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Abstract: Computational Intelligence (CI) has been addressed as a great challenge in recent years,
particularly the aspects of routing, task scheduling, and other high-complexity issues. Especially
for the Contact Plan Design (CPD) that schedules contacts in dynamic and resource-constrained
networks, a suitable CI algorithm can be exchanged for a high-quality Contact Plan (CP) with the
appropriate computational overhead. Previous works on CPD mainly focused on the optimization of
satellite network connectivity, but most of them ignored network topology characteristics. In this
paper, we study the CPD issue in the spatial node based Internet of Things (IoT), which enables the
spatial nodes to deliver data cooperatively via intelligent networking. Specifically, we first introduce
a Multi-Layer Space Communication Network (MLSCN) model consisting of satellites, High Altitude
Platforms (HAPs), Unmanned Aerial Vehicles (UAVs), and ground stations, on which a Time-Evolving
Graph (TEG) is used to illustrate the CPD process. Then, according to the characteristics of each
layer in the MLSCN, we design the corresponding CPs for the inter-layer contacts and intra-layer
contacts. After that, a CI algorithm named as Multidirectional Particle Swarm Optimization (MPSO)
is proposed for inter-layer CPD, which utilizes a grid-based initialization strategy to expand the
diversity of individuals, in which a quaternary search method and quaternary optimization are
introduced to improve efficiency of particle swarms in iterations and to ensure the continuous search
ability, respectively. Furthermore, an optimized scheme is implemented for the intra-layer CPD to
reduce congestion and improve transmission efficiency. Simulation results show that the proposed
CPD scheme can realize massive data transmission with high efficiency in the multi-layer spatial
node-based IoT.

Keywords: Internet of Things; computational intelligence; contact plan design; multidirectional
particle swarm optimization; delivery time

1. Introduction

As an important part of current and next generation networks, Internet of Things (IoT) is
composed of physical devices, vehicles, home appliances, and other items embedded with electronics,
software, sensors, actuators, and seamless connectivity, which enables these things to connect
and exchange data [1–9]. In particular, IoT is deployed with satellite channels in geographically
remote locations for agriculture, mining and transportation [10], and optimized data exchange in
heterogeneous IoT architectures allows increasing data transmission efficiency and extending the
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application areas for the IoT technologies. Therefore, bringing wide-area connectivity to the IoT using
spatial nodes and satellite technology is becoming an attractive solution to complementing terrestrial
networks [11–14].

To provide a robust solution for the NP-hard problem, Computational Intelligence (CI)
solves many optimization problems in real-world through biologically-and-linguistically-inspired
techniques [15–17]. However, for different scenarios, the CI algorithm needs to be modified to be
applicable [18–20]. Particularly, for data transmission in the spatial node-based IoT with limited
resource, it is likely to affect the system performance seriously if the classical CI algorithm is applied
bluntly [21,22]. In order to cope with intermittent connectivity caused by the orbital motion of spatial
nodes, the spatial node-based IoT networks are often modeled through scheduling contacts as a
temporal topology within a certain duration [23].

For the spatial nodes with limited on-board resources, the energy budget and the number of
transponders make the node unable to fully utilize all the potential contacts, and there will be a
conflict in contact establishment between the nodes. Contact Plan Design (CPD), which was proposed
to resolve conflicts for the contact scheduling in the spatial resource-constrained IoT networks,
is attracting more and more attention [24,25]. Early works mainly focused on the reliability of
connections between nodes, while ignoring the time-varying nature of the topology caused by node
movement [26,27]. Considering the dynamic characteristic of network topology, the space-time graph
was proposed to discretize the time-varying network topology, and a sparser topology was generated
from the original topology so as to reduce the total network overhead in [28,29]. To minimize the
network overhead when contacts are unreliable, different reliabilities were allocated to each contact
and several heuristic methods were proposed in [30]. Taking account of the limited-resources on
satellites, authors in [31] proposed Fair Contact Plan (FCP) to enable fair scheduling of contacts
based on the historical establishing times of each contact. To improve the transfer efficiency with low
computational complexity, metaheuristics were introduced to CPD [32,33]. A Time-Evolving Graph
(TEG) was introduced to characterize the data acquisition and delivery process while maximizing
delay-constrained throughput in [34]. In view of the dynamic change of contact capacity, authors in [35]
treated CPD as a queue-stability related stochastic optimization problem, and designed the Contact
Plan (CP) in a slot-by-slot manner. Unfortunately, almost all of aforementioned CPD schemes were
proposed for the resource-constrained satellite networks, which could hardly meet the requirements of
massive and timely data transmission.

The intelligent networking with different space platforms, which aims to achieve continuous
and low-delay transmission of massive data, is becoming an attractive and hot research field. In the
scenario of intelligent networking, more low-altitude nodes such as Unmanned Aerial Vehicles (UAVs)
and High Altitude Platforms (HAPs) are introduced to perform collaborative communications with
traditional satellite nodes [36,37]. Through the cooperation between spatial nodes in different layers, a
Multi-Layer Space Communication Network (MLSCN) can massively transfer data with low latency.
Especially in a MLSCN consisting of UAVs and HAPs, flexible UAVs can cope with the burst of massive
data transmission when hot events happen, and a stable network can be built by almost stationary
HAPs to ensure the reliability of data transmission. However, the communication environment
between nodes varies from layer to layer, and the motions of nodes are also taken into account when
establishing the inter-layer links, which further increase the difficulty of CPD.

