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Abstract

We present a mathematical model for the simulation of the development of an outbreak of
coronavirus disease 2019 (COVID-19) in a slum area under different interventions. Instead
of representing interventions as modulations of the parameters of a free-running epidemic,
we introduce a model structure that accounts for the actions but does not assume the results.
The disease is modelled in terms of the progression of viraemia reported in scientific studies.
The emergence of symptoms in the model reflects the statistics of a nation-wide highly detailed
database consisting of more than 62 000 cases (about a half of them confirmed by reverse
transcription-polymerase chain reaction tests) with recorded symptoms in Argentina. The
stochastic model displays several of the characteristics of COVID-19 such as a high variability
in the evolution of the outbreaks, including long periods in which they run undetected, spon-
taneous extinction followed by a late outbreak and unimodal as well as bimodal progressions of
daily counts of cases (second waves without ad-hoc hypothesis). We show how the relation
between undetected cases (including the ‘asymptomatic’ cases) and detected cases changes as
a function of the public policies, the efficiency of the implementation and the timing with
respect to the development of the outbreak. We show also that the relation between detected
cases and total cases strongly depends on the implemented policies and that detected cases
cannot be regarded as a measure of the outbreak, being the dependency between total cases
and detected cases in general not monotonic as a function of the efficiency in the intervention
method. According to the model, it is possible to control an outbreak with interventions based
on the detection of symptoms only in the case when the presence of just one symptom prompts
isolation and the detection efficiency reaches about 80% of the cases. Requesting two symptoms
to trigger intervention can be enough to fail in the goals.

Introduction

Ever since the emergence of coronavirus disease 2019 (COVID-19) [1], mathematical models
have been proposed to examine, illustrate and forecast the possible evolution of the pandemic,
as well as recommending public measures for managing it. Modelling epidemics has to deal
with a variety of difficulties at different levels and the present pandemic is not an exception.

This study adopts a stochastic approach – following a line of thought developed over the last
century [2–5] – that rests on counting populations in its natural form and evolving their num-
bers at characteristic events. In relation to them, ordinary differential equation models represent
the evolution of average fractions of populations in a large-population limit [6–9].1 In this
respect, one of our aims is to explore, at least within the limited scope of the situation consid-
ered, the relevance of stochasticity in our perception of the pandemic.

A good part of the literature has addressed the phenomena of asymptomatic carriers of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [11–17]. Unfortunately, the
label ‘asymptomatic’ has been used with different meanings, going from ‘not presenting the
expected symptoms at the moment of infecting someone else’, as in [11, 13] to ‘never, in
the course of the infection, presenting symptoms’ [18]. In all cases, asymptomatic and pre-
symptomatic are considered as objective categories pertaining to the relation between the
infected person and the infectious agent. The influence of the actions of the public health
system and the perception of illness by the patients in building these categories has not
been properly examined, thus preventing any improvement of these actions.

In previous modelling studies either asymptomatic carriers of SARS-CoV-2 have not been
considered or they have been incorporated using an ad-hoc hypothesis, such as that the ratio
between asymptomatic and symptomatic cases is constant (see, e.g. [19]). In contrast, our
model incorporates a detection component based on what it is known of detection policies.
Another sharp difference with an earlier study is that we model a variable contagiousness
and not only a variable contagious period. Furthermore, intrinsic stochasticity is included

1For an epistemological discussion in the context of COVID-19, the reader may consult [(work in press) ref. 10].
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in contrast to the extrinsic stochasticity (added a-posteriori2)
included in [19] and few other studies. A search in PubMed3

with keywords covid-19, mathematical and model offered 540 arti-
cles. A refinement with keywords covid-19, model, asymptomatic
and stochastic ends in six scientific publications (as of
2020-09-09) plus one news article (not a research article) for a
specialised magazine. Of the later six, reference [19] is the most
closely related to our study, hence our decision to indicate only
the differences of the current study with a related one among
the pre-existing papers.

In this study, we will take a complex systems view. We begin by
acknowledging that the COVID-19 epidemic is no longer a free-
running epidemic but rather one in which there is a strong
interaction between the public health system and the population
dynamics of the outbreaks. Changes in the evolution of an outbreak
trigger changes in the consideration of which characteristics of the
COVID-19 cases should (or should not) trigger public action.
This indicates that there is a clear interaction between these systems
and they cannot be considered independent. To illustrate the point,
wewill use the various criteria of ‘COVID-19 case’ used in our home
country (HGS), Argentina, following recommendations by the
World Health Organization (WHO). We will produce compart-
ments that relate to the evolution of the case in medical or biological
terms as well as to the categories corresponding to the different
protocols to be applied to the case.

The response to an epidemic requires not only the mobilisation
of public resources but the participation of the public as well.
To organise the actions required for each individual case
COVID-hot-lines and web-servers have been organised worldwide.
Such help services indicate which measures to take by those that
suspect they are developing COVID-19, and prompt official actions
if needed. Hospitals and health centres, as well as help services, are
coordinated in their actions by protocols. A main tool of these
protocols is the suspected-case criterion. This criterion regulates
state intervention and depends on clinical symptoms of the (poten-
tial) patient and other circumstances. The criterion constitutes a
difficult balance between the administration of resources (e.g. use
of reverse transcription polymerase chain reaction (RT-PCR) kits
and laboratories), the developmental stage of the epidemic, the
mortality risk of the case and more. As in any decision taken
under real circumstances (limited resources), establishing the
suspected-case criterion implies trade-offs. When diagnostic
resources – such as RT-PCR tests – are limited, a conflict emerges:
should we reserve them for individual diagnosis (e.g. to confirm
diagnostic by symptoms in cases of doubt or concern) or perhaps
use them in epidemiological surveillance (triggering actions such
as contact tracing or sample pooling monitoring) as well? In any
intermediate cases: in which proportions?

Should the general criterion depend on being a contact of a
COVID-19 case? Does it make sense to require weaker symptoms
for the population which is aware of having epidemiological con-
tact with COVID-19 cases rather than for the communitarian
cases that cannot account for how they could have been infected?
Actually, it could make sense if by such measures we were able to
achieve a more efficient use of a scarce resource to be reserved for
diagnosing related to treatment (a private/individual criterion
contrasting to public/epidemic criteria). The question must be
put: is it correct to focus our attention on travellers and their con-
tacts at the beginning of the outbreak? Is efficiency really boosted

by requiring two relevant symptoms of a list for potentially com-
munitarian cases and only one to people with epidemiological
contacts? In the context of the propagation of SARS-CoV-2,
what are the consequences of such decisions? We will address
these questions implementing a model apt for answering them.

To set the grounds for our model, we analyse data collected by
the Public Health Ministry of Argentina, made available to us
through the COVID-19 initiative under the Ministry of Science
and Technology. The model incorporates medical findings regard-
ing the transmission of SARS-CoV-2 as well as actions taken by
the health authorities and to a certain extent the social behaviour
of the population. We apply the model to small slums (variously
called in South America: villas miseria, villas de emergencia,
cantegril, favelas, etc.) where the conditions of homogeneous con-
tact, frequently used to simplify the modelling task, are closer to
be fulfilled. We show how the model predicts epidemic circulation
below the detection level for surprisingly long periods of time.
Also, we illustrate that ‘average epidemics’ are not good represen-
tatives to grasp the dynamics, and that the undetected (mild,
unrecognised, presymptomatic, ‘asymptomatic’) cases are in
good proportion the result of public policies coupled to the
characteristics of the illness. The outcome of three forms of
surveillance and public action are comparatively analysed.

