
MOLECULAR NEUROSCIENCE
REVIEW ARTICLE

published: 28 November 2011
doi: 10.3389/fnmol.2011.00050

Activity-dependent plasticity and gene expression
modifications in the adult CNS
Daniela Carulli 1,2*, Simona Foscarin1,2 and Ferdinando Rossi 1,2

1 Department of Neuroscience, Neuroscience Institute of Turin, University of Turin, Turin, Italy
2 Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Turin, Italy

Edited by:

Simone Di Giovanni, University of
Tuebingen, Germany

Reviewed by:

Olivier Raineteau, Brain Research
Institute University of Zurich,
Switzerland
James W. Fawcett, Centre for Brain
Repair, UK

*Correspondence:

Daniela Carulli , Neuroscience
Institute Cavalieri-Ottolenghi, Regione
Gonzole 10, 10043 Orbassano, Turin,
Italy.
e-mail: daniela.carulli@unito.it

Information processing, memory formation, or functional recovery after nervous system
damage depend on the ability of neurons to modify their functional properties or their con-
nections. At the cellular/molecular level, structural modifications of neural circuits are finely
regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular
milieu. Recently, it has become clear that stimuli coming from the external world, which
comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not
only provide the involved neurons with instructive information needed to shape connec-
tion patterns to sustain adaptive function, but also exert a powerful influence on intrinsic
and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic
remodeling. Here, we present an overview of recent findings concerning the effects of
experience on molecular mechanisms underlying CNS structural plasticity, both in physio-
logical conditions and after damage, with particular focus on activity-dependent modulation
of growth-regulatory genes and epigenetic modifications.
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INTRODUCTION
Adaptation of living organisms to changing environmental
demands mostly depends on plasticity of the nervous system,
namely the capability of neurons to modify their structure, con-
nectivity, and functional properties. Structural modifications of
neural circuits comprise a wide range of phenomena, including
rewiring of existing connections and integration of new neu-
rons in pre-existing networks. The current notion is that any
process leading to structural remodeling of the nervous tissue is
determined by the interplay between intrinsic neuronal proper-
ties and growth-regulatory cues expressed in the CNS microen-
vironment. Nonetheless, it is clear that plastic processes at the
cellular/molecular level are conditioned by the concurrent inter-
action of the entire organism with the external world. Indeed,
stimuli coming from the external environment (in a word “expe-
rience”), which comprise sensory inflow, motor activity, cognitive
elaboration, and social interaction, exert a strong influence on the
biological processes underlying the shaping of neural circuits (Sale
et al., 2009). Neural circuits are particularly sensitive to experience
during restricted phases of postnatal development, called critical
periods, in which specific patterns of electrical activity, induced
by specific experience events, contribute to refine neural connec-
tions to allow the emergence of adaptive function (Hensch, 2004).
Over the last few years, however, it has become increasingly evident
that experience also exerts a powerful influence on the function
and structure of neuronal circuits in adult life, thereby strongly
affecting biological mechanisms underlying information process-
ing, memory formation and storage, and functional recovery after
damage. Experience-dependent plasticity is initiated when neu-
ronal activation triggers intracellular signaling pathways, from the

synapse to the nucleus, that modulate gene expression. The prod-
ucts of such activity-dependent genes fine-tune neural circuits by
strengthening or weakening synaptic connections or by altering
synapse numbers, ultimately leading to profound changes of brain
wiring and information processing.

In this review, we will discuss recent findings regarding cellular
and molecular processes responsible to produce activity-induced
structural remodeling of neural networks. Furthermore, we will
focus on activity-dependent modifications of the expression of
genes involved in neuritic growth.

EXPERIENCE AND PHYSIOLOGICAL PLASTICITY
It has been clear for almost two decades that cortical represen-
tations of sensory or motor peripheries are strongly affected by
experience in adult animals. The cortex can expand areas to rep-
resent particular peripheral input sources according to the quality
and quantity of their use. For example, in monkeys trained to
discriminate with one of their digits between successive vibra-
tory stimuli of different frequencies, the population of neurons
responding to the skin stimulation site was enlarged several-fold
(Recanzone et al., 1992a,b). In a related human study, Pascual-
Leone and Torres (1993) analyzed differences in the hand repre-
sentations of adults who had become proficient as Braille readers.
Using magneto-encephalography, these authors showed that the
scalp area over which potentials were recorded was significantly
larger for the right index (reading) finger as compared with the
left finger or as compared with the right finger of non-Braille read-
ers. Representations of parts of the hand that were not employed
in Braille reading were, in contrast, differentially smaller than in
control hands. Similarly, it has been shown that the somatosensory
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representation of the digits of the left hand of string players is larger
in comparison to that of the right hand fingers or to the left hand
finger representation of control subjects (Elbert et al., 1995).

