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Purpose: Conventional radiobiology models, including the linear-quadratic model, do not
explicitly account for the temporal effects of radiation, thereby making it difficult to make
time-resolved predictions of tumor response to fractionated radiation. To overcome this
limitation, we propose and validate an experimental-computational approach that predicts
the changes in cell number over time in response to fractionated radiation.

Methods: We irradiated 9L and C6 glioma cells with six different fractionation schemes
yielding a total dose of either 16 Gy or 20 Gy, and then observed their response via time-
resolved microscopy. Phase-contrast images and Cytotox Red images (to label dead
cells) were collected every 4 to 6 hours up to 330 hours post-radiation. Using 75% of the
total data (i.e., 262 9L curves and 211 C6 curves), we calibrated a two-species model
describing proliferative and senescent cells. We then applied the calibrated parameters to
a validation dataset (the remaining 25% of the data, i.e., 91 9L curves and 74 C6 curves) to
predict radiation response. Model predictions were compared to the microscopy
measurements using the Pearson correlation coefficient (PCC) and the concordance
correlation coefficient (CCC).

Results: For the 9L cells, we observed PCCs and CCCs between the model predictions
and validation data of (mean ± standard error) 0.96 ± 0.007 and 0.88 ± 0.013,
respectively, across all fractionation schemes. For the C6 cells, we observed PCCs and
CCCs between model predictions and the validation data were 0.89 ± 0.008 and 0.75 ±
0.017, respectively, across all fractionation schemes.

Conclusion: By proposing a time-resolved mathematical model of fractionated radiation
response that can be experimentally verified in vitro, this study is the first to establish a
framework for quantitative characterization and prediction of the dynamic radiobiological
response of 9L and C6 gliomas to fractionated radiotherapy.
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1 INTRODUCTION

Radiation therapy is a central component of the standard-of-care
for treating malignant gliomas (1), especially when the tumor is
located near sensitive brain regions with important functions
that are unresectable by surgery. Though various dose escalation
and fractionation schemes (i.e., hyper- and hypo- fractionation)
have been investigated, none have shown definitive improvement
on the long-term survival for glioblastoma patients (2). One
reason for this limitation is that the efficacy of radiation therapy
varies between patients due to heterogeneous radiosensitivity of
the cells within each individual’s tumor (3). If there was a
mathematical model that could accurately characterize, and
predict, the response of tumor cells to radiation therapy with
patient-specific data, then there would be the opportunity to
optimize the radiation plan for each individual (4). The currently
accepted model for evaluating radiation response given a specific
dose is the linear quadratic (LQ) model which was originally
developed empirically more than 40 years ago (5). The LQ model
quantifies the survival fractions of cell colonies given a specific
radiation dose and, though it provides a simple, and practical
relationship between those two measureables, it is not without its
limitations. In particular, the LQ model does not explicitly
characterize the temporal changes in tumor cell number; that
is the LQ model is not a function of time. Thus, while it can
provide accurate predictions of endpoint predictions (6), it is not
capable of predicting the temporal dynamics of radiation
response. Additionally, interpretation of the two main
parameters in the LQ model (alpha and beta) is fraught with
difficult, thereby clouding their biological meaning (7). This is
despite the now vast biological knowledge that exists regarding
DNA repair (8) and radiation-induced cell death pathways (9).
To address these two limitations, we previously proposed and
validated a mechanism-based time-resolved model (10) to a
single-dose treatment. We now seek to extend this model to
account for multiple-fraction treatment regimens.

Though a large single-dose of radiation can effectively kill
tumor cells, it is rarely used in clinical settings as high doses also
cause irreversible cytotoxicity to surrounding healthy tissues.
Thus, the notion of delivering a target total dose in “fractions”
over an extended period of time was adopted. There are four key
conceptions that are frequently kept in mind when designing
multi-fraction treatment plans: DNA damage repair, repopulation,
cell cycle redistribution, reoxygenation [sometimes referred to as
the “Four R”s (11)]. The DNA damage repair mechanisms help
the nearby healthy tissue recover between treatment intervals (12),
with the hope that the repair mechanisms are erroneous in the
tumor cells leading to their eventual cell death after repeated
fractions (13). Tumor cell repopulation (i.e., the ability of tumor
cells to proliferate between treatment intervals) can undermine
radiation efficacy, and thus may require extra fraction and/or total
dose to achieve tumor control (14). Cell cycle redistribution
increases the average tumor cell killing by allowing radiation-
resistant cells in S phase to redistribute into the more sensitive M
phase (15). Reoxygenation also enhances radiation damage as
radiation can produce free radicals which damage DNA, and this
damage can be made permanent by the presence of molecular
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oxygen [i.e., the ‘oxygen-fixation hypothesis’ (16)]. Additionally,
hypoxic regions of a tumor regions may become reoxygenated
between fractions (17). Previous modeling work has focused on
quantifying the effects of these four “R”s on the endpoint survival
fraction by (for example) incorporating an “oxygen enhancement
ratio” (18) or repopulation (19) into the LQ model. More recently,
several studies have constructed radiation response models that
account for temporal changes in hypoxia (20), DNA repair (21),
and fractionation (22). Hormuth et al. contributed a tissue-scale
model that employed the oxygen enhancement ratio to adjust the
radiation efficacy during fractionation treatment and tested model
predictions against in vivo MRI data (23, 24). Brüningk et al. (25)
proposed a cell-scale decision tree model that accounted for
conversion between cell cycle compartments after radiation. All
these models indicate an increasing interest in mathematically
describing the temporal dynamics of radiation response that are
not captured by the conventional LQ-based models.