In Section ‘The Model’, we describe the model, from its basis –
supported in both biology and social behaviour – all the way to the
algorithm implementing a Markov-jump process [3, 4]. Results are
presented in Section ‘Results’ and discussed in the following
section. Section ‘Conclusions’ finally sums up the conclusions.

The model

Biological and social input

What is a COVID-19 case?
We review the evolution of the definition of ‘case’ along with the
development of the pandemic. In many countries, this definition
emerges from the national health authorities, following recommen-
dations from the WHO. By 27 January 2020, there were compara-
tively few cases outside China. Apart from special considerations
for sanitary operators, the definition of suspected case from the
Italian health authorities4 considered two situations: (A) severe
acute respiratory infection (fever, cough and request for hospital-
isation) and presence in risk zones a few days before the onset
(at that moment mainly Wuhan/Hubei), or (B) acute respiratory
infection and either recent presence at the Wuhan live animal mar-
ket or recent close contact with a confirmed (positive PCR test) or
probable case (a PCR-tested suspected case without a conclusive
result). By 22 February,5 severity and hospitalisation were no longer
required for (A) and dyspnoea was recognised among possible
symptoms. By 9 March,6 the considered situations were three:
acute respiratory infection (with at least one among fever, cough
and difficulty in breathing) without other aetiology and either
(A) recent presence in the areas of local transmission of the disease
or (B) close contact with probable or confirmed cases. The third
situation considered (C) cases presenting severe acute respiratory
infection (fever and at least one symptom of respiratory disease)
requiring hospitalisation and without another aetiology that fully
explains the clinical presentation. This new item acknowledges

2Extrinsic stochasticity misses the root of the stochastic phenomena [8, 9, 20].
3PubMed’s website accessed on 2020-08-28.

4Resolution 27 January, accessed on 2020-08-26.
5Resolution 22 February accessed on 2020-08-26.
6Resolution 9 March accessed on 2020-08-26.
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the existence of the illness regardless of any presence in risk zones
or close contact with probable or confirmed cases.

Also the concept of close contact evolved during the period. By
31 January, ‘risk contacts’7 considered only recent (within 14
days) travel or cohabitation with a COVID-19 patient (apart
from special considerations for sanitary operators). The concept
evolved to that of close contact, becoming highly detailed in
what regards social distance (2 m, 15 min) and hygiene already
by 27 February 2020.8

At the end of May, specific instructions for contact tracing9

(already operative, although) had been developed.
The criteria for identification of cases shifts focus along the

pandemic. At the beginning, the focus is on the ‘virus import’
from other regions where it is active, while the local diffusion
becomes relevant only some weeks/months later. The trade-off
in the identification generates ‘classes’ of contagion depending
on the criterion.

Along with the case criteria, surveillance and control criteria
are developed. At the beginning of the pandemic, passive surveil-
lance (i.e. to wait for the spontaneous appearance of patients,
except perhaps for travellers) was the most common attitude.
Soon after, many countries developed different degrees of contact
tracing (with varying success), even revealing preexistent flaws in
the various national health and care systems.

In Appendix A, we show the evolution of the criteria in
Argentina and its relation to Italy’s case.

The decision of what to consider a suspected case, and when
further actions are to be taken, is a critical one. However, it is
not clear which is the overall criteria, meta-criteria, adopted by
Italy or Argentina, presumably upon recommendations of the
WHO. It appears that the meta-criterion is to keep an even
level of certainty of being a COVID-19 case for each individual
case. It is then pertinent to explore whether this goal is achieved
or not and if such goal is epidemiologically sound.

We discuss this issue with data from Argentina.10 In Table 1,
we report PCR results for health workers after 6 June, from the
dataset of 5th October 2020 with 62 920 cases with symptoms
information (29 958 positive and 32 962 negative).11 Health work-
ers can be assumed to be more accurately monitored than other

patient groups. On 6 June, the criterion for suspicious case for
health workers was changed to presenting one symptom belong-
ing to the set: fever, cough, anosmia, dysgeusia, dyspnoea, odyno-
phagia (see Appendix A). In 4 August 2020, the set of symptoms
was extended to headache, diarrhoea and vomits.

For health workers, 98% of the cases that reported symptoms12

presented at least one symptom in the extended set. Among them,
48% were diagnosed as COVID-19 cases using RT-PCR.
Considering cases reporting at least two symptoms, the number
of cases falls by 23% but the positive cases within the group
move up only to 50%. If the criterion is ‘fever and one symptom’,
the case fall is 64% while the positivity within this smaller set raises
to 60%. Similar trends are found for the whole patient dataset.

The data indicate that requiring more symptoms results in
missing positive cases. The improvement in positivity rates is out-
numbered by the large or very large fall in detected cases, with no
significant improvement in the use of resources. At the early
stages of the epidemic only hospitalised patients with pneumonia
were considered as possible COVID-19 cases. In such cases, the
detection ability drops to less than 10% of the cases showing
symptoms.

Viraemia, symptoms and contagiousness
An important ingredient of any model concerning the evolution
of the disease requires the description of a contagion mechanism
at the individual level. It is important to relate when, how much
and how long a person is in a contagious condition to the evolu-
tion of the disease in the agent.

Upon contagion, the infected individual gradually develops
larger and larger levels of virus, in pace with the viral reproduc-
tion capabilities in the infected patient. Eventually, a maximum
level is reached and the viraemic load subsequently declines
along with a recovery from infection. This process may be inter-
rupted at any time because of complications, be them virus-based
or any other.

We assume, therefore, that the viraemic load is the biological
origin of both the severity of illness for an average infected indi-
vidual and the capability to transmit the virus. In simpler words,
the quantity of virus in each individual regulates how ill she/he is
and with which efficiency the infection can be passed along.

Symptoms, severity and contagiousness are different from per-
son to person, but they follow an approximate sequence from zero
up to a maximum value, subsequently decaying towards zero
again. From the day of clear symptom onset, we adopt a model
for the viraemic load, based on early findings [18, 21] from the

Table 1. Health workers

PCR

Health workers

≥1 s P1s( ± ) ≥2 s P2s( ± ) F + PF+( ± ) H PH( ± )

Pos 29 465 0.9835 23 688 0.7907 13 415 0.4478 2814 0.0939

Neg 32 290 0.9796 23 347 0.7083 9015 0.2735 2299 0.0697

OR 1.0040 1.1163 1.6373 1.3467

Tot 61 755 0.9815 47 035 0.7475 22 430 0.3565 5113 0.0813

Number of confirmed PCR-positive and -negative cases displaying at least one or two symptoms (1s, 2s) from the set given in the text. F +: cases with fever plus another symptom. H: cases
requiring hospitalisation. Positivity odds in dataset are 0.9089. PX( ± ) stands for the probability of having one symptom or more of SARS-CoV-2 being positive (negative) for each category.
Odds ratios (ORs) are the ratio of the odds under the symptoms condition to the odds in the full set.