Other examples of how representational maps, such as those
in primary cortical sensory areas (S1, A1, or V1), can be remod-
eled by inducing changes in input sources come from denervation
experiments. Transecting the median nerve of a monkey removes
part of the digits input to S1, but does not result in a perma-
nent large area of unresponsive cortex. Indeed, immediately after
transection, inputs from neighboring cortical areas are unmasked
in a limited sector of the deafferented cortex. Over the course of
a few weeks, representations of the bordering skin surfaces pro-
gressively expand to occupy increasingly larger portions of the
former median nerve cortical representational zone (Merzenich
et al., 1983a,b). Similarly, after the amputation of one digit, most
of the cortex that originally responded only to the skin surfaces
of the missing digit becomes responsive to inputs from adjacent
digits or the subjacent palm (Merzenich et al., 1984). Other exam-
ples of reorganization in adult somatosensory cortex in response
to denervation or amputation have been reported in the raccoon
(Rasmusson, 1982; Kelahan and Doetsch, 1984), flying fox (Cal-
ford and Tweedale, 1988), cat (Kalaska and Pomeranz, 1979), and
rat (Wall and Cusick, 1984). One of the most dramatic exam-
ples of cortical reorganization was reported by Pons et al. (1991).
These authors mapped the cortex of monkeys that had undergone
dorsal root avulsion (C2–T4) several years before, thereby depriv-
ing a cortical area of over 1 cm2 of its normal input from the
arm and hand. All these deprived areas developed novel responses
to neighboring skin areas, including the face and chin. A similar
reorganization is seen in the adult human cortex. After amputa-
tion of an arm, sensory inputs from the face activate the hand
area of the somatosensory cortex, therefore stimuli on the face can
elicit sensations referred to the phantom limb (Ramachandran,
1993). Different mechanisms may underlie cortical map reorgani-
zation following peripheral input loss, ranging from unmasking of
latent intracortical connections, to growth of intracortical axons
or sprouting of subcortical fibers (see for review Navarro et al.,
2007).

In the rodent barrel cortex, which processes tactile informa-
tion from the facial vibrissae, experience-dependent plasticity has
been reported following different types of sensory input manipu-
lation. Trimming a subset of mystacial whiskers causes experience-
dependent changes in receptive fields, such as potentiation of the
responses to spared whiskers stimulation, which is detected after
a day and progresses over several weeks (Fox, 2002). Following
vibrissectomy that spared a row of whiskers, dextran injections
into spared barrels label axons extending for significantly greater
distances than after injections into deprived or control barrels.
Also, the total axonal density in the spared barrels is 70% higher
than in the deprived or control barrels (Kossut and Juliano, 1999).
Moreover, single whisker stimulation increases the total synaptic
density in the corresponding cortical barrel (Knott et al., 2002).

Studies in the auditory and the visual cortex also highlighted
the high capacity of the adult brain to adapt to input changes.
After restricted monaural lesions of the cochlea there is a reorga-
nization of the tonotopic map in response to information coming
from the injured ear (Robertson and Irvine, 1989; Rajan et al.,

1993). One month after cochlear lesion, neurons in the deprived
cortex responded to tone frequencies adjacent to the frequency
range affected by the lesion. Bilateral lesions to the high-frequency
cochlear sector in monkeys also produced an expanded represen-
tation of frequencies neighboring those whose inputs had been
abolished (Schwaber et al., 1993). After focal lesions to the retina,
collateral axons from neurons surrounding the scotoma in the
visual cortex branch into the deprived area (Darian-Smith and
Gilbert, 1994). In parallel, spine dynamics increase in the deaffer-
ented region of the visual cortex, suggesting that deprived neurons
sample the neuropil searching for active presynaptic inputs (Keck
et al., 2008).

In addition to structural changes reported in axonal projections
and dendrites (reviewed in Fox and Wong, 2005; Hickmott and
Steen, 2005; Broser et al., 2007), which typically occur in several
days or weeks, very rapid remodeling (hours to days) of spines and
synapses occurs in response to experience. For example, dendritic
spines of pyramidal cells appear, disappear, and change shape on
this time scale in vivo, and these dynamics are increased by sensory
manipulations, including whisker or visual deprivation (Trachten-
berg et al., 2002; Mataga et al., 2004; Oray et al., 2004; Holtmaat
et al., 2006; Knott et al., 2006), or peripheral nerve injury (Kim and
Nabekura, 2011). Spine formation and retraction can be associ-
ated with synapse formation and elimination (Trachtenberg et al.,
2002; Holtmaat et al., 2006).

Activity-dependent changes in synaptic connections between
neurons are believed to play a major role in learning and mem-
ory formation. While short-term memory might rely mainly on
strengthening and weakening of pre-existing synapses, long-term
storage of information is thought to require structural reorga-
nization of neuronal networks, formation of new synapses, and
loss of existing ones (Bailey and Kandel, 1993; Moser et al., 1994;
Engert and Bonhoeffer, 1999; Moser, 1999; Martin et al., 2000;
Kolb et al., 2008; Neves et al., 2008). In addition, motor learning
in acrobatic conditions is associated with an increase in synapse
number in the cerebellar (Black et al., 1990) and in the motor
cortex (Kleim et al., 1996), whereas development of the condi-
tioned eyeblink response is associated with neosynaptogenesis in
the cerebellar nuclei (Kleim et al., 2002). Specific structural mod-
ifications may serve to store information about past experiences
and thereby endow the cortex with an improved ability to adapt
to similar conditions in the future. Indeed, structural changes at
the level of dendritic spines in the visual cortex following monoc-
ular deprivation can outlast the original experience (Hofer et al.,
2009). Similarly, training in a forelimb reaching task or on a rotat-
ing rod rapidly induces formation of new spines in the motor
cortex, which are stabilized by subsequent training sessions and
endure after the end of training (Xu et al., 2009; Yang et al., 2009).