We first propose to extend our previous single-dose model (10)
to characterize the radiation response of gliomas to fractionated
treatment. The fractionation model explicitly incorporates
temporal changes due to DNA damage repair, cell repopulation,
and cell cycle effect related to senescence.We then perform in vitro
microscopy experiments with 9L and C6 cell lines to obtain the
radiation response curves collected at high temporal resolution
under different treatment schedules and total radiation doses. Our
model is then trained on 75% of the total data to calibrate the
parameters. Finally, the remaining 25% of data serve as a validation
group to assess the model’s predictive accuracy. Our mechanism-
based, time-resolved, mathematical model achieves high predictive
accuracy across a range of fractionation schedules verified by six
different fractionation schemes and both cell lines.
2 MATERIALS AND METHODS

2.1 Experiments
2.1.1 Cell Culture
The 9L (AmericanTypeCulture Collection, ATCC) andC6 (Sigma
Aldrich) cells are cultured according to the manufacturer’s
guidelines as previously described (10). The 9L cell line is
cultured with Eagle’s minimum essential medium (ATCC, VA),
and theC6 cell line is culturedwithHam’s F12 (Corning,NY). Both
cell lines media are supplemented with 10% FBS and 2 mM L-
Glutamine. 0.2% Plasmocin Prophylactic (In vivogen, CA) is
supplied in the media to prevent mycoplasma contamination.
The mean passage number of the cells used in the experiments
was50±20.Both9LandC6are rat cell lines, but arecommonlyused
for general glioma studies (26, 27).

2.1.2 Radiation Treatment and Imaging
Figure 1 illustrates the radiation treatment schedule employed in
these studies. 9L and C6 cells were seeded on 96-well plates
(Corning, NY) at densities ranging from 3,200 to 32,000 cells/cm2

(1,000 to 10,000 cells total per well). To avoid cells reaching the
carrying capacity at later timepoints (which can result in cell death
due to lack of nutrients and physical space), we do not seed at a
confluence higher than 10,000 total cells. The cells are then
February 2022 | Volume 12 | Article 811415
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incubated overnight (~12 hours) to allow for attachment and
recovery. Before irradiation, the media is changed and augmented
with 250 nM Cytotox Red dye (Cat. No. 4632, Essen BioScience,
MI), a non-perturbing fluorescent dye to label dead cells. For both
the 9L andC6cell lines,we separate thewells into either a 16Gyor a
20 Gy total dose group. In the 16 Gy group, we irradiate the cells
with either four fractions of 4 Gy, three fractions of 5.3 Gy, or two
fractions of 8 Gy with 24-hour intervals between every fraction. In
the 20 Gy group, we irradiate cells with four fractions of 5 Gy, three
fractions of 6.7 Gy, and two fractions of 10 Gy with 24-hour
intervals between every fraction. All radiation is delivered by a
CellRad irradiator (Faxitron X-Ray Corp, Wheeling, IL, MA) at a
dose rate of 1.5 Gy/min (130 KeV, 5 mA, 0.5 mm aluminum filter).
After treatment, phase-contrast images and fluorescent Cytotox
Red images (for labeling dead cells) are acquired immediately after
the first fraction via the Incucyte S3 live imaging system (Essen
BioScience, Ann Arbor, MI) with a 4× objective, whole-well
imaging mode every four to six hours up to approximately 330
hours post-irradiation. Our media culture, along with the Cytotox
Red dye, was refreshed every five days throughout the experiment.
To prevent cell loss when refreshing themedia in the 96-well plates,
wepipettedonly the top80ml of the total 100ml perwell tominimize
thedisturbance toattachedcells. Liveanddeadcellswere segmented
using a semi-automated pipeline consisting of a histogram Otsu-
basedmethod followed by amorphology-based cell debris removal
[described in detail in (10)].

2.1.3 DSB Repair Kinetics
To quantify radiation-induced DNA double strand breaks (DSB)
and repair kinetics, we previously measured the expression level
of the gH2AX protein [a commonly used DSB biomarker (28)]
via flow cytometry after irradiating cells with a single dose of 2, 4,
8, or 16 Gy (see the Supplementary Materials of (10) for details).
We then used linear interpolation to obtain the DSB repair
kinetics for all other doses. The same data is used in this study as
described below.
Frontiers in Oncology | www.frontiersin.org 3
2.1.4 DNA Repair
DNA repair is represented by an exponential decay equation:

fDSB(t,D) = e−krepair (D)·t (1)

