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Quantification of fibrillar collagen organization has given new insight into the possible
role of collagen topology in many diseases and has also identified candidate image-
based bio-markers in breast cancer and pancreatic cancer. We have been developing
collagen quantification tools based on the curvelet transform (CT) algorithm and have
demonstrated this to be a powerful multiscale image representation method due
to its unique features in collagen image denoising and fiber edge enhancement. In
this paper, we present our CT-based collagen quantification software platform with
a focus on new features and also giving a detailed description of curvelet-based
fiber representation. These new features include C++-based code optimization for
fast individual fiber tracking, Java-based synthetic fiber generator module for method
validation, automatic tumor boundary generation for fiber relative quantification, parallel
computing for large-scale batch mode processing, region-of-interest analysis for user-
specified quantification, and pre- and post-processing modules for individual fiber
visualization. We present a validation of the tracking of individual fibers and fiber
orientations by using synthesized fibers generated by the synthetic fiber generator. In
addition, we provide a comparison of the fiber orientation calculation on pancreatic
tissue images between our tool and three other quantitative approaches. Lastly, we
demonstrate the use of our software tool for the automatic tumor boundary creation
and the relative alignment quantification of collagen fibers in human breast cancer
pathology images, as well as the alignment quantification of in vivo mouse xenograft
breast cancer images.

Keywords: tumor microenvironment, collagen organization, fibrillar collagen, curvelet transform, image analysis
software, second harmonic generation microscopy, breast cancer, pancreatic cancer
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INTRODUCTION

Fibrillar collagen organization influences cell behavior and
has been implicated in a wide array of diseases ranging
from osteogenesis imperfecta (OI), muscular dystrophy, wound
healing, diabetes, to a number of cancers (Keely et al., 1995a,b;
Roskelley et al., 1995; Simian et al., 2001; Provenzano et al.,
2006, 2008a; Ghajar and Bissell, 2008; Conklin et al., 2011;
Drifka et al., 2015, 2016; Hanley et al., 2016; Wen et al.,
2016). In particular, changes in collagen organization have
been linked to cancer progression and stage in breast cancer
(Conklin et al., 2011), ovarian kidney cancer (Best et al., 2019),
pancreatic cancers (Drifka et al., 2015, 2016), and multiple
other cancers (Hanley et al., 2016). Increased collagen alignment
in breast and pancreatic cancer has also been correlated to
poor patient prognosis. Specifically, non-invasive regions are
contained by collagen fibers oriented parallel to the tumor
boundary while regions of local invasion possess areas where
collagen has been realigned perpendicular to the tumor boundary
to facilitate local invasion (Provenzano et al., 2006). Therefore,
it has been hypothesized that the angle of collagen fibers
relative to the tumor boundary may be used as a predictor of
imminent invasion and metastasis (Provenzano et al., 2009).
These collagen changes, known as Tumor-Associated Collagen
Signatures (TACS)_ENREF_4 (Provenzano et al., 2006), fall into
three categories named TACS-1, TACS-2, and TACS-3, where
TACS-3 fibers have a larger relative angle with respect to the
tumor boundary than TACS-1 or TASC-2 fibers. Many recent,
novel characterizations elucidating the relationship between
collagen and disease state have arisen due to rapid development in
the area of non-invasive high-resolution imaging methods, such
as the label-free imaging method of second harmonic generation
(SHG) microscopy (Stoller et al., 2002; Mohler et al., 2003), that
can track spatial and temporal changes in the collagen matrix.

However, even with these great advances and improved
ability to image collagen, there is still a dearth of robust
and flexible computational methods for quantitative analysis
of collagen architecture. To the best of our knowledge, there
are only a few open-source tools currently available for
collagen fiber quantification, with most focusing on orientation
and alignment estimation including Fourier transform-based
CytoSpectre (Kartasalo et al., 2015) and pixel-wise orientation-
based ImageJ/Fiji (Schindelin et al., 2012; Schneider et al., 2012)
plugins of OrientationJ (Rezakhaniha et al., 2012) and FibrilTool
(Boudaoud et al., 2014). To track fiber orientation, the Fourier
transform-based methods (Chaudhuri et al., 1987; Sander and
Barocas, 2009; Kartasalo et al., 2015; Pijanka et al., 2019) rely
on spatial frequencies in power spectrum analysis to detect the
intensity changes at the fiber edges. They are insensitive to
the image background noise and have been commonly used
in the estimation of overall or dominant fiber orientation and
anisotropy of orientations in an image or image tile. The
main limitation of this approach is the lack of individual
fiber information. The pixel-wise orientation-based methods
(Rezakhaniha et al., 2012; Boudaoud et al., 2014; Püspöki et al.,
2016) use derivative information and can estimate the orientation
of individual pixels. However, additional strategies are needed

to overcome the impact of image noises and to find the pixels
relevant to fiber edges. Both tools do not provide direct individual
fiber information.