ENVIRONMENTAL ENRICHMENT
Fundamental contributions to our understanding of the effects
of external stimuli on brain plasticity came from the studies by
Rosenzweig et al. (1978), who introduced environmental enrich-
ment as a protocol to investigate the influence of the environment
on brain and behavior. Enriched environment is “a combination
of complex inanimate stimuli and social stimulation.” It refers to
housing conditions that facilitate sensory, motor, cognitive, and
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social stimulation (i.e., a large cage containing various objects,
tubes, and running wheels, in which a numerous colony of individ-
uals is housed). In the initial studies, the effects of environmental
stimuli on parameters such as total brain weight (Bennett et al.,
1969; Henderson, 1970, 1973; Ferchmin and Bennett, 1975), total
DNA or RNA content (Mushynski et al., 1973; Uphouse and Bon-
ner, 1975; Henderson, 1976), or total brain proteins were measured
(Levitan et al., 1972; Jørgensen and Bock, 1979). Subsequently,
many studies have shown that environmental stimulation elicits a
variety of plastic modifications in the adult brain, ranging from
synaptic remodeling and dendritic growth (Greenough et al., 1985;
Beaulieu and Colonnier, 1987) to gliogenesis (Altman and Das,
1964; Diamond et al., 1966; Szeligo and Leblond, 1977), angio-
genesis (Black et al., 1990; Isaacs et al., 1992; Kleim et al., 1996;
Swain et al., 2003), and neurogenesis (Kempermann et al., 1997,
1998; Gould et al., 1999; Van Praag et al., 1999; Ambrogini et al.,
2000). At the behavioral level, enrichment enhances learning and
memory (Garcia-Segura et al., 1978), reduces memory decline in
aged animals (Mohammed et al., 1993; Kempermann et al., 1998;
Winocur, 1998; Soffie et al., 1999), decreases anxiety, and increases
exploratory activity (Huck and Price, 1975; Francis et al., 2002;
Morley-Fletcher et al., 2003). Enrichment-induced potentiation
of learning and memory is generally attributed to the concomi-
tant remodeling of neural circuits connections, although the direct
link between cellular changes and functional modifications is not
always established. On the other hand, some of the effects pro-
duced by enriched environment can be induced by exposition to
specific components of the variety of external stimuli. For instance,
increased physical activity alone (through spontaneous access to
running wheels or forced running on treadmills) improves learn-
ing (Black et al., 1990; Kleim et al., 1996), promotes angiogenesis
(Black et al., 1990; Isaacs et al., 1992; Swain et al., 2003), boosts
hippocampal cell proliferation and survival (Kempermann et al.,
1997, 1998; Gould et al., 1999; Van Praag et al., 2000), and stim-
ulates the genesis of cortical microglia (Altman and Das, 1964;
Diamond et al., 1966; Szeligo and Leblond, 1977). In general, dif-
ferent types of experience produce specific morpho-functional
adaptation in the nervous tissue. Hence, while running boosts
neurogenesis in the adult dentate gyrus, yoked swimming or maze
training have no significant effects (Van Praag et al., 1999). Simi-
larly, skill motor training stimulates synaptic reorganization in the
motor cortex, strength training modifies intraspinal circuits, and
endurance training promotes angiogenesis (Adkins et al., 2006).

EXPERIENCE AND COMPENSATORY PLASTICITY
FOLLOWING CNS INJURY
Following CNS injury, compensatory processes can be initiated
even without any particular pharmacological or rehabilitative
intervention. Following different types of spinal cord injury (SCI),
spontaneous sprouting from spared projections or propriospinal
relays is paralleled by different degrees of functional recovery (Wei-
dner et al., 2001; Bareyre et al., 2004; Ballermann and Fouad, 2006;
Courtine et al., 2008). Conversely, after ablation of the hand rep-
resentation area in the motor cortex of the squirrel monkey, a
transient deficit in the use of the affected hand is paralleled by
shrinkage of the cortical map (Nudo et al., 1996a). Recovery of
motor function, however, is accompanied by enlargement of the

hand representation in the premotor cortex and extensive reor-
ganization and sprouting in the sensory cortex (Dancause et al.,
2005). Moreover, 8 weeks after an infarct in the forelimb represen-
tation area, forelimb stimulation evoked a depolarization in the
forelimb cortex that propagates into the adjacent areas with longer
latency and duration (Brown et al., 2009). At the neuronal level,
although a stroke determines loss of dendritic spines, the remain-
ing ones become longer and undergo faster turnover (Brown et al.,
2007, 2009).

Even if a certain degree of plasticity and recovery can be
achieved spontaneously, the practice of the impaired function
ameliorates the final outcome. Following ablation of the hand
representation area in the motor cortex, task-specific rehabilita-
tion induces the expansion of the hand representation in adjacent
undamaged zones, associated with significant behavioral recovery
(Nudo et al., 1996b). After removal of the forelimb representa-
tion area in the rat motor cortex, dendritic arborizations of layer
V pyramidal neurons in the contralateral cortex show transient
extension of new branches (Jones and Schallert, 1994). Interest-
ingly, this plastic effect is modulated by the use of either the
spared or the affected limb. Indeed, the expansion of dendritic
arbors is mainly due to disuse of the affected limb and conse-
quent intensified use of the spared one, and it can be counteracted
by immobilization of the latter limb. On the contrary, dendritic
expansion does not occur in the intact motor cortex, even if the
contralateral limb is overused. Thus, plasticity in the spared motor
cortex depends on both the presence of injury on the contralateral
side and enhanced use of the unaffected limb (Jones and Schallert,
1994; Kozlowski et al., 1996).