where fDSB(t,D) is the fraction of DSBs remaining unrepaired
(normalized between 0 and 1) at time, t, krepair(D) (in units of
hr-1) is the DSB repair rate at dose per fraction D. We use the
same krepairmeasured from our single-dose treatment study as an
estimate of the DSB repair rate during fractionation schedules.
This assignment is justified as Mariotti et al. (29) have measured
gH2AX under both single and multi-fractionated treatment
schemes and showed similar repair kinetics in response to a
second dose when cells are given proper time for repair and
recovery. Our previous flow cytometry experiments (10) indicate
that most (> 80%) DSBs are repaired within 24 hours given the
dose range we employ in the experiments. Therefore, this
estimation is reasonable.
2.2 Mathematical Modeling of Cell Growth
and Response to Radiation Therapy
The fractionated treatment model is an extension of our previous
single-dose radiation model described in (10) that models cell
response as a function of early cell death (corresponding to
apoptosis) and late cell death (corresponding to mitotic
catastrophe). We present the salient details of our single-dose
radiation model, but note that the complete development and
underlying assumptions are detailed in (10).
2.2.1 Single Species Model of Cell Growth in the
Absence of Radiation Therapy
For glioma cell proliferation in the absence of radiation therapy,
we augment exponential growth by incorporation of the logistic
growth and Allee effect:
FIGURE 1 | Radiation treatment schedule. Cells are seeded, incubated overnight, and then treated with either a total dose of 16 Gy or 20 Gy. In the 16 Gy total
dose group, cells are irradiated with 2 fractions of 8 Gy, 3 fractions of 5.3 Gy, or 4 fractions of 4 Gy. In the 20 Gy total dose group, cells are irradiated with 2
fractions of 10 Gy, 3 fractions of 6.7 Gy, or 4 fractions of 5 Gy. All irradiations are 24 hours apart. The culture media is refreshed every 5 days, and imaging lasts up
to two weeks after the initial irradiation.
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dN(t)
dt

= kp · N(t) ·
N(t)
q

+ A

� �
|{z}

Allee effect

· 1 −
N(t)
q

� �
|{z}

logistic growth

(2)

where N(t) is the tumor cell confluence, kp is the proliferation rate
(see Table 1 for a listing of all model parameters, their definition,
and units), A quantifies the strength of the Allee effect, and q is the
carrying capacity (i.e., the maximum number of cells that can fit
within a given volume due to space and nutrient limitations). The
Allee effect describes the cooperation effects in cell proliferation
rate and is proved significant in glioblastoma progression by
Neufeld et al. (30). Our previous analysis (10) used model
selection to establish that both logistic growth and the Allee
effect are necessary to accurately describe our glioma data.
2.2.2 Single-Species Model of Cell Growth in the
Response to Radiation Therapy
After radiation, a small number of cells undergo early apoptosis,
which is an outcome of activation of DNA protein kinase and
p53 due to excessive DSBs (31); these events occur on the
timescale of hours to days (32). Meanwhile, DNA misrepair
does not directly kill cells and can accumulate within cells’
genome, eventually triggering chromosome aberration and
mitotic catastrophe (33, 34); these events occur on the
timescale of days to weeks (32). Based on the above
mechanisms, we add early and late death terms to Eq. (2):

dN(t)
dt

= (kp − kld(t,D,N0)) ·
N(t)
q

+ A

� �
|{z}

Allee effect

· N(t)

· 1 −
N(t)
q

� �
|{z}

logistic growth

− ked(t,D,N0) · N(t) (3)
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where ked and kld (both in units of hr-1) represent early death
and late death rates, respectively, and are a function of time t,
dose per fraction D, and the initial confluency N0. We use the
following equation to describe early cell death as a function of
the fraction of unrepaired DSBs within the cell’s genome, fDSB
(t):

ked(t,D,N0) = o
fraction
number

i=1
kaccute(D,N0) · fDSB(t

i,D) (4)

ti =
t − 24 � (i − 1)

0

t > 24 � (i − 1)

t < 24 � (i − 1)

(
(5)

where kacute(D,N0) is the acute death rate. ti (units: hours) is
the time that has passed since the ith fraction. As it would be
extremely complex to model the death due to each fraction
separately, kacute(D,N0) is viewed as an average death rate
across all fractions and written as:

kacute(D,N0) = (aacute,N · N0 + 1) · kacute,D · D (6)

where aacute,N is a scale factor representing the contribution of
acute death due to the initial seeding density, N0. Biologically, N0

influences (due to cell-cell contact) the proportion of actively
proliferating cells at the time of radiation, which determines
radiation sensitivity[(as late G2 and M phase is the most
sensitive cell cycle (35)]. kacute,D is a death rate indicating the
contribution of radiation dose to acute death, as larger doses can
translate to a higher number of DSBs and, therefore, early
apoptosis. Figure 2 illustrates the changes in ked over time. We
note that the “+1” in Eq. (6) is for mathematical convenience.
When aacute,N (i.e., the contribution of the initial seeding density
to acute death) is close to 0, Eq. (6) simplifies to kacute(D,N0)=
kacute,D ·D. Thus, without the “+1”, when aacute,N approaches 0,
kacute(D,N0) will also decrease to 0 and the effect of dose will only
be determined by seeding density effects.
TABLE 1 | Model parameters and variables.

