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Abstract

Background: Surgical site infections are common and devastating complications after implants related surgeries.
Staphylococcus aureus contamination is a leading cause of surgical site infections. This study aims at assessing the
effect of vancomycin microspheres on reducing Staphylococcus aureus infection in an in vivo rabbit model.

Methods: Sixty surgical sites of 20 New Zealand White rabbits underwent spinal implant were randomly divided to
three groups: the control group, the vancomycin group and vancomycin microspheres group. The surgical sites were
incubated with 100 μl 1 × 107 CFU S. aureus ATCC 25923. Prior to closure, vancomycin and vancomycin microspheres
were placed into the wounds of the rabbits in the vancomycin group and the vancomycin microspheres group,
respectively. The rabbits were killed on postoperative day 7. Standard quantification techniques were used to
analyze biomaterial centered and soft tissue bacterial growth. The bacteria were further confirmed by PCR with
primers from the thermostable nuclease gene of S. aureus.

Results: All the rabbits survived the surgery and no postoperative wound complications or systemic illness occurred.
Results showed that the bacterial cultures were 76.9, 30.8, and 15.4% in the control group, vancomycin group,
and vancomycin microspheres group. Vancomycin microspheres treatments significantly decreased the infection
rate compared to the control group (p < 0.05).

Conclusion: Vancomycin microspheres combined with preoperative ceftriaxone is effective to reduce postoperative S.
aureus infection compared with the control group.
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Background
Surgical site infections (SSIs), a common and devastating
complication after implants related surgery, are substantial
burden to the patients and healthcare system that works
with limited budget. SSIs complicate 0.97% of all surgical
cases and 21.8% of all health-care-associated infections are
SSIs [1]. Each year SSIs result in about 290,000 cases in the
United States. The total cost to the health care system in
US is estimated to 3.3 billion dollars per year [2]. Despite
the use of prophylactic antibiotics, aseptic technique, and
improved surgical techniques, SSIs is a big concern

especially following spine surgery. More than 100,000
dollars was spent on a single spine surgical site infection
[3]. A wide variety of risk factors such as geriatric, im-
munocompromised, diabetic, obese and hyperglycemia,
after spinal surgeries have been reported in the litera-
ture [4]. Although we have witnessed improvements in
operation time, surgical techniques, and antibiotic
prophylaxis in the last few years, spinal implant-related
surgical site infections are still a big concern [5]. In
order to control the costs and burdens to patients and the
public healthcare system, it is important to discover add-
itional techniques to reduce surgical site infections [6].
Despite meticulous sterile techniques, bacteria such as

S. aureus contaminate the surgical wound after long proce-
dures [7]. Hematoma, sometimes together with implants,
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harbored bacteria resulting in systemic infection, tissue
hypoxia, and poor wound healing in patients. Patients
suffer from increased back pain and higher rates of
mortality [7, 8].
The use of preoperative prophylaxis for SSIs in spine

implant-related surgeries has been introduced to prevent
Gram-positive bacterial infections. Different antibiotics,
such as cephalosporin and clindamycin, were given before
and after the surgery [9, 10]. Although under ideal condi-
tion, the infections rate has been reported to be less than
1%, with the rising resistance to some common antibi-
otics, the infection incidence after implant-related surger-
ies in some countries may be higher than 10% [11] and
30–50% of S. aureus infections are caused by methicillin-
resistant S.aureus (MRSA) [12]. With the emergence of
MRSA, prophylactic vancomycin was introduced in spine
surgery, especially for adult spinal deformity, posterior
spinal fusion, and cervical spine surgery [13–16]. How-
ever, the inappropriate antibiotic concentration usually re-
sults in poor patient compliance [17].
Vancomycin-loaded poly-lactide-co-glycolide (PLGA)