One of the strategies to improve recovery after a CNS injury
is therefore to exploit experience- and activity-based training.
Enriched environment has been proven to reduce different func-
tional defects after CNS injury. Exposure to enriched environment
early after a contusive SCI improves rat scores on the Basso, Beattie,
and Bresnahan (BBB) motor assessment and reduces allodynia but
not hyperalgesia. These effects are paralleled by reduced formation
of cystic cavities both in the white and in the gray matter (Berrocal
et al., 2007). Enriched environment results effective in ameliorat-
ing BBB score even if it is initiated in the chronic phase, 3 months
after a contusive SCI in the rat, and positive effects are already
visible 2 weeks after the beginning of the treatment (Fischer and
Peduzzi, 2007). Following SC hemisection, enriched environment
also modulates spine dynamics in the motor cortex by counter-
acting the injury-induced spine enlargement and elongation (Kim
et al., 2008). It is important to note that enriched environment
stimulates spine remodeling in the whole brain in intact animals
(Globus et al., 1973; see for review Nithianantharajah and Hannan,
2006), but exerts specific and stronger effects in the affected motor
cortex, acting on spines that have been primed for remodeling by
the SCI (Kim et al., 2008).

It has been demonstrated that the combination of enriched
environment together with specific training is highly successful in
promoting plasticity and functional recovery. Following middle
cerebral artery occlusion, the association of enriched environ-
ment and skilled reaching task induces significant improvement
in forelimb motor function in 4 weeks, and further behavioral
improvement up to 9 weeks. The beneficial effects are paralleled
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by increase in dendritic length and complexity in the contralateral
spared cortex (Biernaskie and Corbett, 2001). Similar results have
been obtained after spinal cord hemisection at the C4 level: in this
condition, the combined therapy with enriched environment and
targeted training for forelimbs and hindlimbs induces an increase
in the number of fibers that sprout in the corticospinal tract (CST;
Dai et al., 2009). Thus, the combination of enriched environment
early after injury with tasks that encourage the practice of affected
functions improves long-term functional outcome regardless of
initial lesion exacerbation due to the early onset of the therapy
(Biernaskie et al., 2004).

Two main factors influence the course and outcome of activity-
based therapies: (1) the moment when rehabilitation is initiated
and the ensuing duration of the treatment; (2) the specificity of
the training procedure.

(1) After a lesion of the forelimb representation in the rat cortex,
immediate forced use of the affected limb exacerbates sen-
sorimotor cortical lesion and hampers functional recovery.
At the anatomical level, the expansion of the injury can be
due to excitotoxic mechanisms and/or metabolic alterations
in the surrounding tissue. At the behavioral level, the lack of
functional recovery can be due to the impossibility to learn
alternative strategies by the non-impaired limb during the
early post-lesion period (Kozlowski et al., 1996). On the other
hand, unilateral lesion of the rat CST followed by immedi-
ate immobilization of the non-impaired forelimb leads to full
motor recovery in 3 weeks, together with enhanced sprout-
ing of CST fibers from the intact side and upregulation of
inflammation-related factors, ion channels and transporters,
growth factors, guidance cues, extracellular matrix compo-
nents, and molecules involved in synapse formation (Maier
et al., 2008). This sharp difference in the outcome after the
application of the same treatment is probably due to the
different lesion conditions. Indeed, a CST transection only
interrupts descending tracts at the cord level, leaving cell bod-
ies undamaged and less prone to excitotoxic insults. Thus, the
same therapeutic treatment can lead to good or bad effects
depending on the particular injury conditions. Moreover, it
has been demonstrated that combined therapy of enriched
environment with balance and coordination trainings induces
functional recovery both if begun immediately or 1 week after
an infarct, but the loss of cortical tissue is reduced if training
is delayed (Risedal et al., 1999).

(2) Not all the types of experimental training have the same effect
on plasticity and functional recovery. In the somatosensory
system of the rat, a spinal cord contusion leads to allody-
nia that responds differently to specific training procedures.
Indeed, allodynia fully recovers in 35 days if the training is on
a treadmill, it partially and transiently ameliorates if training
is swimming, and it remains unaltered if training is limited to
upright standing (Hutchinson et al., 2004). Treadmill training
is also effective in ameliorating motor defects that follow a SC
hemisection (Goldshmit et al., 2008). Trained mice improve
in the BBB over their controls, far better in walking and climb-
ing on a grid, and recover walking kinematic and footprints
in 5 weeks. Treadmill trained mice also show more axonal

sprouting, increased synapse formation, and less muscle atro-
phy. On the other hand, treadmill training does not ameliorate
grip strength, which also depends on sensory input (Gold-
shmit et al., 2008). Training specificity is very important to
recover highly skilled tasks. After a transection of the CST,
forelimb functionality is reduced in general, but acquired skills
are most severely impaired (Whishaw et al., 1998; Starkey et al.,
2005; Anderson et al., 2007). Interestingly, recovery of fore-
limb function after SCI occurs only when pharmacological
intervention that enhances sprouting is combined with task-
specific rehabilitation. On the contrary, a non-specific gen-
eral rehabilitation protocol (enriched environment) results in
worse performance on specific forelimb tasks than no reha-
bilitation at all. Nonetheless, it results in better performance
on more general behaviors (i.e., ladder walking; García-Alías
et al., 2009). Moreover, task-specific training has been shown
to enable injured animals to ameliorate their skilled behaviors,
but to worsen their performance in related but untrained tasks
(Girgis et al., 2007; Dai et al., 2009; Kuerzi et al., 2010). On
the whole, general rehabilitation in which the level of physical
activity is increased can produce behavioral improvements in
many conditions. However, task-specific training is generally
more effective in improving the recovery of the functions that
are practiced, although to the detriment of behaviors that are
not practiced.