Parameter Unit Interpretation Source

kp hr-1 Proliferation rate Computed from control, untreated group and fixed throughout experiments
q 1 Carrying capacity
A 1 Allee effect
Np 1 Confluence of proliferating cells Initial cell confluence and total confluence (i.e., Np+Ns) are measured from

microscopy data.Ns 1 Confluence of senescent cells
N0 1 Initial confluence of cells at time = 0
fDSB 1 The fraction of DSBs remaining unrepaired (normalized

between 0 and 1)
Measured by flow cytometry

kacute,N hr-1 Death rate quantifying the contribution of initial confluence to early
death

Fit globally with all treated cell response curves.

aaccum,N 1 Scale factor quantifying the contribution of initial confluence to late
death

kaccum,D hr-1 Death rate quantifying the contribution of radiation doses to late death
r hr-1 Radiation efficacy
kps hr-1 Conversion rate from proliferation to senescent components.
The unit “1” means the parameter is unitless.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Mathematical Model Fractionated Treatment Response
The “late death” component models mitotic catastrophe of
misrepaired cells that occurs following several cell divisions. This
population has previously also been referred to as the “abortive
fraction” (36). Some cells can survive hours to weeks after radiation
before mitotic catastrophe occurs. Here, we model late death as:

kid(t,D,N0) = o
fraction
number

1
kaccum(D,N0) · t

i · e−r·t
i

(7)

where kaccum(D,N0) is that rate at which the misrepair error first
accumulates within the cells’ genome, and r (in units of hr-1)
controls the decay rate of the radiation efficacy. The decay rate of
radiation efficacy is viewed as an intrinsic property of each cell line
and is a constant across different treatment conditions. Just as for
the early death term, we model the parameter kaccum(D,N0) as an
average across fractions, instead of modeling each fraction
separately. The accumulation death rate kaccum(D,N0) is thus
written as:

kaccum(D,N0) = (aaccum,N · N0 + 1) · kaccum,D · D (8)

whereaaccum,N is a scale factor representing the contribution of late
accumulation cell deathdue to the initial seedingdensity,N0. Eq. (8)
Frontiers in Oncology | www.frontiersin.org 5
accounts for the fact that cell density directly impacts the
proliferation rate via (for example) the proportion cells that are in
Mphase, which eventually determines howmany cells can undergo
mitotic catastrophe as it occurs during M phase. kaccum,D is a death
rate describing the contribution of radiation dose to accumulation
death, as high doses induce a high probability of misrepair [caused
bymisjoiningof clusteredDSBs (37)].Note thatEqs. (6)– (8) have a
modified form from our previous single dose study (10); we return
to this point in Discussion section.

2.2.3 Two-Species Model of Cell Growth in
Response to Radiation Therapy
We construct a two-species model of response to radiation
therapy by considering both proliferative and senescent tumor
cells. Several mechanisms in radiobiology contribute to the
appearance of a senescent population after radiation (38)
including (for example) cell cycle checkpoint pathways (39).
These senescent cells can remain metabolically active, but
undergo irreversible cell cycle arrest and thus can no longer
replicate. Without this component, the model assumes cells
either return to proliferating (overestimate cell survival) or
undergo early or late death (overestimate radiation cell killing),
thereby causing a systematic error in the predicted confluence.
A

B

C

FIGURE 2 | Glioma death rate over time. The figure shows the calibrated early and late death parameters of 9L cell line. Panel (A) shows how the early and late
death rates change as a function of time from a single treatment. After radiation, the acute death spikes and decreases as the double strand breaks are repaired. In
contrast, misrepaired DSBs accumulate within the cells’ genome, causing the late death rate to increase over time, before it eventually decreases as the radiation
efficacy decays. Panel (B) shows the summation (labeled by the blue solid line) of four fractions (each fraction labeled as dashed lines) irradiated every 24 hours
starting from time 0. Each fraction has the same effect as in panel (A). Panel (C) illustrates the hypothesis captured by Eq. (7); namely, that kaccum(D,N0) is a function
of both dose and initial confluence. Each blue cross indicates the calibrated result of one replicate of the 9L cell line.
February 2022 | Volume 12 | Article 811415

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Mathematical Model Fractionated Treatment Response
Therefore, we extended Eq. (3) to include a proliferating
compartment, Np(t), and a senescent compartment, Ns(t):

dNp(t)

dt
= (kp − kld(t,D,N0)) ·

Np(t) + Ns(t)

q
+ A

� �
· N(t)

· 1 −
Np(t) + Ns(t)

q

� �
− ked(t,D,N0) · Np(t)

− kps(Dtotal) · N0 · Np(t) (9)

dNs(t)
dt

= kps(Dtotal) · N0 · Np(t) (10)

Eq. (9) - (10) characterize the conversion from the proliferation to
senescent compartment due to radiation. As cell-cell contact
promotes senescence, we assume that the convertion rate follows
a simple linear relation proportional to the initial cell density with
the proportionality constant kps (units of hr-1). Note that the
carrying capacity, q, is now shared by both Np and Ns.
Additionally, the conversion rate kps is a function of the total dose
(i.e., 16 Gy or 20 Gy in our experiments). This simplification (i.e.,
making kps a constant based on the total dose) is because we do not
have a direct measurement of the senescent population as this
population is changing with each dosing scheme and over time.
That is, kps should really be a function of time, dose per fraction, and
fraction number. To practically realize such an explicit expression
for kps would require additional experimental measurements.

2.3 Numerical Implementation of the
Mathematical Models
ODE models were implemented via the finite difference method
with a fully explicit forward Euler formulation with a time step of
0.01 hrs with initial condition, Np(0), equal to the cell confluence
measurements at time 0 and Ns(0) = 0. Early acute death rate
term is multiplied by a smooth heaviside step function, via the
hyperbolic tangent function; tanh [fDSB(t)], to prevent
curve discontinuity.