7Resolution 31 January accessed on 2020-08-26.
8Resolution 27 February accessed on 2020-08-26.
9Resolution 29 May accessed on 2020-08-26.
10The Argentine Ministry of Health provides on a daily basis an anonymised copy of

the dataset corresponding to the nation-wide reported cases in epidemic outbreak for the
National Science Council (CONICET).

11There are 493 cases with reported symptoms where none of the symptoms match the
HS expectation. 12Report of symptoms is not an obligation for the sanitary units.

Epidemiology and Infection 3



initial period of the pandemic where individual cases could be
traced in detail. We model the viraemia from days 5 to 10 using
a gamma distribution. The presymptomatic period (a period
usually of weak symptoms) is modelled in three stages, a first non-
contagious compartment lasting a day in average, followed by a
low-contagion compartment, lasting about 2 days, with the
same viraemic level than the last day of contagion and finally fol-
lowed by a compartment with higher contagiousness lasting also
about 2 days.

The duration and distribution of the presymptomatic days,
from contagion to symptoms, described in this form is supported
by the distribution of times between the appearance of earlier
symptoms and the day of diagnostic for the data collected in

Argentina (see Fig. 2). In fact, the observed mean for the
data points is 3.86 ± 0.5 days, plus 1 day without any symptoms,
yielding slightly less than 5 days before the onset of recognised
symptoms and the decision of swabbing.

After the presymptomatic period, symptoms usually appear
clearly until they gradually decline. We assume the symptomatic
compartments to last in average 1 day each, with viraemic levels
as in the final part of Figure 1.

For the sake of dealing with a pandemic, symptoms in them-
selves are only an ingredient. They facilitate the possibility of
detecting infected patients, especially when the pandemic con-
strains the sanitary authorities to keep a passive attitude. In any
case, the appearance of symptoms on each individual depends

Fig. 1. Viraemic levels displaying a 2-day stage with
low virus levels, followed by a stage with higher vir-
aemic levels but still no detection symptoms. Bars
represent days, not stages.

Fig. 2. Distribution of time between initial symptoms
and swabbing calculated using 121 223 entries corre-
sponding to the cases during the month of August
2020 (dots) and curve fit y(x) = 421 627 (histogram).
The observed average time in Argentina is of
�3.86+ 0.5 days. The fitted curve is the composition
of two exponentially distributed stages, 2.10 and 1.86
days long in average. It is important to understand
that the data reflects not only a biological matter,
but it is also affected by public health decisions, the
information of the population and self-diagnosing of
the patient concerning the initial symptoms. As such,
the statistical error is not the most relevant error. At
the beginning of the outbreak the average time was
longer than 5 days.
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not only on the viraemic load, but also on the individual condi-
tion of each patient.

On the contrary, regardless of symptoms (if and when they
appear), the two processes driving the evolution of the pandemic
are contagiousness and detection. The first one is of course man-
datory since there is no pandemic without infections. Both these
processes have a social component and a biological component.
The biological component was discussed above: we assume both
the probability of detection and the probability of contagion to
be proportional to the viraemic levels of infected individuals,
modelled according to Figures 1 and 2. This assumption rests
partly on the observations in [18, 21]. However, a recent study
([22], appeared after this submission) suggests that there are
other mechanisms operating as well, depending on the patient’s
response to the infection and deserving a deeper analysis. The
modelling profile is summarised in Table 2. The social compo-
nent reflects the ability of the sanitary authorities to enforce mea-
sures in order to (a) detect infected individuals and reduce the
chances of contagion (by isolation, hospitalisation, etc.) and (b)
effectively influence social behaviour, aiming to reduce the
chances that infected, undetected individuals may transmit the
disease.

About slums
Slum areas have a very specific social structure. They have high-
population density and intense poverty, resulting in homes shared
by several generations (sometimes with just one bedroom), larger
number of homeless people in comparison with the rest of city,
precarious services (water, electricity, sewage, etc.), as well as
strong internal ties and social organisations such as community
run food assistance and other internal solidarity networks. ‘Stay
at home’ policies cannot be sustained, to the point that sometimes
the whole slum area has been locked allowing for its internal life
to continue undisturbed. The contact structure for individuals in
slums is more homogeneous and with larger contact rate than the
surrounding cities.

The detection of cases as a function of the surveillance protocol
The decision of admitting a case as a probable case of COVID-19
depends not only on the biological/health condition of the case

(i.e. the viraemic level, presence of symptoms, etc.), but also on
the expectations of the health services (HS) as we have discussed
in Section ‘What is a COVID-19 case?’ and Appendix A. Since the
chances for a contagious person to produce new cases depend on
a-priori expectations, the expectations change the removal rate of
contagious people (e.g. by isolating the person). Furthermore, the
condition of being suspected a-priori is mostly hereditary. The
suspicion increases the probability of detection and the detection
of a case makes those infected by the case more likely to be
detected. Let us call T, traceable, those with larger probabilities
of detection a-priori, and U,untraceable, those with smaller prob-
abilities of detection. Let us further consider the limit situation
where all T are traced and detected with certainty and no U is
ever detected. Such an idealised, limit situation will result in
two independent epidemics, for no T can ever produce a U case
and reciprocally, no U can produce a T case. No real situation
is expected to reach this limit case, hence, in a more accurate
description U cases are detected with lower probability and later
than T cases. Also, some T may escape tracing and detection
when still contagious. The inheritance of the tracing classes is
then imperfect and there is only one, mixed-type, epidemic. We
represent this situation by a probability table (written in the
matrix form):

P(T by T) P(T by U)
P(U by T) P(U by U)

( )
= 1− e s

e 1− s

( )

The probabilities, P(X by Y ), indicate the probability for a
susceptible person infected by a contagious case of type Y of
becoming a case of type X assuming it was effectively infected.
The non-negative quantities o , s are not new parameters since
we have to satisfy that P(T by T ) is exactly equal to the probability
of a T case being effectively detected. The same can be said of P(U
by U) with respect to the undetectable cases U.

Since all health systems have limited resources and suffer dif-
ferent epidemic impacts, different strategies are likely to appear.
One of the goals of this paper is to explore the impact of different
strategies on the (local) evolution of the pandemic. Schematically,
we will consider three scenarios, labelled passive, intermediate and
active representing different policies for the detection process.