To be noted, the collagen fibril has been defined in structural
terms as semi-crystalline aggregates of collagen molecules and
their crosslinks. Where several of these fibrils, sometimes called
“thin fibrils”, are bundled together with associated molecules to
form much larger fibers, they have been termed “fibril bundles.”
Although it is vitally important to differentiate thin fibrils and
fibril bundles to understand how certain molecular associations
occur with collagen fibers, this is not the focus of this study. We
use the terms “fibril” and “fiber” interchangeably in this paper.

Curvelet transform (CT) (Candes and Donoho, 2000; Candès
and Donoho, 2004; Candès et al., 2006) has the unique features
for image denoising and edge enhancement. Moreover, curvelets
can directly provide an optimal sparse representation of the
collagen image and thus can track individual fibers and fiber
branches either they are straight or curvy. We have put significant
efforts on the development of two open-source CT-based collagen
quantification tools: CurveAlign (Schneider et al., 2013; Bredfeldt
et al., 2014a; Liu et al., 2017) and CT-FIRE (fiber extraction)
(Bredfeldt et al., 2014b). These MATLAB (MathWorks, Natick,
MA) tools were designed to meet user-defined features in terms
of accuracy, speed, and compatibility. Our tools can do both
curvelet-based fiber orientation and location representation and
individual fiber tracking. They support image-based, region of
interest (ROI)-based, or fiber-based quantification of collagen
features including geometry properties, density, alignment, and
relative alignment. They also support fast computing using multi-
core or distributed computer clusters for large datasets and fast
individual fiber estimation using optimized C++MEX1 files for
potential real-time applications. Our tools have been utilized for
a wide range of applications including collagen quantification in
breast cancer (Corsa et al., 2016; Conklin et al., 2018), pancreatic
cancer (Drifka et al., 2015), renal cancer (Best et al., 2019),
cervical tissue (Reusch et al., 2010), cardiac disease (Kouris
et al., 2011), wound healing (LeBert et al., 2015; Israel et al.,
2017), as well as quantification of filamentous structures such as
microtubules (Heck et al., 2012).

CurveAlign was developed first for bulk collagen alignment
studies and had the main goal of quantifying all fiber angles
within a ROI relative to a user-defined boundary be it a straight
line or a tumor boundary. In this approach, curvelets can be
used to robustly detect and represent collagen fibers including
their locations and orientations in noisy and complex conditions,
on which numerous collagen metrics or features can be built.
As our research grew in investigating the role of collagen in
cancer progression and invasion, we wanted to investigate how
individual fiber parameters could influence cancer and other
diseases. Out of this need came the development of CT-FIRE
to analyze individual fiber metrics such as length, width, angle,
and curvature using CT as a pre-processing step to reduce
noises and enhance fiber edges. In addition to boundary-based
relative angle quantification, the current version of CurveAlign

1MEX files are external functions that can be written in a language like C++ and
called from MATLAB.
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can be used to extract other collagen fiber features, such as
localized fiber density, fiber alignment (i.e., anisotropy), and the
spatial relationship between fiber and the associated boundary. In
addition, the extracted individual fibers extracted by CT-FIRE can
be imported into the CurveAlign for additional feature extraction
mentioned above.