In this paper, we study the CPD in a MLSCN by introducing an intelligent computing method.
We divide the CPD into intra-layer CPD and inter-layer CPD, and schedule the CPs in the delivery
order of data. Specifically, a MLSCN model containing ground stations, UAVs, HAPs, and satellites,
is presented first, and TEG is introduced to illustrate the difference between contact topology and
CPs in MLSCN. Then, different CPD schemes are proposed for different inter-layer and intra-layer,
respectively. For inter-layer contacts, a CI method named Multidirectional Particle Swarm Optimization
(MPSO) is proposed to schedule conflicting contacts in an iterative manner. To ensure that the
particles are able to search the solution domain as completely as possible during the initial stage
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of iterations, the gird-based initialization in MPSO maximizes the diversity of the CPs in the initial
solution set. In addition, to avoid the particles’ falling into local optimization trap, the quaternary
optimization of MPSO can adjust the direction of searching particles based on the optimal position
and the worst position.

For intra-layer CPs, since the data in UAVs is transferred cooperatively through HAPs and
satellites, a load balancing strategy is introduced in the UAV layer to deliver the data to the higher
layers as soon as possible. The main concern of the HAP layer and the satellite layer is to relay the
data from the lower layer and transfer it to ground stations. Therefore, we adopt the modified Dijkstra
algorithm and Dynamic Virtual Topology Routing (DVTR) algorithm in the CPD of the HAP layer
and the satellite layer. The simulation results show that our proposed CPD scheme can deal with the
dynamic topology, and realize real-time, high-efficiency, and massive data transmission.

The remainder of this paper is organized as follows. In Section 2, a MLSCN consisting of ground
stations, UAVs, HAPs, and satellites is introduced, the data transfer process is characterized in a TEG
manner, and a problem description is presented. Then, MPSO is proposed for the inter-layer CPD
in Section 3, and optimized strategies for the intra-layer CPD of each network layer are introduced
in Section 4. Finally, simulation results are presented and analyzed in Section 5 and conclusions are
drawn in Section 6.

2. System Model and Problem Description

2.1. Network Topology

In our envisioned scenario, the MLSCN contains four kinds of nodes, which are satellites, HAPs,
UAVs, and ground stations. Space nodes of the same type can build intra-layer networks, which
means that the MLSCN has a total of three intra-layer networks. The space nodes of adjacent layers
can be connected through inter-layer links; UAVs are connected to HAPs through Platform-Vehicle
Links (PVLs), and HAPs are connected to satellites through Satellite-Platform Links (SPLs). When the
destination nodes, i.e., the ground stations, are within the visual range of the space nodes, the MLSCN
can build links to the ground, which are Vehicle-Ground Links (VGLs), Platform-Ground Links (PGLs),
and Satellite-Ground Links (SGLs), respectively.

Taking into account the complexity of data acquisition in the hot-event case, UAVs are the only
data source nodes in the MLSCN in Figure 1. A UAV cluster consists of multiple UAVs, and UAVs in
the same cluster can connect to each other. Although the flexibility of UAVs ensures that it can perform
high-intensity data collection for specific areas, the limited range makes it difficult to efficiently deliver
data to the destination nodes. At this point, the HAP network can act as a data mule to assist UAVs
to transfer data more efficiently. With a wider coverage, satellites can assist MLSCN in reducing the
number of hops and improving the transmission efficiency.
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2.2. Time-Evolving Graph with Limited Capacity

Since all inter-layer links except PGLs show the characteristic of intermittent connection, the
network topology is time-varying. In view of this, a time-evolving graph is introduced to characterize
the time-evolving nature of the network and illustrate an example of CP.

As shown in Figure 2, the network topology over time is characterized by TEG. Where gn, vn, pn, sn

represent Earth stations, UAVs, HAPs, and satellites, respectively. The subscript of the node indicates
the node identifier, and the superscript is the state number of the node. For example, s1

2 indicates the
satellite 2 at the state 1. C1, C2, · · · , Cn represent the state of the network, CT1, CT2, · · · , CTn are the
corresponding contact time of each state.
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Figure 2. A contact topology and a contact plan in TEG manner.

In the contact topology of Figure 2, the change of network topology in TEG is clarified from two
perspectives. In the perspective of time, the network topology updates when the connection status
between nodes changes. In the other perspective of space, the intra-layer links of HAPs are stable
due to the stable position while the intra-layer links of the satellite layer are intermittent connected
due to the movement of satellites. Considering the limitation of the number of transponders and the
energy budget, only one contact can be established by spatial nodes at the same time, which is shown
in Equation (1):

Ns+Nh+Nv

∑
n=1

Yc,n,m = {0, 1} ∀c, m = s, h, v (1)
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where s, h, v indicate the satellites, HAPs, and UAVs respectively, and Ns, Nh, Nv represent the number
of satellites, HAPs and UAVs, respectively. Yc,n,m represents the number of links that can be established
between nodes n and m at the state c.