In the passive policy, intervention starts when and if the symp-
toms are clear. The intensity of the perceived symptoms is
assumed to be, on average, proportional to the viraemic state. A
distinction is made between the T and U, being the HS’s more
prone to act for the T group than for the U group. The passive
policy represents the policies adopted during the early days of
the pandemic (mid-February to mid-March 2020 in Europe),
where the HS focused attention on imported cases (travellers)
and their contacts. The intermediate policy reflects the situation
in which the HS become aware of the problem of presymptomatic
contagious cases, and begin to track oligosymptomatic cases in the
T group (contacts of known cases). At the same time, it has been
observed a lowering on the requirements, in terms of a lower
number and a larger set of symptoms, required for sanitary inter-
vention (isolation). The active intervention consists of one of the
two possibilities: either the T class is substantially enlarged by
including in it the contacts of contacts, as was done in Italy or
by dropping the distinction between U and T and acting (or
strongly exhorting to individual action) on cases presenting any
symptom compatible with COVID-19, no matter how weak, as

Table 2. Normalised viraemic levels describing an average evolution of the
disease

Stage Duration (days) Normalised viraemic level

0 1 0

1 2.10 0.0406

2 1.86 0.1201

3 1 0.1695

4 1 0.1713

5 1 0.1413

6 1 0.1019

7 1 0.0667

8 1 0.0406

The probability of contagion is assumed to be proportional to the viraemic levels along the
different stages. The levels enter the modelling of the probability of detection as well (along
with other important influences such as sanitary policies). The levels are normalised so that∑

i Vi ti = 1, where ti is the duration and Vi is the viraemic levels.
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it was the public advise of e.g. the Swedish HS.13 We will only
model the second case.

Mathematical/computational support

The general approach is based on a Markov-jump process follow-
ing the setup of the Feller–Kendall [3, 4] algorithm. The compart-
ments Xi, i = 1, …, N involved in the process are the different
classes of individuals taken into account (described below) and
the stochastic dynamics evolves by expressing the number of indi-
viduals on each compartment as a function of time. Transitions
between compartments are given by Markov jumps triggered by
different events and characterised by an event probability rate
Wa(X), α = 1, …, E. The relation between events, compartments
(populations) and stochastic dynamics is given by

Xi(t) = X0
i +

∑E
a=1

na(t)d
a
i (1)

where X0
i is the initial condition for compartment i, na(t) indi-

cates the number of occurrences of event α up to time t and dai
is an integer indicating how each occurrence of event α modifies
the population in compartment i. For the present problem, δ will
take the values −1, 0, 1, meaning that e.g. one infected individual
is removed from the contagious process by isolation, etc. The sto-
chastic dynamics proceeds by establishing the behaviour of na(t).

General properties of Markov-jump processes are assumed to
hold for this problem, in particular that events are independent
of each other (although related indirectly by the dependence of
the rates on the populations). These properties add up to the
following two results [3, 23–25]:

1. The waiting time to the next event is exponentially distributed
with rate R = ∑E

aWa(X).
2. At the occurrence time indicated above, the probability of

occurrence for event α is Pa = Wa(X)/R.

A realisation of this stochastic dynamical process requires a
good knowledge of the probability rates Wa and the computation
of one random number (exponentially distributed) for the time of
occurrence of the next event and another (uniformly distributed)

for selecting the event happening at that time. Upon occurrence
of each event, populations and consequently transition rates are
updated according to Eq. (1). Random numbers were generated
with the Double precision SIMD-oriented Fast Mersenne Twister
(dSFMT) algorithm [26], implemented in C.

Details

The algorithm is implemented as a C-programme, fully available
from GitHub. The compartmental structure is as follows (see
Fig. 3).

There exist three classes of compartments, namely susceptible
S, traceable infected T and untraceable infected U. Infected indivi-
duals belong to several sub-compartments describing the degree
of evolution of their disease (or rather their infective period).
At each stage, they may proceed in the disease to the next stage
of infection (diagonal arrows) or be removed from the system
by any reasonable means, e.g. by being detected and isolated by
the HS, by self-isolation, hospitalisation, etc. (vertical arrows
labelled R), thus ceasing in all such situations to be a source of
contagion. Infection may proceed either by contact of T or U indi-
viduals with an S individual, or by ‘importing’ the infection from
outside the system in consideration.

What regards infection by contact, the tracing of infections is
usually not complete, for various reasons. To take this fact into
account, we assume that a portion of infections by T individuals
(of size o < 1 in Table 3) may remain undetected and also that a
portion of infections by U individuals (of size s < 1 in Table 3)
will eventually become detected. The quantities s and o are dis-
cussed in Section ‘The detection of cases as a function of the sur-
veillance protocol’ and will be further specified below. Two
additional uniformly distributed random numbers r1 and r2 (in
[0, 1]) are computed to decide these outcomes (double arrows
from S in Fig. 3), representing the probability pairs {1− o , o }
and {s, 1− s}, respectively, for T and U infected individuals.

For the ‘imported’ infections taking place outside the system,
the uniform random number r0 distributes the resulting infected
individuals among T and U with proportions {1 − η, η}.

Rates and actions
In Table 3, we describe the expressions adopted for the different
rates and their action on the population (i.e. the non-zero values
of the incidencematrix {d}ai ). Considering the nature of the available
data, the time-unit is (day)−1, i.e. transition rates are given per day.

Fig. 3. Schematic view of compartments and events.

13Recommendation of 13 March 2020 (in Swedish) General information (English)
accessed on 2020-10-13.
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In the table, N is the size of the population, typically a neigh-
bourhood or other region that can be safely assumed to behave
homogeneously (basically, that any individual may, in principle,
meet any other individual; a natural assumption for working
places, schools, etc.). Initial conditions for all simulations is that
most individuals (N− c) are in compartment S while the remain-
ing c are in T0 or U0 (we assume c is typically around 2 for N up to
a few thousands). The ‘import’ rate a(S/N ) describes infected
individuals undergoing contagion outside the system. We include
in this event the possibility of travellers bearing the infection
when returning to the system after a temporary absence, a
group that has been important in the global scale to transfer
the disease across continents, but is comparatively small for
such stable communities as those we consider.

The evolution of the illness is given by stages Tk, k = 0,…, K− 1
(and similarly forU) describing the viraemic levelV(k) at each stage
(Fig. 1 and Table 2). In this study, K = 9. pr describes the rate of pas-
sage to the next viraemic stage i.e. ( pr)−1 is the average permanence
of an individual on each stage (second column in Table 2). The fac-
tor βV(k) describes the contagion rate between a susceptible and an
infected individual. In principle, βT and βU may be different but we
have not explored that possibility. Since the viraemic levels are nor-
malised, the weighted infective period is one and the factor β corre-
sponds to the basic reproductive number R0 of the SIR (Susceptible,
Infected, Recovered) model. The approximate value of 2.5 was taken
from early reports fromChina [27] and contrasted against data from
the initial days of the first outbreak in slums in Argentina (Barrio
Padre Mujica, also known as Villa 31 in Retiro, a neighbourhood
of Buenos Aires city).14

The constant o indicates what portion of the individuals
infected by a T will not be detected by the HS during the conta-
gion phase of that case, while similarly s indicates what portion of
the individuals infected by a U will eventually be detected by the
control procedures. Similarly, the constant η describes the distri-
bution of imported cases among T and U compartments. Since η
is largely unknown we will only consider the extreme cases. We
have η = 0 usually associated with long distance travels to/from
regions of viral circulation. For the case of slums, casual contagion

within the same city but in e.g. different neighbourhood is
expected to be the most frequent case, hence we adopt η = s.

