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Abstract: A novel stopband frequency-selective surface (FSS) made of high-conductivity graphene
assemble films (HCGFs) for reducing the mutual coupling between dielectric resonator antennas
(DRAs) is investigated and presented. The FSS is a “Hamburg” structure consisting of a two-layer
HCGF and a one-layer dielectric substrate. A laser-engraving technology is applied to fabricate the
FSS. The proposed improved Jerusalem cross FSS, compared with cross FSS and Jerusalem cross FSS,
can effectively reduce the size of the unit cell by 88.89%. Moreover, the FSS, composing of 2 × 10-unit
cells along the E-plane, is proposed and embedded between two DRAs, which nearly has no effect on
the reflection coefficient of the antenna. However, the mutual coupling is reduced by more than 7 dB
on average (7.16 dB at 3.4 GHz, 7.42 dB at 3.5 GHz, 7.71 dB at 3.6 GHz) with the FSS. The patterns of
the antenna are also measured. Therefore, it is suggested that the proposed FSS is a good candidate
to reduce mutual coupling in the multiple-input–multiple-output (MIMO) antenna system for 5G
communication.

Keywords: mutual coupling reduction; dielectric resonator antenna array; frequency-selective sur-
face; high-conductivity graphene films

1. Introduction

Recently, there has been an increasing demand for high-capacity and fast rate in the
field of communication. The development of multiple-input–multiple-output (MIMO)
antennas is vital because it can provide spatial multiplexing gain, diversity gain, and
interference reduction capability. In MIMO systems, the inter-element spacing should
be minimum for high channel capacity and excellent signal-to-noise ratio. However, the
inter-element spacing is usually chosen as half of the wavelength due to implementation
limitations, leading to strong mutual coupling between radiating elements. The strong
coupling will have an adverse effect on the radiation pattern, return loss, and bandwidth,
leading to further performance degradation [1]. The problem of mutual coupling among
the radiating elements is often solved by using defected ground structure (DGS) [2], para-
sitic elements [3,4], electromagnetic bandgap (EBG) structures [5,6], metamaterial-based
resonators [7,8], and frequency-selective surfaces (FSS) [9,10]. Among them, FSS is widely
used due to its simple design, easy processing, and excellent effect [11].

FSSs, composed of periodic conductive patches or aperture elements, are designed to
reflect, transmit, or absorb electromagnetic (EM) waves. Most of the investigations of FSSs
utilized the strong light-matter interactions between EM field and metals by constructing
two-dimensional (2D) periodic arrays composed of metallic grids or dipole antennas [12,13].
However, metal materials are questionable at very high-power transmission or strong in-
cident fields [14,15]. Graphene materials, on the other hand, become better alternatives,
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which can endow the FSS with new features due to their excellent properties of high
conductivity, high thermal conversion efficiency, saturable absorption, and stabilization in
complicated environments [16]. As far as we know, most investigations of graphene-based
FSS are focused on the THz band [17–20]. A mantle cloaking method making resonat-
ing strip dipole antennas “invisible” to each other was proposed to reduce the mutual
coupling between antennas by Yakovlev et al. [18,19]. By controlling the temperature for
graphene growth, Chen. et al. demonstrated two kinds of microwave absorbers based
on multilayered-graphene FSSs [21]. In the work of Xu et al., a tunable absorber was
realized using patterned graphene metasurface to adjust surface resistance [22]. These
studies achieved significant progress for the device applications of graphene. Even though
graphene-based FSS has been experimentally realized, the structures of unit cells of FSSs are
relatively simple and not accurate enough. Moreover, our group has reported applications
of high-conductivity graphene assemble films (HCGFs) in antenna design [23,24]. On this
basis, we further study the development of HCGF stopband FSS.

In this paper, a novel stopband FSS made of HCGF is presented. The conductivity of
HCGF is up to 1.1× 106 S/m. As far as we know, it is the first time to realize experimentally
such an exact graphene-based FSS using laser-engraving technology. The proposed FSS is
simulated, tested, and compared with traditional metal FSS, which shows similar isolation,
better return loss, and some specific properties of graphene materials.