Not only post-operative trainings are beneficial in reducing lesion-
induced deficits, but also exercise before lesions can be highly
advantageous. It has been recently demonstrated that exposure of
adult rats to enriched environment before hemi-cerebellectomy
accelerates recovery (Cutuli et al., 2011). Behavioral improvement
and recovery of normal patterns of electrical activity in the stria-
tum occur even if the animals are kept in standard cages. However
exposure to enriched environment after injury boosts recovery and
the effect is even stronger if the treatment is initiated before injury.
At the morphological level, dendritic arborizations of striatal neu-
rons are reduced in lesioned animals kept in standard cages, but
return to basal levels if rats experience enriched environment after
the injury, and are oversized if enriched environment starts before
the lesion. Thus, exposure to enriched environment and active
life exerts both a neuroprotective and growth promoting effect
that potentiates the compensatory phenomena set up in response
to injury. The formation of new synapses induced by enriched
environment in intact animals may guarantee a reserve of connec-
tions that can be readily exploited to improve recovery after injury
(Cutuli et al., 2011). On the whole, experience may precondition
tissues to challenging metabolic functions, by increasing angiogen-
esis and neurogenesis, reducing the susceptibility to apoptosis and
inhibitory molecules or increasing the expression of neurotrophic
factors (see for review Kleim et al., 2003).

ACTIVITY-DEPENDENT MODULATION OF
GROWTH-REGULATORY CUES
In order to trigger physiological or compensatory plasticity, exter-
nal stimuli must modulate specific growth-regulatory signaling
cascades and molecular cues. However, the precise mechanisms by
which external stimuli influence growth control mechanisms are
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not fully elucidated. Neuronal activity appears to play a relevant
role in this respect, controlling changes in gene expression patterns
that lead to adaptive modifications of function and/or behavior.
At glutamatergic synapses, activity leads to Ca++ influx into the
postsynaptic cell through activation of NMDA receptors, as well
as voltage sensitive Ca++ channels. Ca++ entry into the cell acti-
vates different signaling pathways that converge on the nucleus to
activate gene expression (see for review Lyons and West, 2011).
Targets of these signaling cascades include the transcription fac-
tor CRE-binding protein (CREB), which plays a crucial role in
long-term memory formation (Dash et al., 1990; Bourtchuladze
et al., 1994) and other forms of plasticity (Mower et al., 2002).
The expression of several immediate early genes, such as c-fos,
c-jun, and zif/268, is also elicited in response to neuronal depolar-
ization (Sheng and Greenberg, 1990), and parallels the build up
of synaptic plasticity, such as LTP. Many other activity-regulated
genes have been characterized which affect plasticity through var-
ious modifications of the synapse, including rgs2, arc/arg3.1, cpg2,
homer1a, snk, cpg15, arcadlin, npas4, narp (for a detailed charac-
terization of the cellular functions of these genes, see Leslie and
Nedivi, 2011). Furthermore, npas4 and narp modulate inhibitory
circuit function (Lin et al., 2008; Chang et al., 2010), which is a
crucial limiting factor for the induction of experience-dependent
plasticity in the adult cortex (Harauzov et al., 2010; Chen et al.,
2011). Interestingly, activation of hippocampal circuits by phar-
macological or electrical stimulation also induces local changes in
the expression of neuronal growth molecules (e.g., GAP-43, Ben-
dotti et al., 1994; Holtmaat et al., 2003) and extrinsic regulatory
cues (e.g., chondroitin sulfate proteoglycans – CSPGs, Heck et al.,
2004; Schwarzacher et al., 2006), which have been associated with
concomitant neuritic sprouting. Signaling molecules, such as NF-
κB, can be also elicited by electrical activity or synaptic stimulation
(Wellmann et al., 2001; Meffert et al., 2003).

The expression of a large number of genes is also affected when
animals are exposed to enriched environment. Many of those genes
are involved in regulating neuronal structure, synaptic signaling,
and structural remodeling that occur during neuronal growth or
memory formation (Rampon et al., 2000; Vallès et al., 2011). For
example, 3 or 6 h of exposure to enriched environment are suffi-
cient to trigger the expression of genes encoding integrin alpha-4
and GTPase RhoA, which are important for neuritogenesis and
neuronal plasticity (Kogan et al., 1997; Mansuy et al., 1998), and
of a cluster of genes encoding proteins involved in synaptic vesicle
trafficking and neurotransmitter release, including synaptobrevin
and clathrin-AP2 (Rampon et al., 2000).