microspheres (Cmax: 108.19 ± 14.92 ng/ml at tmax of
1.33 ± 0.58 h, the t1/2: 120.65 ± 44.18 h [18]) was designed
to deliver near-linear level of antibiotic agent for at least
4 weeks [19]. It has an advantage of providing high local
concentrations of antibiotics for a prolonged period after
surgery and avoiding the risk of systemic toxicity over
intravenous administration [20, 21]. Gilchrist et al. showed
fusidic acid and rifampicin co-loaded PLGA micro-
spheres showed direct antimicrobial activity against
S.epidermidisin vitro [22]. To date, there is limited evi-
dence of vancomycin-loaded microspheres in reducing
Gram-positive bacteria causedinfections, particularly S.
aureus infections. In this study, to evaluate the effi-
ciency of vancomycin-loaded microspheres in preventing
the implant-related spinal surgeries, we analyzed infection
rates and bacterial cultureafter the surgeries in a well-
known New Zealand White rabbits spinal implant model.

Methods
Bacterial preparation
Staphylococcus aureus (ATCC 25923), which is sensi-
tive to vancomycin (MIC: 0.9 μg/ml), but not sensitive
to ceftriaxone, was used in this study [23]. S. aureus
was cultured on trypticase soy agar (Oxoid item number
LP0042), transferred to trypticase soy broth. The bacteria-
were incubated for 12 h at 37 °C. After centrifuging at
2,000 g for 5 min, the pellets wereresuspended and diluted
to different levels, the concentration of the bacteria was
determined at 550 nm with a spectrophotometer (UV1600,
Mapada Equipment Co. Ltd., Shanghai, China) and further
estimated by plating on trypticase soy agar plates.
Based on the previous report, 100 μl 1 × 107 CFU/mL

of S. aureus ATCC 25923 was used to create a reliable
infection rate [24].

Experiment design
Twenty New Zealand White female rabbits with a body
weight of 3.8 ± 0.21 were used in the surgeries. Com-
pletely randomized block design in this research, each
rabbit was considered as a block. In each rabbit, three
surgical sites, T13, L3, and L6, were randomly allotted to
each of the three treatments: the control group, the
vancomycin group and vancomycin microspheres group.
To mimic preoperative prophylaxis, all the groups re-
ceived a preoperative 20 mg/kg ceftriaxone according
to a previous study [24]. Prior to closure, 150 mg mi-
crospheres (PLGA), 50 mg vancomycin, and 200 mg
vancomycin microspheres (PLGA:vancomycin, 75:25,
resorption in 3–7 days) were locally delivered to the
control group, the vancomycin group, and vancomycin
microspheres group, respectively.

Surgical procedure
The surgical procedure was slightly modified according to
Poelstra et al. [25]. The entire back and major parts of the
animals’ gluteal region were thoroughly shaved 1 day before
the surgery. After being fasted for 12 h, animals were
injected intramuscularly with a combination of 5 mg/kg
xylazineand 44 mg/kg ketamine. During the surgery,
anesthesia was maintained by using isoflurane inhalation
via nose-cone mask.
Three non-continual sites (T13, L3, and L6) were marked

on the back of the animal. The surgical approach was the
same for each site. After the back was sterilized, a 2-cm
dorsal skin incision was made longitudinally in the midline,
followed by a single incision in the fascia to expose the
spinous process. Using a small rongeur, the entire spinous
process with surrounding musculature and ligaments was
excised from the base (weighing 0.08–0.10 g) to create a
hollow self-contained defect, approximating a partial lamin-
ectomy defect. The ligamentumflavum was not violated,
and the dura was not exposed. An 0.85-mm diameter stain-
less steel rod (2-mm diameter, Item: TI017905, Goodfellow
corporation, Oakdale, PA) was implanted into the defect
from the left side of the rabbit. A 100 ul 1 × 107 CFU S.
aureus was injected inside the defect pocket and onto
the implant to create a 70% infection rate [24]. After mixed
with a flowable hemostatic agent (Integra LifeSciences
Corporation, Plainsboro, NJ), combined with a 150 mg
microspheres, a 50 mg vancomycin, or a 200 mg vanco-
mycin microspheres (assigned randomly to T13, L3, or
L6 by using a random number generator), the wound
was closed using running sutures with biodegradable
Vicryl 2/0 suture (Ethicon Inc. Piscataway, NJ) and a
running subcutaneous suture with Vicryl 3/0 (Ethicon
Inc.). The second implantation was performed with the
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same procedure at the next randomly selected site and
the same procedure was repeated at the last site except
the treatment is different. To prevent cross-contamination,
different sterile instruments and drapes were used for each
surgical site. After the surgery, the animals were housed
individually and permitted to drink and eat ad libitum
in standard cages equipped with water and standard
antibiotic-free rabbit chow. The rabbits were monitored
daily, with particular attention to wound healing,
temperature, body weight, and signs of sepsis.
The body weights of the animals were measured before