2.4 Model Selection
Eqs. (1) – (10) are based on general radiobiology mechanisms.
For specific cell lines with different signaling pathways and
radiation sensitivity, it is unclear if this model is appropriate to
describe the data. Therefore, it is crucial to perform model
selection prior to applying the model to a specific cell line.
Starting from the above “full model”, we systematically remove
one or two parameters, yielding seven competing “daughter”
models. Using the early death term as an example, the initial
seeding density N0 and doses D might not have an impact on
early apoptosis for the 9L and C6 cell lines. By removing either
aacute,N or kaccum,D or both, we obtain three “daughter” models
(i.e., models 2-4 in section 2 of the Supplementary Materials).
Similarly, removing the late death term (three models) or the
senescent term (one model) yields an additional seven
“daughter” models. (See the section 2 of the Supplementary
Materials for the formulation of all eight models.). For each
model, parameters are fit with the Levenberg-Marquardt
Frontiers in Oncology | www.frontiersin.org 6
algorithm (via “lsqnonlin” in MATLAB). To determine which
mechanisms are required for optimally characterizing 9L and C6
data and to obtain the most parsimonious model, we perform
model selection on these eight models via the Akaike
information criterion (AIC) (40):

AIC = n · ln
RSS
n

+ 2p +
2p2 + 2p
n − p − 1

(11)

where n is the sample number (i.e., the number of cell confluency
curves in our scenario), RSS is the residual squared sum between
the model fit and data, and p is the number of free parameters.
The AIC finds the most parsimonious model by balancing the
relative goodness-of-fit with the number of free parameters.
Specifically, we build our training set by randomly picking
seventy-five percent of the data under each treatment
condition, leading to 262 replicates for the 9L cells and 211
replicates for the C6 cells. (That is, we pick 75% from four
fractions of 4 Gy, 75% from two fractions of 10 Gy, etc., thereby
ensuring that each treatment condition is equally represented in
the training set.) The remaining 25% of the data is used for
validation. (Note that the word ‘replicate’ is in reference to our
experiments; that is, we repeated a group of independent wells
with the same treatment schedules at time point 0. The response
from each well over the 340 hours won’t be identical as they are
affected by (for example) subtle variations in the cells’ phenotype
or genotype, variations in initial seeding density, etc.)

The AIC-based model selection is then performed on all eight
models including the full model using the training set. By
globally fitting the training set (i.e., 262 9L replicates and 211
C6 replicates, to these eight models respectively) we obtain the
residual squared sum over the entire training set for each model.
The model that returns the lowest AIC score is selected as the
most parsimonious. We also compute the Akaike weights via:

wi =
exp (di)

o
8

j=1
exp (di)

(12)

di =
AICi − AICmin

AICmin
(13)

where AICi is the AIC score of the ith model, and AICmin is the
minimum AIC observed among all eight models. These weights
are used to compare the models to each other.

2.5 Parameter Calibration
Table 1 lists parameter definitions and themethods we use to obtain
these parameters.We previously (10) fit untreated cell data to Eq. (1)
to obtain the proliferation rate, kp, carrying capacity, q, and the Allee
constant, A, for both the 9L and C6 cells. These parameters are
assumed constant throughout the present study. The standard
deviation of the estimated model parameters is computed via
“nlparci” in MATLAB, and employed to generate a corresponding
distribution via “makedist”. As the biological definitions of these
parameters specify their values must be positive, the parameters are
February 2022 | Volume 12 | Article 811415
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given a lower bound of zero during calibration. Note that during
model calibration, we fit parameters globally in the sense that all
curves from the training set, consisting of both the 16 Gy and 20 Gy
totaldosegroups, arefit together sinceallparameters are independent
of dose and initial cell density except for the conversion ratekps. Askps
is a functionof the total dose,we treat kps at 16Gy and at 20Gy as two
individual parameters in our calibration process. Distributions of the
calibrated parameters are compared between the two cell lines to
verify if they are significantly different by the z-test (via “ztest” in
MATLAB at the 5% significance level).

2.6 Model Validation and Error Analysis
Validation is performed on the AIC selected model using the
remaining twenty-five percent of data (i.e., 91 9L curves and 74
C6curves),which are “unseen”during both themodel selectionand
parameter calibration steps. The forward model has two inputs:
initial seeding density (N0) and dose schedule. We run the model
forward using the calibrated parameters as shown in Figure 5. The
predictionmean and intervals are then computed via theMATLAB
function “nlpredci” by inputting the calibrated parameters,
Jacobian matrix, and residuals determined by the “lsqnonlin”
during calibration. Radiation responses are predicted using the
same set of parameters regardless of treatment dose schedules or
initial density. For example, predicting the effects of the four
fractions of 4 Gy on the low confluence group employs the same
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set of parameters as predicting the effects of the two fractions of 10
Gy on the high confluence group (except for the kps, which is a
constant based on total dose). To quantify the predictive accuracy,
we compare the measured and model prediction means using the
Pearson correlation coefficient (PCC) and concordance correlation
coefficient (CCC).
3 RESULTS

3.1 Image Segmentation and Cell
Response Curves
The same image segmentation pipeline from our previous study
(10) is used here. When comparing the automatically segmented
images to our manually segmented baseline, this segmentation
pipeline achieves an average Sørensen–Dice coefficient of 0.79
(i.e., 21% error). See Figure 3 for an example of a cell response
curve that received four fractions of 4 Gy and its corresponding
image segmentation.