One of the most extensively characterized activity-regulated
genes is bdnf (Maffei, 2002). BDNF belongs to the neurotrophin
family (NGF, BDNF, NT3, and NT4/5), which are secreted proteins
that have emerged as important regulators of neuronal survival,
differentiation, neuritic growth, and plasticity (Reichardt, 2006).
The resulting effects of BDNF on cellular and molecular plas-
ticity (and ultimately behavior) are due to activation of other
activity-dependent genes, such as arc/arg3.1, narp, cgp15 (Wibrand
et al., 2006), or of different intracellular signaling cascades that, in
turn, regulate the transcription of neuronal growth genes, such
as GAP-43 and synapsin 1 (Vaynman and Gomez-Pinilla, 2005;
Wibrand et al., 2006; Cotman et al., 2007). Expression of BDNF

can be induced by specific external stimuli or physical activity
(Gòmez-Pinilla et al., 2002; Vaynman and Gomez-Pinilla, 2005).
For example, enriched environment, which reinstates ocular dom-
inance plasticity in the adult, leads to increased BDNF expression
in the visual cortex (Sale et al., 2007; Baroncelli et al., 2010).
In the rat barrel cortex, naturalistic whisker use (obtained by
exposing animals to external conditions that mimic natural envi-
ronment) stimulates the expression of BDNF as well as CREB,
synapsin 1, and GAP-43, whereas sensory deprivation has oppo-
site effects (Gòmez-Pinilla et al., 2011). Concerning reparative
phenomena, voluntary exercise boosts the expression of BDNF,
synapsin 1, and GAP-43 in sensory ganglia and, in parallel, pro-
motes peripheral nerve regeneration in vivo and axonal outgrowth
from cultured DRG neurons (Molteni et al., 2004). Following SCI,
the amelioration of allodynia induced by treadmill training and
the reduced occurrence of cystic cavities observed after enriched
environment are accompanied by the return of BDNF expression
to normal levels (Hutchinson et al., 2004; Berrocal et al., 2007).
Evidence favoring a BDNF-mediated effect on structural plasticity
and motor recovery after SCI has been obtained by interfering with
the function of the neurotrophin: in both sedentary and exercised
rats with SCI, pretreatment with a BDNF inhibitor reduces the
expression of CREB and synapsin 1, hampers spinal learning, and
enhances motor asymmetry during treadmill locomotion (Ying
et al., 2008).

Recently, it has become clear that specific physiological stimuli
can also impact the expression of growth-inhibitors of the extra-
cellular milieu (Rossi et al., 2007), such as CNS myelin molecules
(Nogo-A, MAG, and OMgp, see for review Xie and Zheng, 2008)
and extracellular matrix components (e.g., CSPGs, tenascin-R, see
for review Kwok et al., 2008). Voluntary running leads to decreased
expression of myelin components both in the intact spinal cord
(Ghiani et al., 2007), and in the injured cortex (Chytrova et al.,
2008), and all these effects depend on BDNF activity (Ghiani
et al., 2007; Chytrova et al., 2008). Experience-dependent changes
of extracellular matrix components have been investigated in
the hypothalamo-neurohypophysial system, where magnocellu-
lar neurons of the hypothalamic supraoptic nucleus undergo
dramatic structural plasticity and synaptogenesis in response to
chronic salt overload. In this condition, specific CSPGs in peri-
cellular nets are down-regulated, in concomitance with retrac-
tion of glial processes and ensuing reorganization of neuronal
connectivity (Miyata et al., 2004; Morita et al., 2010).

The organization of CSPGs into perineuronal nets, which are
specialized structures surrounding some neuronal types (Brauer
et al., 1984; Hockfield et al., 1990; Pizzorusso et al., 2002; Carulli
et al., 2006), is a key event in the control of CNS plasticity by the
extracellular matrix (Gogolla et al., 2009; Carulli et al., 2010). Inter-
estingly, reduced density of perineuronal nets is reported in the
visual cortex after enriched environment, in parallel with recov-
ery of visual acuity and ocular dominance of adult amblyopic rats
(Sale et al., 2007). Although changes of perineuronal nets parallel
functional adaptation, in this experimental model they cannot be
directly related to structural remodeling of the underlying circuits.
However, exposure to enriched environment induces significant
neuritic remodeling in the deep cerebellar nuclei, which is accom-
panied by conspicuous reduction of perineuronal nets enwrapping
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the same nuclear neurons. These extracellular matrix changes are
due to reduced synthesis of several perineuronal net components,
including hyaluronan synthase, link protein 1 and aggrecan, and
simultaneous activation of matrix degrading enzymes, namely
matrix metalloproteinase (MMP)-2 and -9 (Foscarin et al., 2011).
These data suggest that external stimuli may shift the balance
between synthesis and removal of matrix components in order
to facilitate neuritic growth by locally dampening the activity of
environmental inhibitory cues. In this context, growing evidence
highlights the role of proteases in the removal of inhibitory extra-
cellular matrix during activity-dependent plasticity. In particular,
MMP-9 and, to a lesser extent, MMP-2 are upregulated in the
hippocampus following epileptic seizures and influence seizure-
induced plastic changes (Szklarczyk et al., 2002; Jourquin et al.,
2003). MMP-9, which is maximally expressed along dendrites and
glutamatergic synapses (Konopacki et al., 2007; Gawlak et al., 2008;
Wilczynski et al., 2008), degrades the extracellular matrix protein
β-dystroglycan, enhances the motility of NMDA receptors and
is involved in the elimination of dendritic spines and aberrant
synaptic contacts (Michaluk et al., 2007, 2009; Wilczynski et al.,
2008).