the surgeries and body temperatures were measured at
9:00 each day. One animal per time point were selected
randomly, weighted and killed at 12, 24, 48, 72, 96, 120,
and 144 h to determine vancomycin concentration and
the other 13 animals were weighted and killed at 168 h.
All the rabbits were killedvia a 10-mg/kg intravenous
pentobarbital injection according to the approved proto-
col. A 2 × 2-cm right liver lobe and 5 ml intravenous blood
were collected to monitor systemic infection. Systemic
infection was defined as body temperature goes high,
food and water intake drops, and the pathogen is dis-
tributed throughout the body. Samples of the fascia, the
hematomaand the vertebral lamina were harvested. The
implanted metal rods were removed. Surgical site infec-
tion was defined as redness around the surgical area
and drainage of cloudy fluid from the surgical wound.

Vancomycin concentration analysis
After hematoma samples were harvested from the implant
sites, vancomycin, released vancomycin and vancomycin
microspheres were determined according to Burcu S. et al
[26]. In short, the hematoma was suspended in pH 7.4
phosphate buffer and kept in an ultrasonic bath for 5 min.
After centrifugation, the supernatant, representing the
vancomycin and released vancomycin from vancomycin
microspheres, was detected by a spectrophotometer
(UV1600, Mapada Equipment Co. Ltd., Shanghai, China)at
280 nm. Meanwhile, 10 ml pH 7.4 phosphate buffer was
added after the precipitate was dissolved in 3 ml methylene
chloride. The polymer was totally removed after the
evaporation of methylene chloride, the solution was filtered
and vancomycin content representing vancomycin micro-
spheres was detected by a spectrophotometer at 280 nm.

Bacterial evaluation
All samples were evaluated by a team member who is
blind to the treatments. Harvested tissue samples were
immediately weighed and homogenized (Roche MagNA
Lyser), the implants were sonicated (Sonics VCX-130-PB,
Newtown, CT) for 15 min to detach bacteria at 4 °C. Serial
dilution samples were plated and incubated on trypticase
soy agar plates for 24 h at 37 °C. The bacteria were fur-
ther confirmed by PCR with primers (5′-GCGATT

GATGGTGATACGGTI-3′) and (5′-AGCCAAGCCTTGA
CGAACTAAAGC-3′), which came from the thermostable
nuclease gene of S. aureus [27]. The final CFU of S. aureus
was determined per gram of tissue samples and per centi-
meter of stainless rod at every site.

Statistical analysis
Sample size analysis was performed according to the in-
struction of Infostat 2013. When the power function is
higher than 0.80, the sample size is considered correct.
All the other statistical analyses were performed by using
the SPSS 20.0 software (Chicago, IL, USA). Data were
presented as means and standard deviation (SD). Chi
square (χ2 calculations) were used to determine whether
there are significant differences in infection rates. One-way
analysis of variance (One-way ANOVA) was used to deter-
mine whether significant variation existed among different
treatments. Differences between means were determined
by a LSD (Least Significant Difference) test while overall
differences were found. All differences at a P < 0.05 level
were considered significant.