3.2 Model Selection
Figure 4 summarizes the AIC weights across all eight models. As
it has the highest weights for both the 9L and C6 cell lines, Model
3 was selected as the most parsimonious model from the training
set and thus will be used for parameter calibration and
A B

C
D

FIGURE 3 | Example of cell response curve and image segmentation. Panel (A) shows the cell response curve from one replicate of the 9L cell line treated with four
fractions of 4 Gy. The left portion of Panel (B) is the raw data at 40 hours [indicated by the orange circle in panel (A)] obtained via live cell microscopy. The image is
presented as phase-contrast with a red fluorescent label indicating dead cells. The corresponding segmentation (highlighted by yellow) is on the right portion of panel
(B). The left portion of Panel (c) is the raw data at 190 hours [indicated by the blue circle in panel (A)], where there are a large number of dead cells compared to the
early time point. The corresponding segmentation is presented in the right portion of the panel. Panel (D) briefly summarizes our segmentation pipeline; details were
provided in ref. (10).
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prediction. While the complete formulation is presented in the
section 2 of the Supplementary Materials, Model 3 combines
early apoptosis (kacute,N), mitotic catastrophe (aaccum,N, kaccum,D,
r), and senescence [kps(16 Gy), kps(20 Gy)] as given by the
following system of equations:

dNp(t)

dt
= (kp − kld(t,D,N0)) ·

Np(t) + Ns(t)

q
+ A

� �
· N(t)

· 1 −
Np(t) + Ns(t)

q

� �
                 − ked(t,D,N0)

· Np(t) − kps(Dtotal) · N0 · Np(t) (14)

ked(t,D,N0) = o
fraction
number

i=1
kaccute,N · N0 · fDSB(t

i,D) (15)

kid(t,D,N0) = o
fraction
number

1
(aaccum,N · N0 + 1) · kaccum,D · ti · e−r·t

i

(16)

dNs(t)
dt

= kps(Dtotal) · N0 · Np(t) (17)

Note that the parameter kacute,D in Eq. (6) is removed and the
corresponding expression for early death is rewritten as in Eq.
(15). This was done since model selection indicated that kacute,D
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is not required to characterize our data. Consequently, we
removed kacute,D and modified the notation of aacute,N in Eq.
(6) to kacute,N (in units of hr-1) in Eq. (15) to represent the
death rate.

From the AIC score, model 3 [i.e., Eqs. (14) – (17)] is 1.18
times more likely to be the best model than model 4 ‘no early
death’ model, 2.61 times more likely than model 7 ‘no late death
model’, and 1.82 times more likely than model 8 ‘no senescence’
single species model. These results indicate the importance of
accumulation effects (i.e., accumulating DNA misrepair, mitotic
catastrophe and gradual conversion to senescence) over acute
effects (i.e., early apoptosis) to quantify the time courses of 9L
and C6 radiation response. Note that the goal of the model
selection process is to identify the most parsimonious model to
describe our time-resolved data, rather than the model that
includes the most biology. As for the 9L and C6 cell lines,
most cells die due to late mitotic catastrophe while early
apoptosis only kills a minority of cells. Thus, removing the
radiation dose effect from the early death term as in model 3
does not harm the model’s ability to characterize the data.
3.3 Parameter Calibration
The AIC selected model has six parameters kacute,N, aaccum,N,
kaccum,D, r, kps(16 Gy), and kps(20 Gy). The top panel in Figure 5
shows the calibrated parameters for the 9L cells, while the
bottom panel shows the calibrated parameters for the C6 cells.
Note that the model allows to quantify the degree to which the
C6 cell line is more radiation sensitive than the 9L cell line, as has
been previously reported (41). In particular, the early death rates
kacute,N (p value = 9.5e-23), late death rates kaccum,D (p value =
8.1e-21) and conversion rate to senescent component kps (p value =
1.6e-20 for 16 Gy and 0.0 for 20 Gy) of the C6 are all significantly
larger than 9L via the z-test. Both the 9L and C6 exhibit a similar
radiation efficacy decay r (p value = 0.44, i.e., no significant
difference via z-test), suggesting a similar duration of radiation
cell killing persisting on both cell lines. The proliferation rate,
carrying capacity, and Allee effect parameter values, as well as the
number of training curves for calibration, are provided in the
section 1 of the Supplementary Material.
3.4 Model Validation and Error Analysis
We use the validation group (25% of our total data, 91 9L curves
and 74 C6 curves) to evaluate the predictive accuracy of our
model. Figure 6 presents examples of the model validation
results with each column representing one initial confluence of
a specific cell line (e.g., the first column shows a low initial
seeding confluence of the 9L cell line). Each row shows a different
fractionation schedule (e.g., the first row shows cells receiving
four fractions of 4 Gy radiation). The error bar on the
measurement (labeled by blue) is based on the image
segmentation error (21%) from our previous study (10), as the
same segmentation pipeline is used. The prediction error (labeled
by red) is computed from MATLAB function ‘nlpredci’, which
computes the prediction interval via the Delta method based on
the Jacobian matrix.
FIGURE 4 | AIC weights for each model models. The label, “Full” on the
horizontal axis indicates that all model components are included [i.e., Eq. (1) –
(10)], while the other labels indicate what portion of the Full model was
removed in that particular reduced model. AIC weights can be interpreted as
the probability that a particular model is preferred for modeling the 9L (blue)
or C6 (red) cell line. In particular, Model 3 is most frequently selected by the
AIC for both the 9L and C6 cell lines. Models without accumulation effects
(i.e., model 5-8) generally perform worse than models without early effects
(model 2-4), indicating the importance of incorporating the effects of late cell
killing over acute apoptosis.
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For the 9L group receiving a total dose of 16 Gy, the average
PCC and CCC between the predicted and the measured data are
0.92 ± 0.009 (average ± standard error) and 0.78 ± 0.014,
respectively. For the 9L group receiving a total of 20 Gy, the
PCC and CCC are 0.98 ± 0.001 and 0.96 ± 0.002, respectively.
For the C6 group receiving a total of 16 Gy, the PCC and CCC
are 0.89 ± 0.011 and 0.77 ± 0.020, respectively. Finally, for the
Frontiers in Oncology | www.frontiersin.org 9
C6 group receiving a total of 20 Gy, the PCC and CCC are 0.90 ±
0.004 and 0.73 ± 0.014, respectively. Details of PCC and CCC
values for each treatment condition is provided in Table 2.
Overall, the accuracy of prediction is superior for the 9L cell line
than the C6 cell line. This is at least partially due to the
heterogeneous radiation response observed across the C6
replicates; we return to this important point in Discussion section.
FIGURE 5 | Parameter calibration results. All parameters are fit globally using the training set and are independent of initial seeding density or dose schedules (e.g.,
the four fractions of 4 Gy curves share the same set of parameters as the two fractions of 10 Gy curves for both the 9L and C6; the one exception is for kps, where
we treat kps (16 Gy) and kps (20 Gy) as two individual parameters. The biological interpretation of the parameters requires that these parameters must take on a value
great than or equal to 0; thus, the lower bound of the parameters is set to zero during calibration.
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FIGURE 6 | Model validation. The prediction interval (labeled by red) and measured microscopy data (labeled blue dots) are plot for representative examples of each
initial and treatment condition. Previously we determined our average segmentation error was 21% using the Sørensen–Dice coefficient (10). This segmentation error
is indicated by the blue intervals. Each row in this figure shows different treatment schedules labeled on the left; for example, the first row shows cells treated with
four fractions of 4 Gy. Each column stands for the initial confluence for a specific cell line; for example, the first column represents low initial seeding density for 9L
cell line. Predictions are made globally for each of the cell lines; that is, predictions for the 9L cells with an initial low confluence receiving four fractions of 4 Gy are
made using the same set of parameters as the 9L cells with an initial high confluence receiving two fractions of 10 Gy. Given the initial confluence and treatment
schedule as the two inputs, our model makes accurate predictions across a wide range of initial conditions. However, the model is not perfect as the prediction
typically undershoots the first peak while overshooting the tail for C6 cell line; an important point we return to in the Discussion section.
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4 DISCUSSION