To avoid wasting link resources, the MLSCN prohibits data from being transferred back to the
lower space nodes from higher space nodes, which is shown as follows:

Xy,z
c,n,m = 0 ∀y, z, (n = s, m = h), (n = h, m = v) (2)

where Xy,z
c,n,m represents the flow from node y to z, and traversing from node n to node m at state c. The

changes of the node load in the network must satisfy the flow balance as shown in Equation (3):

By,z
c,n − By,z

c−1,n =
Ns+Nh

∑
m=1

Xy,z
c,m,n −

Ns+Nh

∑
m=1

Xy,z
c,n,m (3)

where By,z
c,n represents the number of packets from node y to z which is temporarily stored in node n at

state c.
Assuming that the bandwidth of each contact is constant and equal, then the contact time of each

state can also be called the contact capacity [17]. Since the contact capacity of each state is limited, the
amount of each flow delivered at state c should be less than the contact capacity CTc, which is shown
in Equation (4):

Xy,z
c,n,m ≤ CTc (4)

2.3. Problem Description

In a traditional terrestrial fixed network, the links between node pairs are hardly changed, and the
classical shortest path algorithm can efficiently perform data transfer tasks. However, in a time-varying
network where the resources of nodes are limited, not only does the topology of the network change
dynamically, but also the constraints on the resources make it impossible for the nodes to utilize all
the potential contacts. If the shortest path algorithm is directly applied at this time, it is likely that the
effective data transfer path cannot be obtained, and the network performance is severely degraded.

Considering that the large amount of spatial nodes in our model, the example network collectively
refers to all spatial nodes as SN in Figure 3, and the destination node is called as DN. With the concern
of the time-varying nature of the network topology and the difference in each state duration, the
example network is divided into three states C1, C2 and C3. SN1

1 indicates the spatial node SN1
1 at state

C1. For simplicity, the unit of state capacity is set as the time delivering a packet. The contact capacity
of C1, C2 and C3 are set to 1, 3, and 3, and there are two packets to be delivered from SN1

1 , SN1
2 , and

SN1
3 to the destination node DN1

1 .

Sensors 2018, 18, x FOR PEER REVIEW  5 of 18 

 

where , ,s h v  indicate the satellites, HAPs, and UAVs respectively, and , ,s h vN N N  represent the 

number of satellites, HAPs and UAVs, respectively. , ,c n mY  represents the number of links that can 

be established between nodes n  and m  at the state c . 
To avoid wasting link resources, the MLSCN prohibits data from being transferred back to the 

lower space nodes from higher space nodes, which is shown as follows: 
,

, , 0   , , ( , ),  ( , )y z
c n mX y z n s m h n h m v= ∀ = = = =  (2) 

where ,
, ,
y z
c n mX  represents the flow from node y to z, and traversing from node n to node m at state c. 

The changes of the node load in the network must satisfy the flow balance as shown in Equation (3): 

, , , ,
, 1, , , , ,

1 1

s h s hN N N N
y z y z y z y z
c n c n c m n c n m

m m
B B X X

+ +

−
= =

− = − 
 

(3) 

where ,
,
y z
c nB  represents the number of packets from node y  to z  which is temporarily stored in 

node n at state c. 
Assuming that the bandwidth of each contact is constant and equal, then the contact time of each 

state can also be called the contact capacity [17]. Since the contact capacity of each state is limited, the 
amount of each flow delivered at state c should be less than the contact capacity CTc, which is shown 
in Equation (4): 

,
, ,
y z
c n m cX CT≤  (4) 

2.3. Problem Description 

In a traditional terrestrial fixed network, the links between node pairs are hardly changed, and 
the classical shortest path algorithm can efficiently perform data transfer tasks. However, in a time-
varying network where the resources of nodes are limited, not only does the topology of the network 
change dynamically, but also the constraints on the resources make it impossible for the nodes to 
utilize all the potential contacts. If the shortest path algorithm is directly applied at this time, it is 
likely that the effective data transfer path cannot be obtained, and the network performance is 
severely degraded. 

Considering that the large amount of spatial nodes in our model, the example network 
collectively refers to all spatial nodes as SN  in Figure 3, and the destination node is called as DN . 
With the concern of the time-varying nature of the network topology and the difference in each state 
duration, the example network is divided into three states 1C , 2C  and 3C . 1

1SN  indicates the spatial 
node 1

1SN  at state 
1C . For simplicity, the unit of state capacity is set as the time delivering a packet. 

The contact capacity of 
1C , 

2C  and 3C  are set to 1, 3, and 3, and there are two packets to be delivered 
from 1

1SN , 1
2SN , and 1

3SN  to the destination node 1
1DN . 

𝑆𝑁41 
 

𝑆𝑁31
 

𝑆𝑁21 
 

𝑆𝑁11 
 

𝐷𝑁11 
 

𝐷𝑁13 
 

𝑆𝑁42 
 

𝑆𝑁43 
 

𝑆𝑁32
 

𝑆𝑁22
 

𝑆𝑁12 
 

𝑆𝑁33
 

𝑆𝑁13 
 

𝑆𝑁23
 

𝐶1 𝐶2 𝐶3  
𝐷𝑁12 

  
Figure 3. Analysis of CPD Problems in an example space network. Figure 3. Analysis of CPD Problems in an example space network.



Sensors 2018, 18, 2852 6 of 18

The classic Dijkstra algorithm calculates the shortest path based on the current topology. Since
SN1 is the closest load node from DN1 at state C1 and C2, then contacts [SN1

3 , SN1
4 ] and [SN2

4 , DN2
1 ]

are established at the first two states in the algorithm. Because of the limitation on contact capacity at
state C1, the network can deliver only one packet to the destination node at the first two state. At the
last state of the network, the node that can be connected with node DN1 has no data to transmit, and it
can only establish the contact with other load spatial nodes. Finally, only one packet can be transferred
to the destination node within three states.