Finally, rem is the rate of removal of an individual from stage k
out of the contagion chain. This rate also depends both on the vir-
aemic level and on the HS strategies (giving different choices for
the factors dT(k), dU(k)). This part of the model will be described
in detail in the next subsection.

The data usually discussed in the news and websites are the
number of confirmed COVID-19 cases. In the present model,
these data are represented by the total number D of detected indi-
viduals, i.e. the outcome of all removal events within the infective
period. The model provides an estimate of the silent cases, i.e.
infected individuals of which the HS has no records. In the
model, these non-detected infected individuals ND are given by
the identity N = S +D +ND, where N is the population size and
S is the number of susceptible individuals.

The outcome of the model is presented by computing a few
realisations (typically 100) of the Feller–Kendall algorithm. No
matter how parameters are chosen, there exists a non-zero prob-
ability of early disease extinction (as it is in any Markov-jump
process), particularly when the onset of the epidemics contains
very few infected individuals (1 or 2 in a population of a few
thousands). The model allows for ruling out early extinctions,
considering that the epidemics that are tracked, and concern us,
are those that avoid early extinction and come to be notable.

The actual evolution of the pandemic is intrinsically stochastic.
Borrowing from themodelling language, there is only one ‘realisation’
of the real process, namely the one we are currently experiencing.
There is no ‘second run’, although many weakly coupled contagion
chains may be running simultaneously within e.g. a larger city.

With this in mind, we stress that the averaging of realisations is
not a substitute for the real process. It has a limited value, in that
it highlights features that are recurrent, while it smears out what is
less frequent. Moreover, no realisation of the stochastic process is
‘more true’ than any other. Predictions based only on the aver-
aging of realisations may serve as a clue about what to do, but
policy decisions should take into account the whole picture.

Contagion, removal and HS policies
We consider in detail the mechanisms of contagion and removal,
as well as their relation to both the evolution of the disease in the
infective individual and the HS policies.

Contagion within the system is taken to be strictly propor-
tional to the viraemic levels V(k). The proportionality constants
βT, βU may vary according to social strategies and attitudes.

The eventual removal of an infected individual in the model is
governed by the competition between two mutually exclusive
events. Either the individuals evolve to the next stage in the vir-
aemic levels (i.e. they are still infected and capable of contagion)
or they are removed from the contagion chain for whatever reason
(detection, isolation, full recovery or death). At stage k, the prob-
abilities PX

m(k) of moving to the next stage in the contagion chain
and PX

r (k) of being removed from the chain for an individual of
class X = {T, U}, can be described (in the notation of Table 3) as:

PX
m(k) =

pr(k)

pr(k)+ Bk
X V(k)

PX
r (k) =

Bk
X V(k)

pr(k)+ Bk
X V(k)

=1− PX
m(k), k = 0, . . . , K − 1

Table 3. Transition rates and incidence matrix

Event α Wa(X) Incidence matrix dai

External
contagion

a S
N S: −1; if (r0 > η) T0: +1

else U0: +1

Contagion T→ S bTV (k)Tk
S

N−1 S: −1; if (r1 > ȯ) T0: +1
else U0: +1

Contagion U→
S

bUV (k)Uk
S

N−1 S: −1; if (r2 > s) U0: +1
else T0: +1

Disease
evolution T

pr(Tk) Tk: −1; Tk+1: +1

Disease
evolution U

pr(Uk) Uk: −1; Uk+1: +1

Infective
removal T

rem(Tk) = Bk
T V (k) Tk Tk: −1

Infective
removal U

rem(Uk) = Bk
U V (k) Uk Uk: −1

V(k) indicate the viraemic levels at stage k. r1, r2 are the uniformly distributed random
numbers in [0, 1]. Other quantities are described in the text.

14Data available at buenosaires.gob.ar/datosabiertos.
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where Bk
X , X = {T, U}, model the HS policy adopted. In the present

implementations, the factors Bk
X are set to zero for an initial subset

[0, …, k0− 1] of stages (k0≥ 1) and take the same positive value
BX for the remaining stages, k∈ [k0, K− 1]. BX relates to the prob-
ability of X being effectively detected (named 1− o and s in
Section ‘The detection of cases as a function of the surveillance
protocol’) through Eq. (2).

At the final stage, K− 1, the overall action of both competing
events is a removal from the contagion chain. Individuals that
have not been removed at any previous stage have effectively
participated in the contagion chain during all of their contagious
period. These individuals were not detected by the HS policies
while they still were active in the contagion chain. The overall
probability of detection can be computed as follows. Let QX

k be
the probability of removal up to and including stage k for infected
individuals of class X = {D, U}. Set further, QX

−1 ; 0. For any
stage i,

QX
i = QX

i−1 + (1− QX
i−1)P

X
r (i), i = 0, . . . , K − 1,

which can be restated as QX
i = (1− PX

r (i))Q
X
i−1 + PX

r (i). The total
probability of removal during the infective period is QX

K−1, while
the probability of being detected at some point during the infect-
ive period for individuals in class T, U is given by

QT
K−1 = 1− e, QU

K−1 = s. (2)

Note that QT
K−1 and QU

K−1 are rational functions, the ratio of
two polynomials of degree K− k0 in BX.

Equation (2) relates the value of the constants BT, BU for the
different HS policies with the probability of detection. The differ-
ences in dealing with T and U infected individuals follows from
the differences between QT

K−1 and QU
K−1, being the HS’s more

prone to act for the T group than for the U group. We distinguish
three main policies:

Passive policy: Intervention on the U class concerns only severe
cases (e.g. requiring hospitalisation) in a situation where the
viraemic levels of the patient are comparatively high. In the
model, intervention for the U class starts at k0 = 3 (stage 3 in 2).

Intermediate policy: The conditions required for sanitary inter-
vention (isolation) in the U group are broadened in terms of a
lower number and a larger set of symptoms and possibly interven-
tion at an earlier stage. Active (preventive) intervention, as in
contact tracing, starting at stage k0 = 0 (or 1), is implemented
for the T group. It reflects a situation in which the HS become
aware of the problem of presymptomatic contagious cases, and

begin to track oligosymptomatic cases in the T group (contacts
of known cases).

Active policy: No distinction is made between U and T regard-
ing actions of the HS. One symptom is enough to trigger sanitary
actions. Interventions start at stage k0 = 0 (or 1).