2. Design and Methods

In general, FSSs are arrays of periodic elements with band-stop or bandpass character-
istics [25,26]. When the periodicity of the FSS structure is small compared to the operating
wavelength, an equivalent LC circuit can be applied to model the structure [27]. Most FSSs
are metal patch structures consisting of dielectric substrates and thin metal patches. The
inductor represented by L results from the conductor strip and the capacitor represented by
C is from the gap effect between the conductor strips. The surface impedance is equivalent
to the impedance of a parallel resonant circuit and the central frequency can be calculated
using the equation shown below [28]:

Z =
jωL

1−ω2LC
(1)

ω = 2π · f =
1√
LC

, (2)

where Z is the impedance of the equivalent LC circuit, and f is the resonance frequency
(3.5 GHz). According to the transmission line theory, the inductance and the capacitance
approximation formula of the metal patch unit are as follows [29]:

L = −µ0
D
2π

log
(

sin(
πw
2D

)
)

(3)

C = −ε0εe f f
2D
π

log
(

sin(
πs
2D

)
)

, (4)

where D, w and s are the length, width, and interval of the structure capacitance and
inductor, µ0 and ε0 are permeability and permittivity in vacuum, and εe f f are the effective
dielectric constant of the dielectric substrate. εe f f can be obtained by the following formula:

εe f f =
εr + 1

2
+

εr − 1
2
· 1√

1 + 12d/W
, (5)

where d is the thickness of the substrate, W is the width of the metal patch, and εr is the
relative dielectric constant of the substrate.

Due to the highly integrated and complicated design of the proposed FSS structure,
the equivalent LC circuit fails to provide an accurate description thus requiring further
optimization. Firstly, a simple structure of traditional cross structure is used for the
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calculation to obtain the parameters, followed by the simulation to adjust the center
frequency and bandwidth. To be more specific, the electrical length and microstrip line
width of FSS are calculated by classical theoretical formulas, and then the miniaturization
design is carried out by CST simulation software to obtain the optimized structure.

The proposed stopband FSS made by HCGF element configuration is shown in
Figure 1a,b. The proposed FSS is composed of two conventional structures—a cross
structure (Figure 1c) and a Jerusalem cross (J-cross) (Figure 1d). The proposed structure
has an extended J-cross at each arm end, which can effectively decrease the size of FSS.
The size of the proposed FSS, J-cross FSS, cross FSS are 100 mm2, 225 mm2, and 900 mm2,
respectively. It is obvious that the proposed FSS structure effectively reduced the size of
the unit cell by 88.89%.
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(FR4) substrate ( rε  = 4.3, tan δ  = 0.025) with a periodicity of 10 mm. The transmission 
and reflection responses of different structures are depicted in Figure 2. As can be seen, 
the bandwidths for the traditional cross structure, the classical J-structure, and the pro-
posed structure are 3.20–3.78 GHz, 2.90–4.42 GHz, and 2.93–3.93 GHz, respectively, which 
can all cover the 3.5 GHz band. In addition, the proposed FSS showed a 41 dB insertion 
loss at the center frequency, which is better than the other two structures demonstrating 
its efficiency in reducing mutual coupling. 

Figure 1. Unit cell configurations. (a) Proposed frequency-selective surface (FSS). (b) Proposed FSS
made by high-conductivity graphene assemble film (HCGF) element configuration. (c) Cross FSS.
(d) Jerusalem cross FSS. a = 10 mm, d = 0.3 mm, l = 7 mm, h = 2.7 mm, w = 0.3 mm, h1 = 0.9 mm,
l1 = 2.75 mm, t = 0.03 mm.

The proposed structures are printed on both sides of a 1.6-mm-thickFire Resistant-4
(FR4) substrate (εr = 4.3, tan δ = 0.025) with a periodicity of 10 mm. The transmission and
reflection responses of different structures are depicted in Figure 2. As can be seen, the
bandwidths for the traditional cross structure, the classical J-structure, and the proposed
structure are 3.20–3.78 GHz, 2.90–4.42 GHz, and 2.93–3.93 GHz, respectively, which can all
cover the 3.5 GHz band. In addition, the proposed FSS showed a 41 dB insertion loss at the
center frequency, which is better than the other two structures demonstrating its efficiency
in reducing mutual coupling.
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Figure 2. The transmission and reflection characteristics of three different FSS structures.

3. Measurement and Results

Figure 3a–f illustrated the fabrication scheme of the proposed HCGF FSS structure
using the laser-engraving method including the following three steps: firstly, the HCGF
with a thickness of 30 µm was attached to polytetrafluoroethylene (PTFE) substrates by hot
pressing at 200 ◦C. Then, the HCGF was subjected to laser engraving to pattern the surface
with the designed structure by removing the unwanted part. Finally, the patterned HCGF
was transferred to FR4 substrate with a thickness of 1.6 mm for further measurements. The
fabricated prototype using the method described above is shown in Figure 4.
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Figure 3. Fabrication scheme of the HCGF FSS. (a) Hot pressing of the HCGF onto the polytetrafluo-
roethylene (PTFE) substrate. (b) Exportation of the contour FSS from the simulation tool. (c) Importation
of the contour file into the laser engraving software for laser path calculation. (d) Laser engraving
process to cut the path. (e) Removal of the unwanted HCGF and detachment of the patterned HCGF
from the PTFE substrate. (f) Transfer of the patterned HCGF to the FR4 substrate by pressing.
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Figure 4. The prototypes of graphene film FSS structure after laser-engraving.