Results
There was no difference in duration of surgery. The rabbits
had similar body weight before and after surgery. All the
rabbits survived the surgery and no postoperative wound
complications or systemic illness occurred. Vital functions
such as temperature, food, and water intake also showed
that no systemic infection occurred. The power functions
for infection rates and bacterial culture analysis are 0.998
and 0.968 respectively, which indicate the sample size is
suitable for this research.
The infection rate was evaluated after 7 days of the

surgery. 10 SSIs and seven implant infections out of 13
infection sites were found in the control group, with a
76.9 and 61.5% infection rate, respectively. In vancomycin
group, 4 SSIs and two implant infections out of 13 infec-
tion sites were found. Meanwhile, in vancomycin micro-
spheres group. 2 SSIs and 0 implant infections out of 13
infection sites showed evidence of infections (Table 1).
The incidence of infection was significantly reduced in
vancomycin microspheres groups compared with the
microspheres control group (p < 0.05). Although the in-
cidence of SSIs decreased by 60% in vancomycin group
(4 infections out of 13) compared with the control
group (10 infections out of 13), no significant difference
was detected between these two groups. Meanwhile,
there was no significant difference in the infection rate
between vancomycin group and vancomycin micro-
spheres group.
Bacteriologic colony counts were showed in Table 2.

For fascia, hematoma, and implant bacteriologic colonies,
there was no significant difference between three groups.
Whereas in bone samples, bacteriologic colonies were
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significantly greater in the vancomycin group than the
other groups (p < 0.05). For blood and liver samples, no
bacterial growth was detected.
In vancomycin group, local vancomycin was found to

be the highest at 12 h with a concentration of 148 μg/ml.
Whereas, it dropped to 1.2 μg/ml quickly at 24 h (Fig. 1a).
In vancomycin microspheres group, The concentration of
vancomycin remainingin the microsphere (VM) dropped
constantly. The release of vancomycin was highest at 24 h.
After dropped to 3.2 μg/ml at 72 h, it maintained a con-
centration of 3.0 μg/ml (Fig. 1b).

Discussion
Surgical site infections are the most common postoperative
infections in spinal surgeries. In order to reduce SSIs, the
use of systemic antibiotic prophylaxis has become common
practice and successfully lowered the risk of infection
[28, 29].
Systemic antibiotic prophylaxis, including cefazolin and

vancomycin, rely heavily on diffusion into the surgical
wound [30]. The concentration of the antibiotics around
and within the wound may not reach the MIC of the anti-
biotics [30]. Various studies showed that vancomycin is
effective to fight against postoperative S. aureus infections
[11, 12]. Locally delivered antibiotics have an advantage
over preoperative antibiotics for they offer a high con-
centration at the wounds [24, 31]. Locally administered
antibiotics can reach levels twenty times of the toxic
levels while maintaining a safe systemic concentration.
Meanwhile, there are also concerns about the high con-
centration applied locally may be cytotoxic. Bosso et al.
reported that a concentration of > 15 μg/ml vancomycin
was related with a 3-fold increased risk of nephrotox-
icity [32].

In our study, three surgical sites, T13, L3, and L6, are
at least 4 cm from each other, so the risk of diffusion of
antibiotics or cross-infection between sites is low. The
results showed that vancomycin microspheres were
effective to reduce the bacterial infections. Usually, 1
to 2 g vancomycin was used in spinal surgery. Sweet et al.
showed 2 g vancomycin powder was used without systemic
toxicity [33]. Considering the average rabbit body weight of
3.8 kg, the dose of 50 mg vancomycin or 200 mg vanco-
mycin microspheres in our study would be about the same
to 1 g vancomycin for an 80-kg patient.
According to Stall et al., 106 CFU per site were sufficient

to produce a 70% infection rate. In their study, five out
seven sites were infected, with an infection rate of 71% [24].
In a previous intrawoundvancomycin study with the same
bacteria, Lukas et al. showed the infection rate was 100%
with 107 CFU per site [33]. For the fact that S. aureus could
not reach such a high level of 107 in patient’s surgery; we
used the same bacteria and a low bacterial concentration
(106 CFU per site) in our study. The results showed a
76.9% infection rate, which was similar to Stall’s re-
ports [24].
Different from a previous report by Lukas et al., in

which they showed that 100 mg intrawoundvancomycin-
podwer eliminated all the S. aureus infections [33], our
results showed that 50 mg vancomycin and 200 mg
vancomycin microspheres were not sufficient enough to
eliminate all the infections. This may be due to a lower
concentration of vancomycin used in our study. Stall et al.
showed that 2.5 mg gentamicin microspheres produce a
38% infection rate, which decreased significantly compared
with the microspheres control group [24]. Although PLGA
was biodegradable and safe, Lukas et al. pointed out that
microspheres could act as a foreign body for bacterial