Simulation scenarios: In the next section, we discuss a few scen-
arios based on these policies, relating to data from Table 1. We con-
sider three detection efforts, that we may call Low, Medium and
High (L, M, H) for each scenario. We identify the T group with
health workers, who for practical reasons were better monitored
than other individuals. A first scenario, labelled I (for ‘Ideal’) corre-
sponds to the active policy, with three different effort levels, repre-
sented by BX such that the detection probability 1− o = s takes the
values 0.21, 0.61 and 0.79. The latter corresponds to the fraction of
confirmed cases among health workers displaying one symptom of
the extended list of Section ‘What is a COVID-19 case?’. However,
registration of symptoms was optional. Therefore, 0.79 is only a
crude lower bound to the ability of detecting cases among health
workers (which are subject in part to routine testing). A second
scenario of intermediate character, labelled F + (for ‘fever plus
other’), corresponds to the same detection probabilities as above
for the T group, whereas for the U group the detection probabilities
s are set to 0.10, 0.28 and 0.36. The latter corresponds roughly to the
proportion of confirmed cases among health workers displaying
fever plus another symptom in Table 1. The third scenario, labelled
H (for ‘hospital’) is still unaltered for the T group relative to the pre-
vious two, while the U group is subject to the passive policy (thus
assuming that only highly viraemic cases have a chance of being
detected, and only from stage 3), with detection probabilities s set
to 0.02, 0.06 and 0.08. The latter corresponds roughly to the propor-
tion of confirmed health worker cases that were hospitalised as in
Table 1. Hence, theHigh intensity level of the three scenarios relate
to detection policies adopted by HS’s at different periods of time.
The lower estimate for the HS actions is roughly 1/4 of the upper
estimate and the intermediate estimate was taken to obtain an inter-
mediate level of detection. In the unfortunate situations where the
epidemic is out of control, the effectiveness of the HS measures
could be even lower.

Unless otherwise stated, all simulations are performed with
5000 individuals, of which two are initially contagious in the T
compartment (it makes only imperceptible difference to set the
initial contagion in the T group or the U group), while the con-
tagion rate is set to β = 2.5 and there is a small rate of external
contagion (ext = 0.002).

A list with the parameter values used in different scenarios is
provided in Table 4. Other necessary input data for running the
simulations are: number of realisations (usually 100), length of
simulation in days, initial condition for populations S, T, U

Table 4. Parameter values used in various simulation scenarios, in the variants low, medium and high respectively

Name Ideal I Fever + F + Hospital H

a 0.002 0.002 0.002

βT = βU 2.5 2.5 2.5

BT 0.24,1.00,1.76 0.24,1.00,1.76 0.24,1.00,1.76

k0T 1,1,1 1,1,1 1,1,1

BU 0.24,1.00,1.76 0.10,0.34,0.46 0.03,0.09,0.12

k0U 1,1,1 1,1,1 3,3,3

B is called det in the code and k0 is called delay. Under the present normalisation, the contagion rate β corresponds to the basic reproduction number R0 of the SIR model.
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(usually 4998, 2, 0), random number seed, flag to discard ‘early’
extinctions (positive integer) and maximal duration to be consid-
ered ‘early’ (usually 19 days).

Results

General results

The following results follow from the structure of the model.
There is essentially nothing left to prove, just following the
construction in Section ‘Contagion, removal and HS policies’.

Lemma 1. QX
K−1 is a monotonically increasing function of BX.

In modelling language, BX senses the efficiency of the detection
process.

Lemma 2. For fixed BX, QX
K−1 is decreasing with increasing k0.

A late start stage for the detection process can be interpreted as
a HS policy that is only capable of taking care of seriously ill cases,
with highly developed viraemic levels. The more stages an indi-
vidual passes without any policy action, the lower the overall
chances of detection within the infective period.

Simulations

Simulation results allow us to compare the outcomes of different
policies on an equal footing.

Spread
Before considering averaged results let us sense the spread of out-
comes from different realisations of the process. In Figure 4, we
show the fraction of susceptible individuals as a function of
time for 100 realisations of the stochastic process in two different
configurations.

The left panel corresponds to a situation where the probability
of detection while still contagious is 21% for the T-group and 9%
for the U-group, with β = 2.5. All outcomes display a sharp fall in
the number of susceptible individuals. Note, however, the spread
in time: the fastest and slowest realisations differ in about 40 days,
corresponding to 100% at the 0.5 level. The right panel corre-
sponds to a weaker contagion situation (β = 1.75), where the prob-
ability of T-detection increases every 60 days, from 0.6 through
0.71 up to 0.79 (all detections starting on stage 1), while the
U-detection goes from 0.07 through 0.58 (with detection starting
on stage 3) up to 0.79, with detection starting on stage 1. Note

here the spread in the outcome. Although some realisations dis-
play almost no variation in the fraction of susceptible individuals,
some others achieve a fall of over 50%. It is worth to keep in mind
that the policy of progressively increasing the detection effort has
been the rule in practical cases.

Initial growth
As in most models with homogeneous contact, the initial growth
of the epidemic outbreak is almost exponential and this regime
lasts for about 2 months in the present simulations with about
5000 initial susceptible individuals. However, it is worth to indi-
cate that the growth exponent of infected cases and that of
detected cases is not the same, being the latter smaller than the
former, especially in less effective regimes as H and F +. As a con-
sequence, basic reproductive numbers inferred from the early
development of the pandemic that had assumed that detected
cases are roughly proportional to the actual cases underestimate
the growth rate (see Fig. 5). Note that the gap between growth
rates is larger for the lower detection effort as compared with
the higher (red/green vs. blue/magenta pairs).

Undetected/detected ratios
The ratio between total cases and detected cases of COVID-19 has
been the subject of several studies. In particular, Malani et al. [28]
andMuñoz et al. [29] address the situation in slums, reporting ratios
of 10:1 [28] and 5:1 [29].15 The latter study was performed at least 1
month after ‘most cases’ occurred, although with the outbreak still
running. The majority of the registered cases had occurred before
6 June, when the tracking method in use was of type F +. After 6
June, the tracking sharpened to ‘any two symptoms’, a medium
form of I. We show averaged ratios in Figure 6, but it is worth to
keep in mind that there are usually large fluctuations present. The
figure shows that in all situations there is a tendency to a sharp incre-
ment of the ratio at the beginning of the outbreak followed by a
maximum level and subsequently a monotonic decrement.

Dynamical mechanisms
The most remarkable features present in the simulations are the
diverse forms in which the stochasticity and the particularities

Fig. 4. Fraction of susceptible individuals for 100 realisations. Left: Low, constant detection. Right: Increasingly sharp detection.

15The accuracy of serological tests used to evaluate a-posteriori the prevalence of
COVID-19 can be questioned based on studies that indicate that not all people presenting
immunological reactions to the virus develop humoral antibodies [22, 30, 31].
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of the contagious process manifest globally. Despite being seeded
with two traceable cases, it is not uncommon (probability larger
than 0.01) to observe the outbreak to remain with sporadic
cases up to 50 days and only then the recognisable bell-shaped
of the daily cases begins. We show one of such cases in
Figure 7, left panel. In the centre panel, we show a ‘two waves’
outbreak under policy IH and a different shape of ‘two waves’
with a long delay between them is shown in the right panel.
The difference among realisations suggests that stochastic
epidemic outbreaks are not just an ‘average outbreak’ plus noise.

As expected, the epidemic size depends strongly on the policy
applied. It is interesting to show the transition of the probability
distribution as a function of the intensity of the control measures.
In Figure 8, we show histograms after 100 simulations for the total
number of infections in a population of 5000 individuals. Although
extinctions of the epidemic with a low number of cases are always
possible, they are infrequent in the low intensity case, they begin to

be notable in the medium intensity and are dominant in the high
intensity situation. This transition is known as the stochastic
equivalent of the transition in deterministic equations when the
basic reproductive number moves from above one to below one
and has been discussed elsewhere [32–34].

