5. CircKIF4A promotes papillary thyroid cancer progression through circKIF4A-miR-1231-GPX4 axis. (A) Predicted 
interacting site of miR-1231 within the 3’-UTR of GPX4. (B) GPX4 expression in papillary thyroid cell lines. (C) Dual luciferase reporter assay of 
TPC-1 and KAT-5 cells. (D) Expression of GPX4 was reduced after overexpression of miR-1231. (E) Enrichment of circKIF4A, GPX4 and miR-
1231 on AGO2 RNA binding protein assessed by RIP assay. (F) Overexpression of miR-1231 resulted in the reduction of GPX4 protein 
expression. (G) Knockdown of circKIF4A reduced the protein expression of GPX4. 



 

www.aging-us.com 16507 AGING 

isoform, a circRNA derived from CTNNB1 pre-mRNA 

promotes the proliferation hepatocellular carcinoma cell 

with the mechanism of activating the Wnt signaling 

pathway [34]. circPLK1 were identified as oncogenic 

drivers by reducing apoptosis in breast cancer [35]. 

However, there are only few studies investigating the 

roles and functions of circRNAs in papillary thyroid 

cancer. For example, circ_0006156 had higher 

expression in serum exosomes, and through the miR-

1178/TLR4 axis, it could accelerate papillary thyroid 

cancer to bad prognosis [36]. Through the FGFR1 

pathway, circRAPGEF5 modulates progression of 

thyroid cancer [37]. 

 

In this study, the result showed circKIF4A was a 

frequently upregulated novel circRNA. Besides, 

knockout of circKIF4A could significantly inhibit the 

development of cancer in vitro and in vivo. All the results 

showed that circKIF4A was able to directly sponge miR-

1231 and promote papillary thyroid cancer progression 

by upregulating antioxidant protein GPX4 expression.  

 

According to the reported studies, miR-1231 had 

suppressive effect in many cancers. For instance, miR-

1231 is secreted by stem cells, it can prevent pancreatic 

cancer cells from growing and metastasizing [38]. By 

targeting EGFR expression, miR-1231 is downregulated 

in prostate cancer [39]. Additionally, miR-1231 can also 

lower the risk of papillary thyroid cancer cell [40]. As a 

target downstream of miR-1231, GPX4 protects cells 

against oxidative damage which is harmful to multiple 

cancers, certainly including papillary thyroid cancer. The 

GSH (glutathione)-GPX4 (glutathione peroxidase 4) 

system is considered to be a main cell protection system 

that suppresses ferroptosis [41, 42]. We confirmed 

GPX4 was the target of miR-1231 in papillary thyroid 

cancer. By competing endogenous RNA, circKIF4A 

could enhance the expression of GPX4. 

 

In summary, we confirmed that the circKIF4A-miR-

1231-GPX4 axis was associated with papillary thyroid 

cancer. It could compete endogenous RNA and suppress 

the progression and metastasis. Therefore, we might 

consider targeting circKIF4A as a novel method for 

treatment of papillary thyroid cancer. 

 

MATERIALS AND METHODS 
 

Clinical sample data and ethical standards  

 

We collected fresh nearby normal thyroid tissues and 

primary papillary thyroid cancer samples from Sun Yat-

Sen University Cancer Center. This study was approved 
by the Ethics Committee of the Sun Yat-Sen University 

Cancer Center. We collected all the written informed 

consent before doing this study. 

Cell culture 

 

The cell lines used in this study were all purchased from 

the ATCC. Cell lines were cultured according to the 

supplier’s instructions. Cell authenticity was verified 

occasionally by the method of DNA fingerprinting. 

 

CCK-8 assay 

 

3000 si-circKIF4A and si-circCON cells were put into a 

96-well plate. The cells were incubated for each time 

period in the incubator at 37° C. Afterwards, CCK-8 

solution (10ul) was added and incubate for one hour 

before measurement. Basic information is listed in 

(Supplementary Table 1).  

 

Western blot analysis 

 

RIPA lysis and PMSF were used to isolate protein from 

cells. The protein was put into each well of the SDS-

PAGE gel and separated. The protein was afterwards 

moved to the PVDF membranes for 2 hours at 300 mA. 

The membrane was treated with each antibody at 4° C 

overnight and then incubated with the specific secondary 

antibody at room temperature for 1 hour. Anti-GPX4 

(1:1000, Abcam, USA) and anti-GAPDH antibody 

(1:1000, Affinity, USA) are used to detect certain protein. 

 

RNase R digestion assay 

 

After 3 ug extracted total RNA of TPC-1 papillary 

thyroid cancer cells were treated with RNase R (5 Uug) 

or control solution for 20 min at 37° C, the resulting 

RNA solution was purified and quantified by RT-qPCR 

analysis. 