Table 1 Postoperative surgical site infection and implant-related infection incidence in the control, vancomycin, and vancomycin
microspheres groups

Treatment (n = 13) Total Sites Surgical site infection Implant infection Non-infection

Control 13 10(76.9%)a 8(61.5%)a 3(23.1%)a

Vancomycin 13 4(30.8%)ab 2(15.4%)ab 9(69.2%)ab

Vancomycin microspheres 13 2(15.4%)b 0(0.0%)b 11(84.6%)b

P value 0.004 <0.001 0.004
abMeans with different letters within a column differ significantly (P < 0.05)

Table 2 Bacterial culture analysis of different samples in Log10 values

(Log10
CFU/g
tissue)

Control Vancomycin Vancomycin microspheres F P value

mean sd mean sd mean sd

Fascia 5.810 0.285 6.067 0.208 6.150 0.212 2.012 0.176

Hematoma 6.820 0.244 7.075 0.320 6.650 0.354 1.940 0.183

Implant 5.525 0.328 5.450 0.212 0.090 0.772

Bone 5.500a 0.283 6.233b 0.252 5.800 7.749 0.011
abMeans with different letters within a row differ significantly (P < 0.05)
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adhesion, which may cause a bacterial infection in
Stall’s study [33]. While Stall et al. did not show the
infection rate in gentamicin control group, our results
showed that vancomycin microspheres treatment (15.4%
infection rate), better than vancomycin treatment (30.8%
infection rate), resulted in a significant decrease in infec-
tion rate compared with the control group.
In an earlier study, Yenice et al. showed that teicoplanin

loaded biodegradable microparticles PLGA (75:25)
polymer were the most effective and promising for
obtaining prolonged local antibiotic release and fighting
against staphylococci infection [34]. Burcu et al. reported
vancomycin-loaded PLGA microspheres provided a con-
trolled antibiotic release and seemed to be a promising
carrier system for antibiotic delivery [26]. For this reason, a
PLGA copolymer was used in this study to obtain a
prolonged delivery of vancomycin. Although MIC creep, a
process with a sustained increase in the MICs of glycopep-
tides against S. aureus, is a big concern to the prolonged
exposure to vancomycin, Joana et al. reported that no MIC
creep was found in an over 3-year study in a tertiary hospital
in Portugal [32]. Further study should focus on the toxicity
and MICs before and post antibiotic exposures.
There are increasing reports of S. aureus strains showing

resistance to 1–4 mg/ml vancomycin [35, 36]. Several
authors pointed out that the vancomycin MICs for the
strains are not stable [37, 38]. In our study, 12 h after
the surgery, local vancomycin with a concentration of
148 μg/ml was found to be the highest in vancomycin
group. It dropped to 1.2 μg/ml quickly after 24 h, which
may notbe effective to eliminate all the bacteria. This
may partly explain why there were four infections in
the vancomycin group. In vancomycin microspheres
group, the release of vancomycin was highest at 24 h.
Afterwards,it dropped to3.2 μg/ml at 72 hoursand
maintained a concentration of 4.8 μg/ml until 168 h.

Conclusion
The results of this study in a well-established New Zealand
White rabbit model demonstrated vancomycin micro-
spheres significantly decreased the incidence of implant-
associated postoperative infections compared with the
control group. The combination of antibiotic-loaded
microspheres provides a controlled drug delivery system
for infections.
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Fig. 1 Vancomycin concentration in vancomycin and vancomycin microsphere groups. a Local vancomycin in vancomycin group was highest at
12 h with a concentration of 148 μg/ml and dropped to 1.2 μg/ml quickly at 24 h. b In vancomycin microsphere group, the release of
vancomycin (VR) was highest at 24 h and maintained a concentration of 3.0 μg/ml after 72 h. The concentration of vancomycin remaining in the
microsphere (VM) dropped constantly
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