The number of detected cases, i.e. people diagnosed as infected
with SARS-CoV-2, depends on no trivial form of the detection
policy and intensity. We show in Figure 9 that the relation is
not monotonic. In general, an increase in detection efficiency
from medium to high intensity may result in a decrease in the
number of cases detected (policies F + and I) but also in an
increase (H). In fact, the design of the model only assures that
the probability of detection increases with increasing intensity.
If the total number of cases is low, the total number of detected
cases will also be low, despite a higher detection probability. We
can see as well that the efforts made with a passive policy (H)
produce only little changes in the development of the epidemic.

Fig. 5. Average growth rates for 100 realisations at the beginning of the epidemics. Left: H simulations. Red (log (N− S )) and green (log D) curves correspond to
medium effort while blue (log (N− S )) and magenta (log D) curves correspond to high effort. Right: F +. Red (log (N − S )) and green (log D) curves correspond to low
detection effort while blue (log (N − S )) and magenta (log D) curves correspond to medium detection level.

Fig. 6. Average ratio of total cases to detected cases
(100 realisations) under eight different control mea-
sures implemented with moderate efficiency.
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Discussion

In the present model, biological aspects are intertwined with sani-
tary policies. These policies are not considered in terms of their
desired effects translated as effective parameters of an otherwise
free-running epidemic but rather mechanistically, changing not
only parameter values but the structure of the model as well. By
doing so, we allow policies to manifest not only what they were
intended for, but also unexpected features. The same can be
said with respect to the coupling between intrinsic randomness
and dynamics which results not only in the expected daily fluc-
tuations of the outbreak but presents low-frequency fluctuations
as well. These low-frequency fluctuations account, by themselves,
for the possibility of silent circulation of the virus for prolonged
intervals of time as well as for the awakening of extinguished out-
breaks due to contagion outside the simulated community. The
effective coupling of control measures and intrinsic randomness
represents an additional difficulty for any attempt at predicting
the evolution of a single/particular epidemic outbreak.

Although it should be clear from the setup adopted in this study,
it is worth recalling that all realisations of a stochastic model are on
an equal footing. Any of them respond to the process in its own
right. A strength of the present approach is the capability of dis-
playing a variety of possible epidemic outcomes. Indeed, Figures
4 (right) and 7 show that dramatic differences in epidemic size
(for the same stochastic process), ‘second waves’ and late develop-
ment of outbreaks are not unlikely to occur.

Figures 5 and 6 show that the ratio of undetected to detected
cases is not constant in the course of an epidemic and even worse,

the growth rate of undetected cases is larger than that of the
detected cases. Hence, epidemic size is likely to be underestimated
when computed through recorded cases. Finally, Figure 8
illustrates how the stochastic outcomes can be translated into
probabilities of e.g. having a given epidemic size.

One important goal of this study is to assist in the issue of
resource allocation when dealing with a pandemic. HSs through-
out the world differ in equipment, logistic capabilities, flexibility,
etc., depending on the preexisting policies and infrastructure. The
working conditions differ even locally within the same city, as
discussed above. Where should resources go? Will low-cost (and
lower efficiency) strategies under a longer period of time be pre-
ferred to high-cost (and higher efficiency) strategies with a shorter
time-span?

In our model, we mimic the HS decisions by considering two
groups of individuals: those that are early identified and recognised
as potential patients, T, and the rest, U, of which the HS is initially
unaware. We do not deal with financial costs, but we can compare
highly-effective and less effective strategies throughout time.
Preventive intervention strategies accrue costs in terms of isolating
contagious people and testing. The kind of intervention considered
in the current study is based upon tracking oligosymptomatic people
but not searching for completely asymptomatic cases, thus a good
indicator of costs is the total number of cases detected. The best
strategy of all those considered in this respect is the I strategy with
an efficient, H, search method, which is able to inhibit the develop-
ment of outbreaks. The strategy has fewer detected cases and smal-
lest overall size (see Fig. 8, right panel and Fig. 10, top left panel).

Fig. 7. Daily cases. Observable delays in the development of outbreaks for three individual realisations. Left, F +M policy presenting a ‘long’ waiting time until the
outbreak develops. Centre, IH policy with immediate second wave. Right, IH policy with delayed second wave.

Fig. 8. Transition of probability (frequency, %) distribution for the I (Ideal) policies as a function of the intensity of control measures. Left: Low detection rate.
Centre: Medium detection rate. Right: High detection rate.
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We compare two distributions of the detected cases for equal
efficiency of detection (see Fig. 10). The comparatively few
detected in the I panel of Figure 10 constitute most of the
outbreak, while F + adds a larger number of undetected cases.
A short side of the I policy is that the effective suffocation of
an epidemic outbreak in slum areas cannot by itself prevent

recurrent late outbreaks triggered by external contagion (see
Fig. 11). Hence, the alert state of the HS will have to be main-
tained for longer times. However, the advantages of the I strategy
under a medium or low detection success, thus having a higher
failure rate in avoiding outbreaks, are not so considerable. As it
can be seen in the figure, combining a suboptimal policy with a

Fig. 9. Relation between detected and total cases cor-
responding to the average over 100 realisations of the
policies H, F + and I, with three intensity levels labelled
1, 2, 3 in the plot and corresponding to low, middle
and high detection levels.

Fig. 10. Frequency distribution (%) of detected and total cases. Top panel: IH and F + H. Bottom panel: IM and F +M.
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suboptimal tracking (F +M, bottom right panel) is expected to be
more cost effective than an optimal policy with suboptimal track-
ing (IM, bottom left panel) in terms of detection, although the
overall size of the epidemic is expected to be lower in the I situ-
ation, while the necessary social effort is larger.

Despite our simulations have been seeded in all cases with two
infected people and only epidemic outbreaks that do not get
extinguished for 19 days have been considered, some runs do
not develop an outbreak and some others produce an outbreak
only because of external contagion (from outside of the simulated
neighbourhood), an effect than can occur in a completely differ-
ent time scale as is shown in Fig. 11.

Also, we illustrate that the ‘average epidemic’ is not enough to
grasp the relevant diversity of possible scenarios of real (unique)
outbreak dynamics, and that the undetected (mild, unrecognised,
presymptomatic and ‘asymptomatic’) cases are in good propor-
tion the result of public policies coupled to the characteristics of
the illness.

Limitations

As mentioned previously, one of the assumptions of the present
model is the homogeneity of contacts through the population.
For that reason, it only makes full sense when applied to small com-
munities. The proper path to surpass this constraint is to raise the
level of details, identifying subpopulations with some common
property (e.g. age segregation, mobility, local confinement, etc.)
that are in weakly mutual interaction. This is a costly approach
from the point of view of experimental design, since each new
level of detail demands a detailed understanding of the specific
interactions. Some effort in this direction has been to identify
‘superspreaders’, a possibility that recently became interesting [35].

