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Editorial

Future directions on the merge of quantitative imaging and artificial intelligence in radiation
oncology

Radiation oncology has for several decades been a field with con-
stantly evolving technological developments. Technology has con-
tributed to form our evidence-based scientific discipline determining
the most favorable strategies for delivering radiotherapy with optimal
radiation doses at the right time and place to achieve the optimal
outcome [1].

Technological developments in medical image acquisition and
analysis have increasingly provided faster and more detailed anato-
mical imaging and are today central for contouring of both targets and
organs at risk (OARs), treatment planning, response prediction and
evaluation, and quality assurance. On the other side, errors in image
acquisition and quantification impact directly on the accuracy of
radiotherapy delivery. Two papers exploiting technological advance-
ments in imaging to develop new and more automated strategies for
OAR and metastatic lymph node contouring have recently been pub-
lished in our journal [2,3].

Computed tomography (CT) scanning has been pivotal in the de-
velopment of radiotherapy planning. CT, now often acquired daily
during the course of treatment, provides the geometric fidelity required
to assess the position of the tumor, surrounding tissues and OARs.
However, with the increasing availability and integration of magnetic
resonance imaging (MRI) into the radiotherapy planning process, ad-
ditional opportunities are emerging. MRI offers a superior soft-tissue
contrast compared to CT, and also provides possibilities for a multitude
of different acquisition protocols enabling both detailed anatomical
imaging and assessment of a range of functional tissue properties using
the more advanced protocols such as diffusion-weighted MRI and dy-
namic contrast-based MRI. These functional sequences can together
with post-processing tools provide quantitative measures of radio-
biological tissue characteristics, which can be exploited to deliver more
tailored radiotherapy to each patient and also with the possibility for
adjustments during the course of treatment [4]. The use of MRI may
therefore result in a more optimized treatment where the tumor re-
sponse is increased and normal tissue damage is decreased.

With the recent developments of novel MR-guided radiotherapy
systems, including the integration of MRI scanners and linear accel-
erators, MRI is now becoming a reality also for daily monitoring of
geometric accuracy, dose accumulation and of radiotherapy response
measures [5,6]. Although MRI has been a more resource and time-de-
manding acquisition than CT, new technological developments with for
instance parallel acquisition are now providing faster, high-resolution,
4-dimensional acquisitions providing both anatomical and functional
information during radiotherapy delivery [7,8]. This opens new ave-
nues for quantitative assessment of longitudinal changes during the
course of radiotherapy.

A key challenge for daily quantitative imaging is contouring of the
target and OARs. Currently, expert clinicians perform the contouring
manually. Such a process is labor-intensive and also associated with
considerable variations between experts. Contouring accuracy is re-
garded a particularly important task in radiation oncology, as sub-
optimal tumor coverage and poor quality radiotherapy plans are major
factors for disease relapse and inferior survival [9].

Automation of the contouring process has the potential to sub-
stantially decrease the workload while possibly increasing contour
consistency [10]. The need for automated contouring of the target and
OARs has been a major reason for why artificial intelligence (AI) has
become attractive for our discipline [11]. AI and machine learning are
terms used to describe computerized approaches to identify complex
mathematical relationships within data. While AI is not a new concept,
recent advances in computing power, algorithms, data collection and
data sharing have enabled an explosion in the capabilities and utiliza-
tion of AI. This is also facilitated by an increase in parallel computing
capabilities through graphics processing unit (GPU) architectures and
other frameworks such as cloud-based computing.

Krizhevsky et al. presented the breakthrough study in 2012 using a
convolutional neural network (CNN) model, AlexNet, to reduce the
error rate for object (i.e. target and OAR) recognition [12]. This model
showed impressive results and became important for further develop-
ments of organ segmentation in radiotherapy. Later, Tong et al. used
CNN models to perform automatic multi-organ segmentation in patients
with head and neck cancer [13]. However, for clinical use in radio-
therapy planning, automated target and OAR segmentation needs to be
robust and accurate. Recent studies investigated the use of different
networks to reach maximum accuracy for automatic segmentation [14].
Efficient translation of the methods to other centers has to be guaran-
teed. In this issue, Brunenberg et al. performed an independent vali-
dation of a deep learning-based CT contouring method for OARs in the
head-and-neck region [2]. The study demonstrated that AI-based au-
tomatic contouring which had been trained in one institution could
safely and efficiently be transferred to another institution for sub-
sequent clinical use. Such independent validation is of crucial im-
portance to ensure freedom from dependencies on institutional image
acquisition settings. Further in this issue, Gurney-Champion et al.
combined 3D CNN models with quantitative information from diffu-
sion-weighted MR images to achieve automatic contouring of meta-
static lymph nodes in patients with head and neck cancer [3]. This
study aimed at developing a highly reproducible method for lymph
node segmentation in order to objectively analyze sequential informa-
tion from quantitative information assessed during each fraction of
radiotherapy delivery. With this visionary approach, the study paves
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the way for future online radiotherapy adaptation with respect to
quantitative imaging information. Similarly, Kuisma et al. recently re-
ported on a study validating automated MRI segmentation in prostate
cancer patients using comparison to manually created structures [15],
Elguindi et al. presented a deep learning-based method for automatic
segmentation of both targets and OARs to expedite MRI-based radio-
therapy in prostate cancer [14], and Jong et al showed a method using
CT images for automatic segmentation of cardiac substructures for
breast cancer radiotherapy [16].

These studies also focus on the central role of quantitative image
data for developing high-accuracy AI models, and oppositely, the det-
rimental effects of uncertainties in image acquisition and quantifica-
tion. To reduce errors in the imaging data it is crucial to standardize
image acquisition protocols, post-processing analysis methodology and
other tools used to integrate the image information into the treatment
planning and delivery process, as well as the AI models.

Target and OAR segmentation is not the only application of AI in
radiation oncology. Other emerging applications include automated
planning and dose optimization, decision support, and quality assur-
ance. Although there still is an ongoing debate about the increasing
number of machines in our institutions and in part replacement of
human jobs, it is clear that developments in AI have the potential to
streamline several areas in radiation oncology.

Personalized patient care is often regarded as the way forward [1],
with AI being key to its further progression. While AI is introducing a
dramatic change to the way therapy can be approached, it is also im-
portant to appreciate that the manual role of radiation oncologists,
physicists and radiotherapists will still be critical. At the present stage
the development is also associated with some challenges. The algo-
rithms and results from the small studies need to be validated in in-
dependent multicenter studies, larger patient cohorts and through de-
monstrated clinical feasibility before they can be routinely
implemented. Challenges related to standardization in image acquisi-
tion, image analysis and software need to be addressed. New data-
sharing paradigms are required between institutions and vendors, and
should be embraced for faster development and comprehensive clinical
validation. Beyond the obvious benefit of automating labor-intensive
tasks, such as contouring, AI has an enormous potential to guide per-
sonalized radiotherapy to new horizons. These might take into account
input variables from various time-dependent sources, as e.g. sequential
quantitative imaging or genetic markers, and may also change current
paradigms of classical radiotherapy by altering dose prescriptions,
fractionation schedules or other treatment parameters.

In conclusion, there is no doubt that the merge between quantitative
imaging and AI in radiation oncology has the potential to improve the
radiotherapy delivery process and reduce error rates. Looking ahead,
the trend of AI will become central in future radiation oncology due to
the precision and efficiency the radiation oncology discipline is de-
manding.
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