On the contrary, if CPD is performed in a searching manner using the CI algorithms, the contact
established at state C1 might not be [SN1

3 , SN1
4 ] but [SN1

1 , SN1
2 ]. Moreover, SN2

3 can fully utilize the
contact capacity of state C2, and transmit three packets to node SN2

4 , so as to enable node SN3
4 to

transmit three packets to the destination node DN1
3 at state C3.

The above example explains why the traditional shortest path algorithm is not suitable for the
resource-constrained spatial networks. However, it should be noted that there is more than one type
of spatial node in our MLSCN model, and the characteristics of the links between nodes are not the
same. Therefore, the inter-layer CPs and intra layer CPs of the MLSCN are designed separately in
the following.

3. MPSO for Inter-Layer Contact Plan

Considering the complexity of the MLSCN topology and the NP-hardness of the CPD problem
itself, we combine the characteristics of the CPD in MLSCN model and the idea of Particle Swarm
Optimization (PSO) to propose MPSO and so as to improve the transmission efficiency in inter-layer
contacts. Before describing MPSO in detail, several terms used in MPSO are explained here:

Particle: Particles are individuals who perform the optimization process in MPSO. They adjust
their speed and position through historical information to gradually approach the optimal solution in
an iterative way. A particle is represented by a string of binary bits.

Group: A group consists of several particles, and the number of particles is called as group size.
Learning factor: The learning factor adjusts the particle trajectory through historical information.

The larger the parameter, the greater the influence of the historical information.
Inertia weight: The inertia weight represents the influence degree of the current speed on the

trajectory. The larger the parameter, the stronger the global search ability of particles.
The overall process of MPSO is shown in Figure 4. The algorithm first initializes the group by

grid-based initialization, which is aimed to increase the diversity of the group by minimizing the
relevancy between particles. Then, the particles are coded to bit strings according to the initialized
group. However, the generated CPs may not meet the requirement of system, so the next step is to
repair each particle. The repaired particle can be regarded as a feasible CP, then MPSO evaluates each
particle by an evaluation function so as to distinguish the merits of each particle.
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To this point, MPSO completes current iteration and determines whether to continue iterating.
If MPSO chooses to continue iterating, then it enters the main optimization step of the algorithm.
Through the worst and best position of the particle, after this, MPSO guides the direction of motion
of the particles through the worst and best position saved in the iterative process, and gradually
approaches the optimal solution of the system. In fact, updating the code string only by the direction
guidance may break the delivery requirement of system. Thus, particles that have just finished the
position update need to be repaired again. The specific implementation of each part of MPSO is
described below.

Traditionally, heuristic algorithms initialize the group by random binary strings. Although this
method can obtain an initial group with a low computational overhead, randomly generated strings
may cause the particles to be unevenly distributed in the solution domain, and quickly fall into the
local optimization trap in the following iteration process. In light of this, the grid-based in MPSO is
introduced to disperse the particles in the initial group as much as possible.

Since only the UAVs are source data nodes in the MLSCN model, the packets mush be delivered
to the HAPs before transmitted to satellites through SPLs. Thus, the grid-initialization here is the
initialization of the PVLs. In addition, it should be noted that Figure 5 shows the solution domain of
the same PVL, rather than the solution domain of a complete CP in the MLSCN. In other words, a
CP has multiple solution domains in Figure 5, and the points in the figure indicate the PVL in a CP,
which is characterized by the average establishing time and the amount of data. Figure 5a shows the
establishment of a PVL in the initial group generated by the random initialization, in which many of
these PVLs have similar average establishing time and data amount. To maximize the link diversity
in each CP, grid-based initialization in Figure 5b distributes PVLs uniformly in two dimensions. The
MPSO initializes the group by the following steps:

Step 1: Based on the contact topology of MLSCN, a certain number of CPs that can complete the
data transmission on HAPs are randomly generated, and the average delivery time of these CPs is
calculated at the same time.

Step 2: According to the average delivery time calculated in step 1 and the contact topology of
MLSCN, MPSO counts all PVLs that may be established during the delivery period, and calculates the
average establishing time and the transfer amounts of the contact.

Step 3: MPSO calculates the relevancy between each pair of CPs according to the average values
calculated in step 2.

Step 4: Based on the optimization model of relevancy minimization, the classical Genetic
Algorithm (GA) is used to iteratively correct the transfer amounts and average establishing time
of each PVL in CPs until the iteration termination condition is reached.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 18 

 

To this point, MPSO completes current iteration and determines whether to continue iterating. 
If MPSO chooses to continue iterating, then it enters the main optimization step of the algorithm. 
Through the worst and best position of the particle, after this, MPSO guides the direction of motion 
of the particles through the worst and best position saved in the iterative process, and gradually 
approaches the optimal solution of the system. In fact, updating the code string only by the direction 
guidance may break the delivery requirement of system. Thus, particles that have just finished the 
position update need to be repaired again. The specific implementation of each part of MPSO is 
described below. 

Traditionally, heuristic algorithms initialize the group by random binary strings. Although this 
method can obtain an initial group with a low computational overhead, randomly generated strings 
may cause the particles to be unevenly distributed in the solution domain, and quickly fall into the 
local optimization trap in the following iteration process. In light of this, the grid-based in MPSO is 
introduced to disperse the particles in the initial group as much as possible.  