Conclusions

The modelling goal of this study was to conceive mechanisms for
the interplay of the epidemic disease and the adopted social mea-
sures. The epidemic is not just biologically given in terms of e.g. a
basic reproductive number or a herd-immunity level that are
taken to be virus-specific and independent of social organisation.
The COVID-19 pandemic is not a free-running epidemic or one
addressed with pre-established measures, but rather one where
dynamically evolving interventions are the rule. The way in
which interventions change the dynamics and the observations
(monitoring) of the epidemic must be considered. All too often

the analysis of the epidemic by the political components of the
HS’s, in practice consider a biologically given epidemic, and inter-
ventions that affect its evolution only in the way they were
intended. This reasoning leads to false alternatives between herd
immunity, vaccines and confinement, with the hidden assump-
tion that social behaviour cannot (or must not) be modified.
On the contrary, this study suggests that what we (collectively)
do influences the level of risk to which we are exposed. Social
behaviour can modify epidemic outcomes [36].

We observe that an increment in the number of daily detected
cases does not necessarily imply an improvement in how the epi-
demic is being managed, nor a worsening of the outbreak. Case
detection cannot be understood separately from the HS policy.
Lower detection may be an indicator of success in the proper con-
text. Hence, to translate the statistics for one country to another
country is far from straightforward. More locally, the transfer of
information from detected (registered) cases to estimated number
of cases from seroprevalence studies is not independent of the
adopted HS policy and depends as well of the timing with respect
to the development of the outbreak.

Randomness plays a substantial role in COVID-19 dynamics, a
role that departs from the signal + noise analysis framework. Low
frequency, or coherent fluctuations, is relevant at the level of out-
breaks in slums and there is no reason to believe the same is not
going to be true in larger, heterogeneous, settings. The immediate
consequence is that averaging and uncontrolled ‘approximations’
to the average outbreak will be aligned with intuitions but could
be misaligned with a reality displaying a largely unpredictable
form. The stochastic behaviour is affected as well by the social
management of the epidemic, coupling two usually neglected con-
tributions and making prediction of outcomes even more difficult.

The intervention of health authorities had been ‘from below’ in
most countries. By ‘from below’, we mean a sequence of interven-
tions going from non-intervention and passing through increas-
ing levels of action until reaching lock downs in desperation.
Such an approximation has to be revised; it is an approach that
privileges something different than people’s health. If our
model is correct, it is possible to control the outbreaks with inter-
ventions that target mostly the symptomatic population. Such a
method will have to target for isolation of any one presenting a
single symptom of those compatible with COVID-19. The cost
of more certainties is to lose control of the outbreak, being forced
to apply lock downs, thus immobilising the productive forces of
the healthy people rather than the comparatively small group
that is potentially infected by SARS-CoV-2.

Fig. 11. Initial (seeded outbreak) dies out but after an external infection a ‘delayed’ outbreak emerges.
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The decision of requiring more symptoms to declare a case as
COVID-19 suspect whenever the patient has no identified contact
with confirmed cases facilitates the circulation of the virus even
when a highly efficient detection protocol is used.

Asymptomatic cases quite often are undetected cases as well,
but the reverse is not true. Classifying or referring to undetected
patients as asymptomatic can be viewed as an ethical matter. The
term ‘asymptomatic’ puts the blame on the virus and helps to
dispense social failures. In contrast, ‘undetected’ places the burden
on society and should help to fix attention in what we can do
better. Thus, if we are forced to err because of incomplete
information the way we err must be ethically considered.
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Appendix A: Criteria of suspicious case in Argentina

The early evolution of the criteria (we omit the specifications for sanitary
operators) for a case to be suspicious in Argentina is as follows (we indicate
correspondence with Italy’s resolutions):

29 February 2020 (Corresponds to Italy’s January resolution)
There are two ways to be considered a suspected case:

1. The person has fever and signs of respiratory infection (cough and dif-
ficulty in breathing) and a requirement for hospitalisation and no other aeti-
ology that fully explains the clinical presentation and a history of travel or
residence in mainland China in the 14 days prior to the onset of symptoms.

2. The person has fever and signs of respiratory infection (cough, odyno-
phagia and difficulty in breathing) and either a history of travel or residence in
the province of Hubei (China) in the 14 days prior to the onset of symptoms
or known close contact with a probable or confirmed case of COVID-19 infec-
tion, in the 14 days prior to the onset of symptoms or exposure in a health
centre in a country where confirmed cases of COVID-19 have been attended,
in the 14 days prior to the onset of symptoms or visited or worked in a live
animal market in any city in China.
—
5 March 2020 (Corresponds to Italy’s late-February resolutions)
The person has fever and one or more respiratory symptoms (cough, difficulty
in breathing and odynophagia) without another aetiology that fully explains
the clinical presentation, and that in the last 14 days either has been in contact
with confirmed or probable COVID-19 cases or has a history of travel or
presence in areas with local transmission of SARS-CoV-2
—
16 March 2020 (Corresponds approximately to Italy’s 9 March resolution) In
addition to the previous situation, a new suspected case begins to be consid-
ered: any person with severe acute respiratory disease who requires mechanical
ventilation due to their respiratory symptoms, without other aetiology that
explains it, even without epidemiological link.
—
21 March 2020
Travel history to specific countries is substituted by travel abroad.
Specifications are given for severe acute respiratory disease, defined as pneu-
monia and one of the following:

Respiratory rate: >30/min
Sat O2 <93% (ambient air)
Mechanical assistance requirement
Increase in infiltrates >50% in 24–48 h
Altered consciousness
CURB-65 ≥2 points
Unit of intensive therapy requirement,
and without another aetiology that explains the clinical picture.

—
30 March 2020
The issue of travel or residence in areas of local transmission (either commu-
nity or by conglomerates) of COVID-19 in Argentina is added.
In the case of pneumonia, the other conditions raised on 21 March are no
longer required.
—
8 April 2020
Cases added:
Health workers presenting fever and one symptom among (cough, odynopha-
gia or difficulty in breathing)
—
16 April 2020
To the requirements raised on 5 March, in the case of symptoms that could
accompany fever, the following is added: anosmia/dysgeusia.
—
13 May 2020
Anyone presenting fever (37.5 °C or more) and one or more of (cough, ody-
nophagia, difficulty in breathing, anosmia and dysgeusia) of recent presenta-
tion, without another clinical explanation AND precedents of travelling to
(or residence in) places with viral circulation or contact with confirmed
cases of COVID-19
Anyone presenting anosmia/dysgeusia is to be observed by 72 h and then
tested.
Health workers with two or more of the described symptoms.
6 June 2020
Anyone presenting two or more of (fever− 37.5 °C or more–, cough, odyno-
phagia, difficulty in breathing, anosmia and dysgeusia) AND (having being
present in a zone with viral circulation OR residing in a ‘popular neighbour-
hood’ – slum –) OR (requiring hospitalisation)
Health workers and any with close contact with a COVID-19 case presenting
ate least one symptom.
—
4 August 2020
Three symptoms added to the set: headache and vomits and diarrhoea.
—
11 September 2020
Added symptom: myalgia
Anyone presenting fever (37.5 °C or more) and one or more of (cough, ody-
nophagia, difficulty in breathing, anosmia and dysgeusia) of recent presenta-
tion, without another clinical explanation.
Anyone presenting anosmia/dysgeusia.
For health workers and inhabitants of ‘popular neighbourhoods’ the requisite
is of one symptom.
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