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The present study investigates a network model for implementing concentration-invariant representation for odors in the olfactory
system. The network consists of olfactory receptor neurons, projection neurons, and inhibitory local neurons. Receptor neurons
send excitatory inputs to projection neurons, which are modulated by the inhibitory inputs from local neurons. The modulation
occurs at the presynaptic site from a receptor neuron to a projection one, leading to the operation of divisive normalization. The
responses of local interneurons are determined by the total activities of olfactory receptor neurons. We find that with a proper
parameter condition, the responses of projection neurons become effectively independent of the odor concentration. Simulation
results confirm our theoretical analysis.

1. Introduction

An external physical or chemical stimulus contains multiple
aspects of information, for instance, a natural image may
contain the luminance, the color, and the shape information
of an object, and an odorant input may contain the identity
and the intensity information of an odor. These multiple
aspects of information are represented by spiking activities
of neuron ensembles layer by layer. It has been found that
neurons often show invariant responses to certain features
of stimulus, for instance, ganglion cells in the retina display
some degree of spatial luminance invariance to light signals
[1], and complex cells in the primary visual cortex are
insensitive to the phase of orientation [2]. The invariance
representation for stimulus feature is beneficial to neural
information processing, as it makes a neural system con-
centrate on representing or extracting a special aspect of
external information. It has been reported that some Kenyon
cells in the locust mushroom body exhibit concentration-
invariance responses to odor stimulus [3], but how does this
concentration-invariance arise remains largely unknown.

For the drosophila olfactory system, odorant information
is first represented by the activities of olfactory receptor

neurons (ORNs) [4]. There are about 60 classes of ORNs
in drosophila. The firing rates of ORNs increase with the
odor concentration. ORNs expressing the same receptor gene
project their axons into the same glomerulus, where they
make excitatory synaptic connections with the projection
neurons (PNs) in the antennal lobe. Generally, a PN inner-
vates a single glomerulus and hence the ORN-PN connection
constitutes a direct signal transmission pathway. The ORN-
PN synapse is strong and exhibits short-term depression [5];
that is, the synaptic efficacy depends on the spiking history
of the presynaptic neuron. It has been reported that the
synapse from ORN to PN is modulated by the inhibitory
inputs from local neurons [6], and the activity of the latter
is determined by the total activity of ORNs. The presynap-
tic inhibition is known to have the effect of normalizing
neuronal responses divisively. Thus, the activity of a PN is,
on one hand, driven by its presynaptic ORNs, and on the
other hand, modulated by the total activities of all ORNs
through the presynaptic inhibition. In this study, we show
that through this presynaptic inhibition, the stationary state
of PNs can achieve concentration-invariant representation
for an odor.
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Figure 1: The network structure.

2. The Model

We consider there are 𝑁𝐸 clusters of ORNs, each of them
corresponding to one receptor expression type, and there
are 𝐾 cells in each cluster. A cluster of ORNs is connected
to a PN (there are therefore 𝑁𝐸 number of PNs), and it is
also connected to all inhibitory local neurons (iLNs). The
synapse from an ORN to a PN holds short-term depression.
The connection from an iLN to a PN locates at the terminal
of the presynaptic site from an ORN to the PN; therefore, it
modulates the input to the PN. There are totally𝑁𝐼 iLN, and
each of them receives inputs from all ORNs. The network
structure is shown in Figure 1. The dynamics of a single
neuron is described by an integrate-and-fire process. When
the membrane potential of a neuron is above a threshold,
an action potential is generated and after that the membrane
potential is reset to a resting value. Below the threshold, the
dynamics of a neuron is given by
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where 𝐶𝑇 is the membrane capacitance of a 𝑇-type neuron,
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For an inhibitory neuron, the dynamics of the conduc-
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where 𝑤𝐼𝐸 is the connection strength, and 𝜏
𝐸
the synaptic

time constant. 𝑔𝐼𝐸
𝑖𝑗

is driven by the activity of the 𝑗th presy-
naptic ORN. An ORN generates action potentials according
to Poisson process, with 𝑡

𝑗𝑘
denoting the moment of the 𝑘th

spike of the 𝑗th ORN.