Since only the UAVs are source data nodes in the MLSCN model, the packets mush be delivered 
to the HAPs before transmitted to satellites through SPLs. Thus, the grid-initialization here is the 
initialization of the PVLs. In addition, it should be noted that Figure 5 shows the solution domain of 
the same PVL, rather than the solution domain of a complete CP in the MLSCN. In other words, a CP 
has multiple solution domains in Figure 5, and the points in the figure indicate the PVL in a CP, 
which is characterized by the average establishing time and the amount of data. Figure 5a shows the 
establishment of a PVL in the initial group generated by the random initialization, in which many of 
these PVLs have similar average establishing time and data amount. To maximize the link diversity 
in each CP, grid-based initialization in Figure 5b distributes PVLs uniformly in two dimensions. The 
MPSO initializes the group by the following steps: 

Step 1: Based on the contact topology of MLSCN, a certain number of CPs that can complete the 
data transmission on HAPs are randomly generated, and the average delivery time of these CPs is 
calculated at the same time. 

Step 2: According to the average delivery time calculated in step 1 and the contact topology of 
MLSCN, MPSO counts all PVLs that may be established during the delivery period, and calculates 
the average establishing time and the transfer amounts of the contact. 

Step 3: MPSO calculates the relevancy between each pair of CPs according to the average values 
calculated in step 2. 

Step 4: Based on the optimization model of relevancy minimization, the classical Genetic 
Algorithm (GA) is used to iteratively correct the transfer amounts and average establishing time of 
each PVL in CPs until the iteration termination condition is reached. 

 
Figure 5. Random initialization and Grid-based initialization with two dimensions in MPSO. 

Due to the needs of the average establishing time and transfer amounts of PVLs, the first step of 
gird-based initialization is to generate a large number of CPs randomly, and so as to determine the 
delivery period on HAPs. After this, the average establishing time and the average transfer amounts 
of each link are calculated according to Equations (5) and (6): 

Figure 5. Random initialization and Grid-based initialization with two dimensions in MPSO.

Due to the needs of the average establishing time and transfer amounts of PVLs, the first step of
gird-based initialization is to generate a large number of CPs randomly, and so as to determine the



Sensors 2018, 18, 2852 8 of 18

delivery period on HAPs. After this, the average establishing time and the average transfer amounts
of each link are calculated according to Equations (5) and (6):

Xave
n,m =

Npl

∑
pl=1

Tave

∑
t=1

Xpl
t,n,m

Npl
n = v, m = h (5)

where Xave
n,m is the average amount of data flowed in the contact [n, m], and Npl is the group size.

pl indicates the identifier number of a CP, which is smaller than Npl . Xpl
t,n,m represents the amount of

data delivered by contact [n, m] in CP pl. Tave is the average time it takes to transfer all the data on
UAVs, which is calculated by Equation (6):

Tave
n,m =

Npl

∑
pl=1

Tpl
n,m

Npl
n = v, m = h (6)

where Tave
n,m indicates the average establishing time of contact [n, m] in all CPs in the group. Tpl

n,m is the
average establishing time of contact [n,m] in CP pl, which is calculated by Equation (7):

Tpl
n,m =

Tave

∑
t=1

Tpl
t,n,m

Tave

∑
t=1

CTpl
t,n,m

∀pl, n = v, m = h (7)

where Tpl
t,n,m indicates the current establishing time of contact [n,m] in CP pl, and

Tave

∑
t=1

CTpl
t,n,m expresses

the cumulative contact capacity of contact [n,m] in CP pl.
The system evaluates the relevancy of the current initial group after calculating the characteristics

of the PVL. The formula is as follows:

r(pli, plj) =
Cov(Xpli , Xplj)√

Var[Xpli ] ·Var[Xplj ]
+

Cov(Tpli , Tplj)√
Var[Tpli ] ·Var[Tplj ]

(8)

where pli and plj indicate the ith and jth CP in the initial group. Cov(Xpli , Xplj) and Cov(Tpli , Tplj) are
the covariance of CP pli and CP plj in terms of the data amount and the average establishing time

of, which can be calculated by the following Equations (9) and (10). Var[Xpli
n,m] and Var[T

plj
n,m] are the

variance of Xpli
n,m and T

plj
n,m, which can be calculated by Equations (11) and (12):

Cov(Xpli , Xplj) =
Nn

∑
n=1

Nm

∑
m=1

(Xpli
n,m − Xave

n,m)·
Nn

∑
n=1

Nm

∑
m=1

(X
plj
n,m − Xave

n,m) n = v, m = h, ∀i 6= j (9)

Cov(Xpli , Xplj) =
Nn

∑
n=1

Nm

∑
m=1

(Tpli
n,m − Tave

n,m)·
Nn

∑
n=1

Nm

∑
m=1

(T
plj
n,m − Tave

n,m) n = v, m = h, ∀i 6= j (10)

where Xpli
n,m is the amount of delivered data on contact [n,m] in CP pli, and Tpli

n,m is the average
establishing building time of contact [n,m] in CP pli:

Var(Xpl) =

Nn
∑

n=1

Nm
∑

m=1
(Xpl

n,m − Xave
n,m)

2

Nl
Tave

∀pl, n = v, m = p (11)
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Var(Tpl) =

Nn
∑

n=1

Nm
∑

m=1
(Tpl

n,m − Tave
n,m)

2

Nln,m
Tave

∀pl, n = v, m = p (12)

where Nln,m
Tave is the number of contacts that MLCN can establish by the time Tave.