The performance of the proposed FSS is measured by the space method in the anechoic
chamber. As shown in Figure 5, the network analyzer (PNA, Keysight N5247A) is connected
to the standard horn antenna at both ends. The two antennas are placed opposite each
other horizontally, and a 60 × 60 cm2 copper plate is placed in the middle. The center of
the copper plate has a hollow area of 20 × 20 cm2 where the FSS under test (FUT) is placed,
and the rest of the area is filled with absorbing materials. The transmission coefficient of
FUT is obtained by calculating the difference of the |S21| with FUT and without FUT. As
shown in Figure 6, the measured result is in good agreement with the simulated result.
Furthermore, a feature selective validation (FSV) method, which is a central technique
to compare different datasets [30], was applied to give a statistical comparison between
the simulated and measured results. A GRADE value of 3 and SPREAD value of 2 were
obtained, demonstrating the good agreement. Moreover, the proposed FSS exhibit high
efficiency in suppressing the electromagnetic wave transmitting at 3.5 GHz.
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Figure 6. Measured (red line) and simulated (black dashed line) transmission coefficient of FUT.

Mutual coupling reduction in MIMO systems has attracted increasing attention. The
proposed stopband FSS can effectively depress mutual coupling, and the specific perfor-
mance will be shown in a 1 × 2 DRA array.

The DRAs, constructed by rectangular dielectric resonators with relative permittivity
of 37, are placed on a 0.787-mm-thick Rogers 5880 substrate (εr = 2.2, tan δ = 0.0009) in an
arrangement of 1 × 2 array with a center-to-center distance of 41 mm corresponding to
λ/2 at 3.5 GHz, as depicted in Figure 7. An FSS wall consisting of 2 × 10 unit cells along
the E-plane is placed in between the two DRAs. The number of FSS unit cells is optimized
by a parametric study to match the operating frequency of 3.5 GHz, thus eliminating any
influence on the input impedance of the DRAs. Simulated S-parameters of the DRAs with
and without FSS wall are depicted in Figure 8, showing a mutual coupling reduction of
more than 8 dB on average (10 dB at 3.4 GHz, 6 dB at 3.5 GHz, 9 dB at 3.6 GHz).
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Figure 8. Simulation results of S-parameters for 1 × 2 DRA with and without HCGF FSS wall.

In order to control the size of the MIMO antenna, the effect of FSS unit cell number
is investigated, as depicted in Figure 9a. The more FSS unit cells there are, the greater
the isolation between antenna elements is. When the number of unit cells exceeds 20, the
isolation remains virtually unchanged (~18 dB). Considering the isolation and size of the
antenna, the proposed FSS consists of 2 × 10 elements, as shown in Figure 9b.
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Figure 9. Measurement about the number of FSS unit cells. (a) Isolation versus the number of FSS
unit cells at 3.5 GHz. (b) The prototype of the DRAs array.

A control experiment has been carried out to compare the reflection and transmission
coefficient. An FSS with a J-cross structure made of graphene, two FSSs of the proposed
structure with the same dimensions made of copper, and graphene are placed in the middle
of the MIMO antenna array. The S-parameters measurement results of 1 × 2 DRA MIMO
antennas with different FSSs are shown in Figure 10. The mutual coupling is reduced by
7.42 dB at 3.5 GHz with the proposed HCGF FSS. It can be seen from Figure 10 that all
three different FSSs have a good suppressed mutual coupling effect, but the proposed FSS
has better performance than the FSS with a J-cross structure. The decrease in amplitude
of the proposed FSS is averagely 2 dB larger than that of the J-cross FSS around 3.5 GHz,
which is in agreement with the simulation results. The proposed FSSs made of copper and
HCGF have almost the same transmission coefficient, but the former has a serious effect on
the reflection coefficient of the antenna system. An electromagnetic wave is more easily
reflected on a metal surface, which is one of the advantages of graphene FSS.
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plane (b).

4. Conclusions

A novel stopband FSS made of high-conductivity graphene films to suppress the
mutual coupling between two antenna elements has been designed and fabricated. The
proposed FSS structure can effectively reduce the size of the unit cell by 88.89% compared
with the traditional cross structure. In addition, the stopband of the proposed FSS covers
the 3.5 GHz band. Demonstrated by S-parameter measurements, the mutual coupling
between the DRAs has been reduced by 7.42 dB at 3.5 GHz. In conjunction with the
radiation pattern measurements, the proposed FSS proved excellent isolation efficiency
without compromising the performances of DRA antennas at the operating frequency.
Thus, the fabricated FSS can serve as a good candidate for reducing mutual coupling in the
MIMO antenna system for 5G communication.
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