The synapse conductance from the 𝑗thORN to the 𝑖th PN,
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, exhibits short-term depression [7] and is modulated by

the activities of iLNs, whose dynamics is given by

𝑑𝑔
𝐸𝐸

𝑖𝑗

𝑑𝑡
= −

𝑔
𝐸𝐸

𝑖𝑗

𝜏
𝐸

+ 𝑤
𝐸𝐸
𝑥
𝑖𝑗
𝑓 (𝑔
𝐼

𝑖
)∑

𝑙

𝛿 (𝑡 − 𝑡
𝑗𝑙
) ,

𝑑𝑥
𝑖𝑗

𝑑𝑡
=

1 − 𝑥
𝑖𝑗

𝜏
𝐷

− 𝑥
𝑖𝑗
𝑓 (𝑔
𝐼

𝑖
)∑

𝑙

𝛿 (𝑡 − 𝑡
𝑗𝑙
) ,

𝑑𝑔
𝐼

𝑖

𝑑𝑡
= −

𝑔
𝐼

𝑖

𝜏
𝐼

+ 𝑤
𝐼

𝑁
𝐼

∑

𝑘

∑

𝑚

𝛿 (𝑡 − 𝑡
𝑘𝑚
) ,

(4)

where 𝑥
𝑖𝑗
denotes the available vesicle resource in the presy-

naptic site of the 𝑗th ORN, 𝑓(𝑔𝐼
𝑖
) is the vesicle release proba-

bility modulated by the presynaptic input,𝑤𝐸𝐸 is the synaptic
connection strength from ORN to PN, 𝑤𝐼 is the synaptic
connection strength from iLN to PN, and 𝜏

𝐷
is the recovery

time constant of the vesicle release. When a spike is emitted
from an ORN, the synaptic conductance 𝑔𝐸𝐸 is increased
by 𝑤𝐸𝐸𝑥

𝑖𝑗
𝑓(𝑔
𝐼

𝑖
) due to the opening of ion channels, and

the vesicle resource in the presynaptic site is decreased by
𝑥
𝑖𝑗
𝑓(𝑔
𝐼

𝑖
). The increased conductance and decreased vesicle

resource depend on the spiking history of its presynaptic
ORN and the strength of presynaptic inhibition.

In the ORN-PN pathway, a lateral presynaptic inhibition
is found to modulate the strength of synaptic transmission.
This form of presynaptic inhibition is also found in the retina
[8]. Each spike could depolarize the membrane potential in
the presynaptic terminal, and the amount ofmembrane depo-
larization is modulated by the amount of inhibitory synaptic
conductance. To model this effect, we assume that the vesicle
release probability 𝑓(𝑔𝐼

𝑖
) is a monotonically decreasing func-

tion of the inhibitory synaptic conductance, that is,
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where 𝑎 and 𝑏 are constants.
Let us give a short summary of the synaptic transmis-

sion from ORN to PN. The synaptic connection strength
from ORN to PN depends on three factors: the vesicle
resource in the presynaptic site, the release probability, and
the number of release sites. In the above, we model the
vesicle resource with a variable 𝑥. The release probability is
determined by the calcium concentration in the presynaptic
terminal, and the latter is affected by the depolarization
level of the local membrane. The presynaptic inhibitory
input influences the membrane depolarization level. Thus,
we model the presynaptic inhibition effect by assuming that
the release probability decreases with the inhibitory input.
The increment of the synaptic conductance upon a spike is
modeled as a product of the available vesicle resource, the
release probability, and the synaptic connection strength.
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3. Input Gain Control in the Response of PNs

Input gain control phenomenon is widely observed in the
early pathway of a sensory system [9–12]. It is defined as that
the neuronal transfer function ismodulated by themagnitude
of inputs. In the olfactory system, the input gain control
has been observed in the ORN-PN pathway, in which the
response of a PN to its presynaptic ORN inputs is modulated
by total activities of ORNs [11]. In the experiment, a few odors
were identified that each odor only activates a single type of
ORNs. These odors are called private odors for simplicity. By
varying the concentration of a private odor, the mean firing
rates of ORNs and its cognate PNs are recorded. The input-
output relationship shows a sigmoid-like curve function.
Interestingly, it is found that the input-output function could
be input gain modulated by superimposing a public odor
that could activate many types of ORNs but not the ORNs
activated by private odors. Here, we show that short-term
depression and the presynaptic inhibition can achieve input
gain control in the olfactory system.