To maximize the differences among the particles of the group, the objective function in grid-based
initialization is set as Equation (13):

min∑
i

∑
j

r(pli, plj) ∀i 6= j (13)

According to the objective function, the classical Genetic Algorithm (GA) is used to search the
optimal solution of initial group. Table 1 shows the simulation result, the comparison between
traditional way and grid-based initialization in relevancy.

Table 1. The relevancy of grid-based initialization.

Traditional Way Grid-Based Initialization

Transfer amounts 0.4004 0.0628
Average building time 0.9592 0.7521

As can be seen in Table 1, whether for transfer amounts or average establishing time, the initialized
group is much smaller than that of random initialization.

The initialized MPSO encodes each CP in the initial group into a binary string leading the
algorithm more manageable. Each bit of the string represents an establishment status of a particular
contact. In the example contact topology of Figure 2, considering the cross-layer contacts [v1

2, p1
1] and

[v1
3, p1

2] at state c1, the binary string reserves two code bits for state c1. If the first bit in the binary string
equals to 1, it means that contact [v1

2, p1
1] is established in the CP. Otherwise, the contact is excluded

from the CP.
Since the CPD of SPLs is not covered in the grid-based initialization of MPSO, and randomly

generated bits are likely to break the constraints of the model, the bits of SPLs must be repaired soon.
The repaired string is a complete inter-layer CP, and then combined with the intra-layer CP introduced
in the next section, it constitutes a complete feasible CP in the MLSCN.

In order to demonstrate the advantages and disadvantages of CPs, the following evaluation
function is used to calculate the fitness of CPs:

F =
1

∑
c

∑
n

∑
m

CTc · Xc,n,m
· φ(Ts) ∀c, n, m = g (14)

where Ts is the lifetime of a packet, φ(Ts) is the penalty function and shown as follows:

φ(Ts) = 1− (
Np

o · (Tave
o − Ts)

Np
all · T

ave
all

) (15)

where Np
o is the number of packets whose delivery time exceeds the lifetime. Tave

o is the average
delivery time of the packet which exceeds the lifetime, and Tave

all is the average time for all packets to
reach the destination node. Nl

all is the total number of the packets waiting delivery on all UAVs. α is
the penalty factor.

After the evaluation of each particle, MPSO determines whether iterating or not. A static
termination condition is adopted in the algorithm, that is if a certain number of iterations is reached,
the algorithm will terminate, otherwise it enters the optimization process of MPSO again.
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By comparing the current position with the optimal position, the search direction of particles
in the traditional PSO [38] can be correctly guided. However, the single form of the PSO may cause
particles to quickly fall into local optimization traps, and it is difficult to obtain a good solution. In light
of this, MPSO expands the optimization direction by a quaternary optimization strategy. In other
words, the search direction of the particles in MPSO can be corrected by the optimal position as well as
the worst position. Since the optimization requires historical information, the algorithm then judges
whether to update the historical information after the evaluation is completed. The algorithm updates
the historical extremum by comparing the current fitness with the worst and the optimal historical
fitness, and also reserves the corresponding position of the fitness.

The constraints on the number of transponders will cause a large proportion of zeros in a binary
string. If the search direction of the particles is reversely adjusted by the historical worst position,
most of the bits in the string will change to 1, which means that the constraints will be broken by the
renewed string. And finally, MPSO will repair the strings in a large scale, which will greatly affect
the performance of the optimization. To this end, the algorithm calculates the average position of the
current group by Equation (16) and uses the calculated position to pick out the bits in the worst string
which can correctly guide the search direction. Specifically, at a certain position of a string, if the bit of
the worst position is different from the mean value, the bit will have a guiding effect on the direction of
the current particle, and vice versa. The average value of the jth bit in the current group is calculated
in Equation (16):

bave,j =


1

Npl

∑
pl=1

bpl,j/Npl > 0.5

0
Npl

∑
pl=1

bpl,j/Npl <= 0.5
(16)

where Npl is the group size and bpl,i is the value of the jth bit of CP pl.
After traversing all the bits in the string according to Equation (16), the average position of the

group is determined. Then the MPSO uses the quaternary optimization to update the search direction
and position:

vpl,i(c + 1) = wpl(c) · vpl,i(c) + a1 · r1 · [xo
pl,i(c)− xpl,i(c)] + a2 · r2 · [xo

g,i(c)− xpl,i(c)] (17)

vpl,i(c + 1) = wpl(c) · vpl,i(c) + a1 · r1 · [xpl,i(c)− xw
pl,i(c)] + a2 · r2 · [xo

g,i(c)− xpl,i(c)] (18)

vpl,i(c + 1) = wpl(c) · vpl,i(c) + a1 · r1 · [xb
pl,i(c)− xpl,i(c)] + a2 · r2 · [xpl,i(c)− xw

g,i(c)] (19)

vpl,i(c + 1) = wpl(c) · vpl,i(c) + a1 · r1 · [xpl,i(c)− xw
pl,i(c)] + a2 · r2 · [xpl,i(c)− xw

g,i(c)] (20)

where wpl(c) is inertia weight of particle pl at state c, vpl,i(c + 1) is the speed of particle pl at the jth
bit in state c, which is decided by Equation (20). a1 and a2 are the learning factors, r1 and r2 are the
random numbers in the range of [0, 1]. Under the state c, xb

pl,i(c) and xw
pl,i(c) are the historical optimal

and worst positions at ith found by particle pl, xb
g,i(c) and xw

g,i(c) are the historical optimal positions
and the worst positions found by the group, respectively.