 

Actinomycin D assay 

 

TPC-1 and KAT-5 cells were exposed with 2ugml 

actinomycin D to degrade the linear mRNA transcription 

for 0, 8, 16, and 24 hours. The TPC-1 and KAT-5 cells 

were harvested at certain time period and the linear 

KIF4A mRNA and circular circKIF4A were quantified 

by qPCR-analysis. 

 

RT-qPCR analysis 

 

Total RNA was extracted by TRIzol (Invitrogen). qRT-

PCR assays were carried out using Takara SYBR PCR 

kit. Basic information is listed in (Supplementary 

Tables 2, 3).  

 

Transwell assay 

 

Totally, 5×104 cells were resuspended and added to the 

above chambers (serum-free medium) and medium 
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(medium with 20% FBS) was loaded to the lower 

chambers. Methanol was utilized to fix the left cells. 

The migrated cells were imaged and counted, after 

staining with crystal violet (1%). 

 

Luciferase reporter assay 

 

TPC-1 and KAT-5 cells were seeded 1 × 104 cells in 

each well in 96-well plates. circKIF4A and GPX4 3’-

UTR was cloned into a CMV promoter-driven 

luciferase in a pCDNA3.0 vector after amplified from 

human genomic DNA. The putative miRNA binding 

site of circKIF4A and GPX4 3’-UTR was mutated in 

luciferase reporter assays. The constructed reporting 

vectors (circKIF4A-wt/mut or GPX4 3’-UTR-wt/mut) 

and miRNA inhibitors or mimics were both transfected 

into cells for 48 hours.  

 

RNA immunoprecipitation (RIP) 

 

Cells were transfected with MS2bs-circKIF4A, MS2bs-

circKIF4A-mt and MS2bs-Rluc. After incubating for 48 

hours, RIP was performed. The relative level of miR-

1231 was determined after purification. The RIP assays 

for AGO2 were performed with an IP level anti-Ago2 

antibody (Millipore). The abundance of circKIF4A, 

GPX4 mRNA and miR-1231 was tested after RNA 

purification. 

 

Mouse xenograft model 

 

KAT-5 and TPC-1 cells (2×107) were subcutaneously 

injected into nude mice (four mice/group, 4-week-old) 

and treated with intratumoral injection (50 μL si-

circCON, si-circKIF4A) every four days. The volume 

of tumors was estimated every four days according to 

the formula 0.5×width2×length. After 28 days, the 

tumors were weighed. For in vivo lung metastasis assay, 

cells (1 × 105) were injected through tail veins (four 

mice/group). The lungs were extracted after 8 weeks 

and the number of metastatic sites were quantified via 

microscopy of HE-stained sections. 

 

Statistical analysis 
 

All statistical analysis was performed with SPSS 22.0 

software. All data are reported as the mean ± standard 

deviation (SD). Groups were compared using Student’s 

t test. Paired t test was used to compare the expression 

of circKIF4A in two groups. P<0.05 was regarded as 

statistically significant. 

 

Abbreviations 
 

3’-UTR: 3’-untranslated regions; circRNA: circular 

RNA; GPX4: glutathione peroxidase 4; miRNAs: 

microRNAs; SD: standard deviation; RIP: RNA 

immunoprecipitation. 
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Supplementary Tables 
 

 

Supplementary Table 1. The target sequences of 
siRNAs used in this study. 

siRNA Sequence (5' - 3') 

si-circCON UUCUCCGAACGUGUCACGUTT 

si-circKIF4A GAUCUAUAACGUAUUAAUATT 

 

Supplementary Table 2. Primer sequences for qRT-PCRs used in 
this study. 

Target Direction Sequence (5' - 3') 

18S 
Forward TTAATTCCGATAACGAACGAGA 

Reverse CGCTGAGCCAGTCAGTGTAG 

circKIF4A 
Forward GAGGTACCCTGCCTGGATCT 

Reverse TGGAATCTCTGTAGGGCACA 

GPX4 
Forward GAGGCAAGACCGAAGTAAACTAC 

Reverse CCGAACTGGTTACACGGGAA 

miR-1231 
Forward CCTCAACTGAATTGCCGACTC 

Reverse CTCAACTGGTGTCGTGGAGTC 

GAPDH 
Forward GGAGCGAGATCCCTCCAAAAT 

Reverse GGCTGTTGTCATACTTCTCATGG 

 

Supplementary Table 3. The sequences of oligonucleotides used 
in this study. 

Oligonucleotides Sequence (5' - 3') 

miR-1231 mimics GUGUCUGGGCGGACAGCUGC 

Control mimics UCUACUCUUUCUAGGAGGUUGUGA 

 