An important function in activity-dependent plasticity has
also been demonstrated for tissue plasminogen activator (tPA),
which cleaves extracellular plasminogen and converts it to enzy-
matically active plasmin. tPA has been implicated in synaptic
remodeling associated with LTP (Baranes et al., 1998) and facil-
itates seizure-induced mossy fiber sprouting (Wu et al., 2000).
BDNF, NT3, and NT4 stimulate tPA transcription, activation, and
secretion (Fiumelli et al., 1999). After glutamate application, neu-
ronal depolarization or environmental enrichment, tPA protein
level, and activity increase (Gualandris et al., 1996; Shin et al.,
2004; Horii-Hayashi et al., 2011). Moreover, tPA is essential for
experience-dependent plasticity in the visual cortex during the
critical period (Mataga et al., 2002, 2004; Oray et al., 2004).

Another protease that is regulated during neuronal activity is
neurotrypsin. Neuronal depolarization induces its recruitment to
presynaptic terminals, where it is released and influences synap-
tic remodeling through proteolytic activity (Frischknecht et al.,
2008).

EXPERIENCE-DEPENDENT EPIGENETIC MODIFICATIONS
In the last years it has become clear that environmental signals
modulate gene expression not only through activation of spe-
cific transcription factors but also through epigenetic mechanisms
(Fagiolini et al., 2009; Sweatt, 2009). Epigenetics is the ensemble
of alterations in gene functions that are heritable but that cannot
be explained by changes in the DNA sequence itself (see for review
Jaenisch and Bird, 2003; Bird, 2007). At the molecular level, epige-
netics includes biochemical modifications of the DNA and histone
proteins, the major constituents of chromatin. Epigenetic mecha-
nisms that are part of the gene-environment interface include: (1)
DNA methylation; (2) histone post-translational modification.

(1) DNA methylation is a direct chemical modification that
adds a CH3 group to a cytosine side-chain. Methylation
of cytosines recruits methyl-DNA binding proteins, which
have a transcription-regulatory domain. This domain anchors

adapter/scaffolding proteins, which in turn recruit histone
deacetylases (HDACs) to the site. The latter enzymes remove
acetyl groups from histone core proteins, leading to local
compaction of chromatin and transcriptional suppression
(Figure 1; Sweatt, 2009, but see also Chahrour et al., 2008
about transcriptional activation following DNA methylation).

(2) Post-translational modifications of histones are crucial to
modulate the overall structure of chromatin. In particular,
the N-terminal tails of histones are highly accessible to enzy-
matic transformation and are sites for multiple modifications,
including acetylation, phosphorylation, methylation, ubiqui-
tination, and sumoylation (Peterson and Laniel, 2004; Berger,
2007). Histone modifications, such as histone acetylation and
phosphorylation, facilitate the unraveling of DNA around the
histone core resulting in the recruitment of the transcriptional
machinery needed to mediate cell- and promoter-specific
gene expression. Other modifications, such as methylation,
have different positive or negative effects on gene transcrip-
tion, depending on the modified amino acid residue and the
number of added methyl groups (Berger, 2007). The most
extensively studied histone modification in the CNS is acety-
lation. It is catalyzed by histone acetyltransferases, while the
reversal reaction is regulated by HDACs. HDAC inhibitors,
such as trichostatin A and sodium butyrate, represent the
principal mean to manipulate the epigenome pharmacolog-
ically. Two main signaling cascades have been implicated in

FIGURE 1 | Modifications of chromatin structure in response to

enriched environmental stimulation or injury in the mature CNS. On
the left side of the figure, DNA methylation-dependent gene silencing is
shown. Signaling pathways between neuronal activity and DNA methylation
are still unclear. Methylation of specific sites in the genome recruits
methyl-DNA binding proteins locally. All proteins that bind to methylated
DNA also have a transcription-regulatory domain, which binds to adapter
proteins, which in turn recruit histone deacetylases. Histone deacetylases
alter chromatin structure through removal of acetyl groups (CH3COO−) from
histone core proteins (blue circles), leading to compaction of chromatin and
transcriptional suppression. On the right side of the figure, the signaling
pathway involving ERK, MSK, and CREB, implicated in the control of histone
acetylation and chromatin structure, is shown. Phosphorylation and thus
activation of CREB recruits CREB binding protein (CBP), which has histone
acetyltransferase activity and leads to activation of gene transcription.
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the control of histone acetylation and chromatin structure
in the mature CNS. One pathway involves the mitogen-
activated protein kinase (MAPK) superfamily, exemplified by
the ERK/MSK/CREB pathway. Phosphorylation and thus acti-
vation of CREB recruits CREB binding protein (CBP), which
has histone acetyltransferase activity, regulating local chro-
matin structure as part of CREB-dependent activation of gene
transcription (Sweatt, 2009; Figure 1). The second known cat-
egory of signaling pathway regulating chromatin structure is
the NF-κB cascade. NF-κB is a DNA binding transcription
factor that controls histone acetylation (Sweatt, 2009).

Histone modifications have been implicated in the regulation of
ocular dominance plasticity (Putignano et al., 2007). In juve-
nile mice, visual stimulation that activates CREB-mediated gene
transcription also induces ERK-dependent histone H3 phosphory-
lation and H3–H4 acetylation. In adult animals, visual stimulation
induces weak CREB-mediated gene expression and H3–H4 post-
translational modification, suggesting that a decrease in the ability
of visual experience to drive changes in histone phosphorylation
and acetylation could be involved in the closure of the critical
period. Indeed, stimulation of histone acetylation by means of the
HDAC inhibitor trichostatin re-opens the critical period, restor-
ing the capacity for ocular dominance plasticity in the adult visual
cortex (Putignano et al., 2007).