A random integer in the range of [1, 4] is generated to determine the velocity (i.e., search direction).
Random values 1, 2, 3, and 4 correspond to Equations (17)–(20), respectively. It should be noted that if
the worst position is involved in the velocity update, the algorithm must determine whether the bit
in the worst case is equal to the mean value. If the two bits are different, the velocity of the particle
corresponding to the bit is updated, and vice versa.

wi(c + 1) =

{
wmin −

(wmax−wmin)×( fpl(c)− fmin(c))
favg(c)− fmin(c)

, fpl(c) > favg(c)

wmax , fpl(c) > favg(c)
(21)
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where wmax and wmin are the maximum and minimum inertia weights of the input, favg(c) and fmin(c)
are the average fitness and the minimum fitness of the group, and fpl(c) is the fitness of the CP pl at
state c.

After the update of velocity, the particle adjusts its position based on the current position and the
updated velocity, which is shown in Equation (22):

xi,j(c + 1) = xi,j(c) + vi,j(c + 1) (22)

where xi,j(c + 1) is the position of jth bit within particle pl at the state c + 1.
Considering that each bit in the string is ultimately represented by a binary value, but the issue is

not considered in the position update. Thus, the particles that have just finished their position update
need to approximate the value of each bit by Equation (23):

xi,j(c + 1) =

{
0 , xi,j(c + 1) < 0.5
1 , xi,j(c + 1) ≥ 0.5

(23)

In addition, the above update of the bits does not take into account the constraint of the model,
so MPSO repairs the newly generated string, and converts the string into a feasible inter-layer CP.
The above process will continue until the termination condition of the algorithm is met, and the final
CP of MLSCN is the historical optimal position.

4. Intra-Layer Contact Plan Design

In the envisioned MLSCN, the main concern of intra-layer links is to deliver data to the intra-layer
nodes which can connect the ground nodes. However, different network layers play different role in
the overall transmission process, and the connection characteristics between nodes are varied with
different layers. Therefore, the CPs in the intra-layer link cannot be designed as a whole, but it should
be designed layer by layer according to the characteristics of each layer.

4.1. Intra-Layer Contact Plan for UAV Layer

In the UAV layer, different locations of the nodes result in different opportunities to connect with
HAP nodes. In other words, different UAV nodes own different number of coding bits in the MPSO.
For the nodes with more coding bits, it is easier to establish contacts during the iteration process. If the
data is not delivered in the UAV layer in this case, the load gap between UAV nodes will gradually
expands during the iteration, eventually causing the congestion and affecting system performance.
In light of this, a load balancing strategy is introduced in the intra-layer CPD of UAV layer to alleviate
the possible congestion, which is shown in Equation (24):

min∑
A

∑
n
(BA

n −
∑
n

BA
n ,

NA ) (24)

where A is the identifier of UAVs cluster, BA
n is the load size of node n in cluster A, and NA is the

number of UAVs in cluster A.

4.2. Intra-Layer Contact Plan for HAP Layer

In the mesh network constructed by HAPs, the contact can only be established continuously
between neighboring nodes. To improve the transfer efficiency within HAP layer as much as possible,
a modified Dijkstra algorithm is utilized to minimize the number of hops in data transfer. Due to
the limited number of transponders, the sequence of the contacts established within the layer may
affect transfer efficiency. For example, if the lifetime of the data is short, and if the system prioritizes
the establishment of contacts far from the destination node, the closer contacts cannot be established
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because of the occupation of the transponder, which may make the data unable to reach the destination
node on time. Therefore, in the modified Dijkstra algorithm, the contacts are established in the order
of hop count from small to large. In other words, the algorithm preferentially delivers the data that
close to the destination node.

In addition, in the case of a limited number of transponders, if data is delivered by its own unique
shortest path, this may break the constraints and further increase the congestion within the layer.
In fact, since the model evaluates the distance from the destination node based on the hop count, each
node may have more than one shortest path. Under this consideration, multiple shortest paths are
reserved in the modified Dijkstra algorithm. When the data transmission is congested in HAP layer,
the algorithm will traverse the next hop nodes of all the shortest paths of the congested node, select
an available node and then deliver the data. If all the next nodes are occupied, the data will not be
delivered at current state.

4.3. Intra-Layer Contact Plan for Satellite Layer

Taking into account the time-varying characteristics of the topology in the satellite network, a
classic algorithm named as DVTR [39] is employed to schedule the contacts within the satellite layer.
Like the HAP layer, the algorithm also reserves multiple shortest paths. Once the preferred next node
is occupied, the available next node of another shortest path is selected to establish the contact. Besides,
in order to improve the arrival rate of data, the contact which is closer to the destination node will be
given higher priority to be established.

5. Simulation and Analysis

5.1. Simulation Settings

To verify the validity of our proposed CPD schemes, MATLAB and STK are used for our
co-simulation. In the envisioned MLSCN, it consists of satellites, HAPs, UAVs, and ground stations.
Specifically, the satellite layer uses the Iridium constellation, six polar orbits with 11 satellites in each
orbit. Each satellite can connect with two adjacent satellites in the same orbit and two satellites in the
adjacent orbits. The intra-track link can be established continuously, and the inter-track link will be
closed above two polar regions [40].