We have proposed an experimental-computational system that
includes a mathematical model that characterizes the dynamic
cell response of the 9L and C6 glioma receiving fractionated
radiation. Model parameters are calibrated using a training set of
various initial seeding densities and dose schedules over the
course of two weeks. Next, the calibrated parameters are applied
to a validation set to predict response to radiation therapy. Each
term in our model has an explicit or implicit (i.e., aaccum,N, kps
(16 Gy), kps(20 Gy) are indirectly related to cell cycles)
biological definition. For example, early apoptosis and late
mitotic catastrophe are captured by the parameters kacute,N
and kaccum,D, r, respectively. This approach has several
advantages over current models as it explicitly includes the
temporal dynamics of several biological mechanisms related to
the response of cells to fractionated radiation.

Mathematically, the LQmodel describes the fraction of survival
cells at experimental endpoints given a specific radiation dose, and
therefore is not designed for calibrating with time-resolved data.
Though there are mathematical models that account for temporal
dynamics by embedding the LQ term into the death rates (42), the
true death rates are unlikely to obey the LQ relation throughout
the whole time course as it ignores time dependent phenomena
such as early apoptosis and late mitotic catastrophe. Time-
dependent radiobiologic mechanisms are often ignored in these
modeling studies, a limitation possibly due to the historical
difficulty of accessing radiation response data with high
temporal resolution. However, recent advances in imaging
techniques can now provide the requisite, high temporal
resolution data (43–45) appropriate for model calibration. When
we mathematically characterize these time series data, a dynamic
model is required, since the measurement interval (e.g., hours) is
much shorter than the length of the experiment when the
surviving fraction would be determined via the LQ model. To
the best of our knowledge, this study is the first mechanism-based
fractionated radiation model verified by the cell experimental data
at high temporal-resolution. We have constructed this approach
by building on previous time-resolved dynamic radiation models
that either calibrated to a single dose of radiation (46), or to data
collected every several days (23) or weeks (47). We hope that the
current effort can provide motivation for focusing on factors that
describe the dynamics of radiobiology as a function of time,
thereby potentially providing a new way to guide and optimize
radiation dose scheduling.
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As each term in the selected model system [i.e., Eqs. (14) –
(17)] is based on an underlying mechanism, the calibrated
parameters summarized in Figure 5 are easily interpreted in
light of the underlying biology. Though the specific values of
parameters may differ for each cell line (a not unexpected
observation), the trend observed (i.e., radiosensitive cells
exhibit significantly larger death rates) may carry over to other
cell lines since the proposed model and the parameters are based
on biological mechanisms common to a wide range of cell lines
(48). Thus, the model summarized by Eqs. (14) – (17) is likely
applicable to other cell lines for which radiation treatment is of
interest, thereby having a significant impact beyond gliomas.