By setting the left-hand of (3)–(4) to be zero and consid-
ering the continuum limit, we get the stationary state of the
network, which is given by
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where 𝑟𝑂
𝑖
is the firing rate of the the ORNs in the 𝑖th cluster,

and 𝑟𝐼 is the firing rate of iLNs. 𝑔𝐼𝐸 is the total excitatory
synaptic conductance received by an inhibitory neuron,𝑔𝐸𝐸

𝑖
is

the total excitatory synaptic conductance received by the 𝑖th
PN, and 𝑔𝐼

𝑖
is the inhibitory conductance at the presynaptic

terminal of the ORN-PN synapse. For simplicity, we assume
that the firing rate is a linear function to the synaptic
conductance, that is,
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By using (5), we get
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and the firing rate of the 𝑖th PN is
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Figure 2: The ORN-PN response curve is modulated by the total
activity of ORNs. In the low and high baseline cases, the firing rates
of other ORNs are set to be 20Hz and 30Hz, respectively. Symbols
denote the simulation results. The parameters are𝑁𝐸 = 49; 𝐾 = 40;
𝑁
𝐼
= 20;𝑤𝐸𝐸 = 10 nS;𝑤𝐸𝐼 = 0.05 nS;𝑤𝐼
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𝐼
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From (9)-(10), we see that the response of a PN is modulated
by the total activity of ORNs (see the denominator of (9)). Its
firing rate does not increase linearly with the input strength,
but saturates when the input is strong enough. Figure 2 shows
the response curves of PNs to the presynaptic ORNs under
different levels of background ORN activities.

4. Concentration-Invariant
Representation for Odors

The activity of a PN depends on two factors: the excitatory
current from its presynaptic ORNs and the vesicle release
probability controlled by the presynaptic input from iLNs,
and the latter decreases with the total activity of ORNs.
Consider an odor activates a subset of ORNs, with their firing
rates 𝑟𝑂

𝑖
increase linearly with the odor concentration.We see

that the concentration-invariant representation holds if the
following condition is satisfied, which is
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With the above condition, the stationary value of excitatory
conductance to a PN is written as follows:
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We see that the linear dependence of 𝑟𝑂
𝑖

on the odor
concentration in the nominator and denominator of the
above equation cancel each other, and hence 𝑔𝐸𝐸

𝑖
, and so does
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Figure 3: The concentration-invariant representation for an odor. The left panel shows the ORN population responses at the low and high
odorant concentrations; the right panel shows the corresponding PN population responses. The population responses of PNs do not vary
much in different odor concentration conditions.

𝑟
𝐸

𝑖
, become invariant with respect to the odor concentration.

Figure 3 shows the simulation result, which confirms the
theoretical analysis.

In the above, we show that the responses of PNs in sta-
tionary state only encode the identity information of an odor.
The concentration information of an odor is conveyed by the
transient dynamics of PNs. Figure 4 shows the population
activities of PNs shortly after the application of an odor,
which demonstrates that the firing rates of PNs in the high
concentration case are much higher than that in the low
concentration case.

5. Conclusions and Discussions

In this study, we have proposed a network model for imple-
menting concentration-invariant representation for odors in
the olfactory system. Two elements are involved in achieving
this goal, namely, short-term synaptic depression and presy-
naptic inhibition. The former ensures the responses of PNs
saturate for large inputs, and the latter modulates the excita-
tory inputs to PNs according to the total activities of ORNs.
Themodeling result is consistent with experimental findings.
As gain control effect has been widely observed in neural
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Figure 4: The transient dynamics of PNs in different odor concentrations. The firing rates of ORNs are uniformly distributed in the range
of (0,20)Hz in the low concentration case and in the range of (0,100)Hz in the high concentration case. PN fires spontaneously before the
application of the odor.

systems, the underlying mechanisms have long been debated
[13–15]. Here, we propose an input gain control mechanism
mediated by presynaptic inhibition. Furthermore, we find a
parameter condition under which the stationary responses
of PNs become invariant with respect to the concentration
of odors. It has been pointed out that input gain control can
generate invariance representation [16]. Here, we show that
this could be realized by presynaptic inhibition. It has been
observed in experiment that Kenyon cells inmushroom body
could exhibit concentration invariant responses in a certain
range of odor concentrations [3]. In this study, we show that
this concentration-invariant representation is achieved in the
layer of PNs, which are presynaptic to Kenyon cells. The
concentration information of an odor is, on the other hand,
represented by the transient dynamics of PNs. It is our future
work to explore the circuit temporal dynamics in detecting
odor concentrations.
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