The HAP layer is a mesh network of 5 × 5 nodes in the range of [29.38◦ N, 40.86◦ N],
[85.55◦ E, 113.35◦ E], and its height is 20 km [37]. A total of three data transfer tasks are performed
during simulation, and thus there are three UAV clusters in the network, and each of cluster has 6, 7,
and 7 UAV nodes. The flight range of each cluster is a circle with a radius of 200 km, and the centers of
the three clusters are (32.32◦ N, 112.371◦ E), (40.26◦ N, 112.55◦ E) and (38.11◦ N, 81.55◦ E), respectively.
Three ground stations are separately located at Xi’an (34.45◦ N, 109.50◦ E), Mi’yun (40.45◦ N, 116.86◦ E),
and He’tian (37.11◦ N, 79.92◦ E). For simplicity, we set the data transfer rate to 1 Mb/s and the packet
size to 1 Mbit [41], which means that the transmission of a packet will occupy one second of a contact.
The default lifetime of a packet is set to 4200 s. In the MPSO, the group size is set to 100. The inertia
weight, the minimum inertia weight, the maximum inertia weight, the local learning factor, and the
global learning factor are set to 0.6, 0.5, 0.8, 2, and 2, respectively. Other parameters of the related
satellite network are shown in Table 2.

Table 2. Orbital parameters in satellite network.

Start time 4 January 2018 04:00

Inclination (degree) 86.4
Height (Km) 780 Km
Orbit Planes 6

Satellites 66
RAAN (degree) 31.6 (Co-directional) 22 (Reverse)
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The 3D and 2D views of the system network in STK are shown in Figure 6.
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5.2. Performance Analysis

In this work, we mainly compare the CPD performance of different heuristics in the inter-layer
link. Two classic heuristics, viz. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are
selected as the baseline algorithms. The parameter settings of the baseline algorithms are the same
as that of MPSO in this paper, and the iteration times and group size are 500 and 100, respectively.
The crossover rate and mutation rate of GA are set to 0.6 and 0.05, and the GA adopts the elitism
strategy of the survival of the fittest when picking offspring [42]. The inertia weight in the PSO
algorithm is set to 0.6, and the local learning factor and global learning factor of the algorithm are the
same as those of MPSO in this paper, which are 2 and 2, respectively. Additionally, to compare all
algorithms as fairly as possible, the evaluation function of all algorithms is the same as MPSO.

Since the three algorithms reserve the optimal individual during the iteration process, their fitness
gradually increases with the number of iterations in Figure 7. Specifically, the crossover in GA can
reorganize the binary strings in a large scale, and increase the diversity of individuals in the group.
Therefore, the fitness of GA is lower than PSO in the early stage, while the gap between GA and PSO in
fitness gradually narrow with iteration times. Different from the traditional PSO, MPSO relies on the
historical optimal and worst positions for adjusting the search direction of particles. This method can
fully expand the diversities of individuals and improve the search ability of the algorithm. In addition,
the dynamic inertia weight in MPSO enables the algorithm to balance the guidance between the
particle historical experience and the self-exploration during the iteration process, and to improve the
search ability.

In Figure 8, since the PSO does not adopt a targeted optimization strategy for the MLSCN, its
link consumption falls into a local optimization trap at the early stage of iteration. On the contrary,
in order to expand the diversity among the particles in the initial group, MPSO designs a grid-based
initialization and develops a quaternary optimization scheme to guide the optimization efficiently.
As a result, the downward trend of link consumption of MPSO is more distinct than that of PSO.

In Figure 9, the delivery time refers to the time that it takes to transfer all packets in the network.
The delivery time of MPSO shows a trend of fluctuating downward. This can be accounted that the
fitness is not only determined by the delivery time, but also closely related to the arrival rate of data.
Similarly, it can be seen from the figure that the differences in the delivery time is not as apparent as
the difference on fitness. Again, this is because the fitness is not only based on the delivery time, but
also the arrival time of each data flow and the arrival rate of data.
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Figures 10 and 11 show the arrival rate and the average delivery time with the iteration times.
And the performance trend in Figures 7 and 10 are almost the same, which can be accounted the fact
that the arrival rate will greatly affect the fitness when the data cannot be delivered within the lifetime.
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In terms of average arrival time of packets, the advantage of arrival rate in MPSO makes most of the
packets arrive to the destination node earlier, compared with the baseline algorithms.
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6. Conclusions

In this paper, CP is designed in a MLSCN with the CI method to transfer a large amount of
spatial data under limited-resource conditions. Specifically, we have first built a system model to
determine the limitations of CPD in the system. Then, this paper divides the contacts in the model
into inter-layer contacts and intra-layer contacts, and performs CPD on the two types of contacts
respectively according to the order in which the data is delivered in the network. For the inter-layer
CP, we have proposed the CI algorithm named MPSO, which introduces the grid-based initialization
method to maximize the differences between individuals in the initial group, and at the same time
developed a quaternary optimization strategy to further improve the search ability of the algorithm.
For the intra-layer contact plan, since each network layer plays a different role in MLSCN, we have
designed different intra-layer CPs for different layers. A fair contact plan is designed for the UAV
layer, and the HAP and satellite layers are designed with the corresponding CP with the shortest
path. Finally, simulation results show that the proposed MPSO can outperform the other two classical
CI algorithms.
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