Despite the advantages, there are several opportunities for
improvement in both the experimental and modeling
components of the study. For example, note that in Figure 6
some curves suffer a discontinuous jump (e.g., at approximately
110 hours in the “4 fractions of 5 Gy” high confluence group).
This is due to the cell loss when we refresh the media. While we
have implemented a method to change the media as delicately as
possible (as described in section 2.1.2), we are still aspirating an
unknown number of live cells at each media change. Potentially
more significant, though, is how we handle the senescent
component. Since we did not have a method in place that
allows us to directly measure this component over time, we are
forced to infer its existence and behavior via parameter
calibration. Clearly, incorporating longitudinal measurements
of the fractions of senescent cells is required to generalize the
model to other dosing schemes.

Areas for improvement on the modeling side include
developing a more rigorous linking between radiation dose and
the rate constants. For example, note that Eqs. (6) and (8) have a
different form from our previous single-dose study (10). The main
reason for the changes is due to the dose range in this study (4 - 10
Gy per fraction) compared to the previous study (a single fraction
of 2 – 16 Gy). In our previous single-fraction study we observed a
saturation effect in the death rates; i.e., the death rates do not
significantly increase above a certain dose threshold. This is
because cell death does not happen instantaneously; i.e., the cell
death pathways require time to be executed. Thus, we use
Michaelis–Menten equations to characterize the observed
saturation effect. However, in the present study, we use a
narrower range of radiation dose and we did not observe the
saturation in cell killing within this dose range. Thus, we use a
simple linear relation for the acute death, kacute(D,N0),
accumulation death, kaccum(D,N0), and a constant radiation
TABLE 2 | Error between model prediction and measurement.

Treatment schedule 9L C6

PCC CCC PCC CCC

16 Gy 4 fractions of 4 Gy 0.96 ± 0.003 0.84 ± 0.011 0.91 ± 0.007 0.85 ± 0.012
3 fractions of 5.3 Gy 0.85 ± 0.015 0.71 ± 0.019 0.89 ± 0.008 0.76 ± 0.014
2 fractions of 8 Gy 0.96 ± 0.001 0.79 ± 0.003 0.84 ± 0.016 0.65 ± 0.029

20 Gy 4 fractions of 5 Gy 0.97 ± 0.002 0.96 ± 0.002 0.90 ± 0.005 0.76 ± 0.011
3 fractions of 6.7 Gy 0.98 ± 0.001 0.93 ± 0.001 0.88 ± 0.004 0.64 ± 0.016
2 fractions of 10 Gy 0.98 ± 0.001 0.95 ± 0.003 0.91 ± 0.004 0.77 ± 0.011
F
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efficacy r, versus radiation doses. Consequently, the death rates
kacute(D,N0), kaccum(D,N0), and r most likely require future
modifications when applied to dose schedules involving larger
doses. We also note that, compared to the previous single-dose
study [i.e., Eq. (6) in (10)], we removed the parameter T in Eq. (7).
This parameter assumes there is a time delay, T, before the
accumulation of misrepairs can start. Our previous study
established its value between the first 20-40 hours after radiation
for the 9L cell line, and 0 hours for the C6 cell line [consistent with
the established radiosensitivity of the C6 cell line (41)]. In current
fractionated dosing scheme, as we extend the experiment time to
approximately 340 hours, the value of T is much less than the
length of the experiment. Thus, it is reasonable to remove the
parameter T for simplicity. Another limitation is that Eqs. (14) –
(17) do not (of course) account for all of the most prominent
radiobiological processes. For example, we assume a fixed
conversion rate between the proliferative and senescent
components—a parameter that is likely to change with time,
dose per fraction, and fraction numbers, and therefore would
require a function of its own to describe its temporal dynamics.
Indeed, this may explain the undershoot peak or overshoot tail in
Figure 6. A second area for improvement in Eqs. (14) – (17) is the
explicit incorporation of phenotypic or genomic heterogeneity
across the population, which almost certainly affects the early
(kacute,N) and late (kaccum,D) death effects between different
replicates. This explains why the correlation coefficients in
Table 2 indicate the model performs worse under certain dose
schedules for the C6 cell line. See section 3 of the Supplementary
Materials for an example of the heterogeneous response we
observe in two replicates of C6 cells treated with the same three
fractions of 6.7 Gy (note this is the group with the lowest PCC and
CCC value). Accounting for such heterogeneity to improve the
predictive accuracy of the model will be the focus of future study.
As presented, the current model has limited clinical application
because it is formulated for describing the 2D dynamics of cells in
a dish which is, of course, very different than the in vivo situation.
However, the concept of using time-resolved data to calibrate a
biologically-based, mathematical model to make patient specific
predictions is highly translatable and, indeed, something we have
investigated at length in both the in vivo pre-clinical (49–53) and
clinical (24, 54–58) settings.
5 CONCLUSION

We have extended our previous single-dose model to account
fractionated treatment, and successfully validated the resulting
Frontiers in Oncology | www.frontiersin.org 12
model with in vitro experimental microscopy data. This study
demonstrates a promising experimental-mathematical approach
based on radiobiology mechanisms that can accurately predict
the temporal dynamics of the response of glioma cells to
radiation. Future efforts include linking the model to our tissue
scale formalism for predicting response in patients (23), and
employing the methods of optimal control theory to optimize
treatment outcomes in pre-clinical murine studies (59).
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