Epigenetic tagging of the genome has also a crucial role in
adult brain plasticity, such as during consolidation of long-term
memory. Acetylation of histone H3 is significantly increased in the
hippocampus after training in a contextual fear conditioning par-
adigm, and inhibition of cellular processes required for formation
of long-term fear memory blocks the memory-associated increase
in H3 acetylation (Levenson et al., 2004). Block of the activity
of histone acetyltransferases also impairs long-term memory for-
mation (Korzus et al., 2004; Oliveira et al., 2007). Conversely,
direct infusion of the HDAC inhibitor trichostatin A into the
amygdala significantly enhances the establishment of fear memory
(Yeh et al., 2004). Similarly, systemic administration of the HDAC
inhibitor sodium butyrate prior to contextual fear conditioning
enhances formation of fear memory (Levenson et al., 2004). Vec-
sey et al. (2007) demonstrated that these memory-enhanced effects
of HDAC inhibitors depend on the CREB pathway, nicely unifying
the HDAC inhibitor studies with the CBP-histone acetyltransferase
oriented studies.

Interestingly, histone acetylation is linked to histone methy-
lation during consolidation of fear-conditioned memories in
the hippocampus. Here, transcriptionally silent regions contain
methylation of histone H3 at lysine 9, whereas active genes cor-
relate with methylation of histone H3 at lysine 4. Treatment
of animals with the HDAC inhibitor sodium butyrate elevates
methylation of histone H3 at lysine 4 and decreased methyla-
tion of histone H3 at lysine 9. Moreover, inhibitors of DNA
methyltransferases in the adult CNS block hippocampal long-term
potentiation in vitro (Levenson et al., 2006), and impairs memory
formation after contextual fear conditioning (Miller et al., 2008).
Heterozygous deletion of a known regulator of histone methy-
lation also leads to significant deficits in memory consolidation
(Gupta et al., 2010).

Regulation of chromatin structure is also involved in extinction
of memories, a learning process through which the ability of a pre-
viously conditioned stimulus to evoke a conditioned response is
diminished (Bredy et al., 2007). For instance, extinction of condi-
tioned fear is accelerated when animals are administered HDAC
inhibitors (Lattal et al., 2007; Bredy and Barad, 2008).

The role of enhanced experience in triggering adult brain plas-
ticity through histone modifications has been elegantly demon-
strated by Fischer et al. (2007). They showed that enriched
environment induces hippocampal and cortical acetylation and
methylation of histones 3 and 4, in parallel with improving spatial
memory capacity, and this improvement is mimicked by HDAC
inhibitors. Both HDAC inhibitors and enriched environment facil-
itate associative learning in control mice, and also reinstate learn-
ing ability and recovery of memories in a mouse model of neu-
rodegenerative disorders (Fischer et al., 2007). In this context, it has
been also shown that enriched environment or exercise specifically
lead to sustained epigenetic modification of bdnf gene promoters
in the hippocampus, therefore influencing BDNF transcription
(Gòmez-Pinilla et al., 2011; Kuzumaki et al., 2011).

FIGURE 2 | Possible mechanisms of action of enriched stimulation on

structural plasticity. Enriched stimuli, which can comprise increased
motor activity, sensory stimulation or social interaction, modulate the
expression of several growth-regulatory cues, and alter chromatin structure,
so to create permissive conditions for neuronal plasticity and behavioral
adaptation. In addition, external stimulation provides the involved neurons
with instructive information, needed to shape connections patterns able to
sustain adaptive functions. BDNF, brain-derived neurotrophic factor;
GAP-43, growth-associated protein-43; MMP, matrix metalloproteinase;
tPA, tissue plasminogen activator; MAG, myelin-associated glycoprotein;
CSPG, chondroitin sulfate proteoglycan.
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Overall, although there is increasing evidence highlighting an
important role of epigenetics in the modulation of growth-gene
expression and neurite outgrowth (see also Gaub et al.,2010,2011),
further investigation is needed to disclose the precise mechanisms
of epigenetic control on neural plasticity. This may allow us to
manipulate epigenetic modifications in a specific and controlled
manner in order to enhance plasticity and recovery following
different forms of nervous system damage.

CONCLUSION
In the last few years, considerable progresses have been achieved
in the knowledge of the mechanisms that link experience with
cellular and molecular changes underlying neural adaptation to
environmental demands. The emerging picture indicates that
interaction with the external world exerts a dual, synergistic influ-
ence on plastic processes. On one side, external stimuli modulate
the expression of both intrinsic neuronal growth properties and
extrinsic regulatory molecules so to create permissive conditions

for structural remodeling of neural circuits. On the other side,
the same stimuli provide the involved neurons with instructive
information, needed to shape connection patterns able to sus-
tain adaptive function (Figure 2). Such a powerful mechanism
appears to play a relevant role in both physiological plasticity and
injury-induced compensatory processes (Rossi et al., 2007). As a
consequence, understanding all different aspects of plasticity from
epigenetic modifications to molecular changes and circuit rewiring
has strong translational implications. In addition to unraveling the
mechanistic unfolding of neural plasticity, the numerous stud-
ies carried out in this field are producing a host of molecules
and procedures that allow us to interfere and manipulate these
processes with increasing efficacy and specificity. It is expected
that, in the next future, strategies that combine specific stimulation
paradigms (ranging from physical rehabilitation to psychother-
apy) with targeted molecular/pharmacological manipulations will
become more and more important for the treatment of a wide
range of neural disorders or dysfunctions.
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