We have previously reported the general framework and
basic concept of both CT-FIRE (Bredfeldt et al., 2014b) and
CurveAlign (Bredfeldt et al., 2014a) as well as the protocol of
using CurveAlign for fibrillar collagen alignment quantification
(Liu et al., 2017). In this paper, we present an introduction
to the curvelets fiber representation with detailed description
and validation that has not been previously published as well
as some latest developments in both tools. Specifically, we
will first introduce the idea of CT and the optimal fiber
representation with curvelets in CurveAlign, then we will
introduce new features and modules that are available to CT-FIRE
and CurveAlign users, including (1) fast individual fiber tracing
with C++-based code optimization to speed up individual fiber
tracking; (2) Java-based synthetic fiber generator to generate
synthetic fibers according to user-specified fiber parameters
for methods validation and synthetic image datasets creation;
(3) automatic registration and tumor boundary creation using
bright-field hematoxylin and eosin (H&E) and SHG images;
(4) parallel computing for batch-mode analysis using either
a single multi-core computer or distributed computers; (5)
ROI analysis to analyze user-defined or program-computed
regions; (6) complementary pre- and post-processing modules
including individual fiber visualization and thresholds-based
fiber selection, output file combination, and others. We also
provide a validation of the fundamental features of our tools,
i.e., the tracking of individual fibers and fiber orientations, using
synthesized fibers generated by the synthetic fiber generator
mentioned above. We then compared the orientation calculation
on real SHG images of pancreatic tissue samples between
our method and three other quantitative methods including
manual measurement, OrientationJ, and CytoSpectre. Lastly,
we demonstrate the automatic boundary creation and the
quantification of collagen fiber organization in TACS features in
breast cancer as well as the alignment quantification of in vivo
mouse xenograft breast cancer images.

MATERIALS AND EQUIPMENT

To validate our tools’ capability of individual fiber tracking and
fiber representation for both straight fibers and curvy fibers, we
generated two datasets of 100 synthetic fiber images with different
straightness using synthetic fiber generator (version 1.1) that is
described in detail in Section “Synthetic Fiber Generation Using
User-Specified Fiber Parameters.” The fibers of each image in
the first dataset are straight (i.e., straightness equals 1) while the
fibers in another dataset have a straightness of 0.92. The other
parameters were set as follows: image size: 512 × 512 pixels;
number of fibers in each image: 30; alignment coefficient: 0.2;
mean angle: 90◦; fiber length: 60 pixels; fiber width: 5.0 pixels;
edge buffer: 10 pixels; image noise level: 50; three smoothing

methods offered by the fiber generator were selected using the
default setting values for each smoothing. Other parameters not
mentioned here were kept as their default values.

To demonstrate the use on real biomedical images, we used
human pancreatic tissues of normal stroma and tumor grades
1–3 to show the orientation calculation. In addition, we used a
human breast cancer tumor microarray (TMA) core identified as
TASC-3 positive to show the boundary creation and relative angle
measurement. Moreover, we used an image from a mouse breast
cancer model to show the quantification of alignment at different
regions. The SHG images for both breast sample and pancreatic
sample were acquired on our home-built SHG microscope
and were described in previous publications (Bredfeldt et al.,
2014a; Drifka et al., 2015) while the bright-field image of the
breast sample was acquired on an Aperio CS2 scanner system
(Leica Biosystems, Buffalo Grove, IL, United States) at the
Translational Research Initiatives in Pathology Laboratory at
the University of Wisconsin Madison. In the mouse breast
cancer model, a xenograft of MDA-231 breast cancer cells was
implanted for 3 weeks in an adult mouse using methods similar
to those described in Provenzano et al. (2008b). The SHG image
used here shows the areas near the graft boundary. It was
acquired on a Prairie Ultima IV multiphoton microscope (Bruker
Technologies, Middleton, WI) with a Olympus 40 × /0.8 water
dipping objective (Olympus, Center Valley, PA).

To be noted, the 100 synthetic straight fiber images and the
human pancreatic tissue images were also used in a speed test on
the MEX functions (Supplementary Figure 1).

METHODS

Curvelet Transform
The CT, which was originally proposed in Candes and
Donoho (2000) is an overcomplete representation in terms of
local, wavelet-like functions, each associated with a specific
scale, orientation, and position. It is shown that the m-term
approximation using a curvelet representation outperforms both
the Fourier and wavelet representations, in the sense that fewer
curvelets, than sinusoids or wavelets, are needed to accurately
represent image structure. Conceptually, the CT is a multiscale
pyramid with many orientations and positions at each length
scale and needle-shaped elements at fine scales. Curvelets obey a
parabolic scaling relation that says that at scale 2−j, each element
has an envelope that is aligned along a “ridge” of length 2−j/2

and width 2−j (Candès et al., 2006). A brief overview of the
mathematical framework from Candès et al. is now presented
to give the reader a formal representation of curvelets. Consider
the case where our spatial variable x lies in R2. Start with a
windowing of the space both radially and angularly and call these
windows W(r) and V(t), respectively, where r ∈ (1/2, 2)) and
t ∈ [−1, 1]. Now, consider the frequency window Uj defined in
the Fourier domain by:

Uj(r,θ) = 2−3j/4 W
(
2−jr

)
V

(
2bj/2cθ

2π

)
(1)
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Where b j/2c is the integer part of j/2. Therefore, the support
of Uj is a polar “wedge” defined by the support of W and
V . The equispaced sequence of rotation angles are defined as
θl = 2π · 2b−

j
2 c · l with l = 0, 1, 2, . . . such that 0 ≤ θl < 2π,

with translation parameters k =
(
k1, k2

)
∈ Z2. The waveform

ϕj(x) is defined by its Fourier transform, ϕ̂j (ω) = Uj(ω).
Curvelets at scale 2−j/2, orientation θl, and position xj,l

k =

R−1
θl

(
k1 · 2−j, k2 · 2−j/2) where Rθ is the rotation by θ radians,

can now be defined as:

ϕj,k,l (x) = ϕj

(
Rθl

(
x− xj,l

k

))
(2)

A curvelet coefficient is then the inner product between an
element f ∈ L2 (

R2) and a curvelet ϕj,k,l:

c
(
j, k, l

)
:= 〈f, ϕj,k,l〉 = ∫R2 f (x) ϕj,k,l (x) dx (3)

Optimal Fiber Representation and
Analysis With CurveAlign CT Mode
Curvelets in CT can optimally represent line-like structures in
a sparse manner at different scales, orientations and locations.
In CurveAlign, we implemented a fiber analysis mode called CT
mode to trace the representative fiber orientations and then do
corresponding analysis. Some key steps in the implementation
are as follows:

(1) Perform a 2D FDCT (through wrapping in MATLAB) on
the input image;

(2) Select the scale of interest (the second finest scale by default)
and discard the CT coefficients in other scales;

(3) Threshold the remaining coefficients based on a user-
defined threshold (generally keeping only the largest 0.1–
1%);

(4) Find the center and spatial orientation of each curvelet
corresponding to the remaining coefficients;

(5) Group the adjacent curvelets within a given radius to
estimate local fiber orientations; and

(6) Perform application-specific analytics using the measured
angles and locations.

CT mode owns the same analysis modules available to CT-
FIRE individual fiber analysis mode described in Bredfeldt et al.
(2014a) where the CT mode uses grouped curvelets to estimate
fiber orientations while the CT-FIRE mode uses the information
from individual fibers. CurveAlign CT mode has a boundary-
free measurement scheme and a boundary-enabled measurement
scheme, with the former measuring the distribution of fiber
alignment in an image with respect to an absolute reference
and the latter measuring the distribution of fiber alignment in
an image relative to a user-defined or automatically computed
boundary. Once the angles have been determined, further
statistics are computed, for example, the mean, median, variance,
standard deviation, skewness, and kurtosis of the distribution are
calculated and written out to a CSV file. The directional statistics
methods (Berens, 2009) are used for all statistical analysis of
the fiber orientation information. The overall alignment of the
fibers is determined by calculating the resultant vector length of

all orientation vectors. This yields a unitless number between 0
and 1 that indicates how well the distribution is grouped around
the median angle, with 0 being completely random and 1 being
completely aligned in the direction of the median angle. In both
of the measurement schemes described above, there is no need
for any pre-processing such as thresholding or denoising. Both
are accomplished by the selection of the appropriate curvelet
coefficients for the analysis. The very highest and lowest scales
of the CT, which contain the high-frequency noise and the low-
frequency background in the image should be discarded.

The main available outputs from CurveAlign CT mode are as
follows: (1) Overlay Image—This allows the user to see where
curvelets were found within the image by overlaying center point
and orientation of each curvelet on the original image; (2) Local
Orientation Map—Indicates localized alignment with respect to
the boundary or to other nearest fibers regions within an image;
(3) Reconstructed Image—this is an image reconstructed from
the remaining curvelets. It shows all of the edges in the image
that were measured; (4) Histogram Plot—a bar histogram of
the measured angles, with respect to either the boundary or the
horizontal axis if no boundary is used; (5) Compass Plot—an
angular histogram of the measured angles; (6) Values List—
the values of the measured angles as well as basic descriptive
statistics; and (7) Features list include all the localized density and
alignment values for each curvelet. Image outputs are saved in tiff
format. Histograms, compass plots, data values, and statistics are
saved in CSV files.

Fast Individual Fiber Estimation With
C++ Code Conversion
The fiber extraction algorithm (or FIRE) (Stein et al., 2008) is
part of the CT-FIRE (Bredfeldt et al., 2014b) software tool for
individual fiber extraction. It may take a couple of minutes for
this algorithm to process an image with the size of 512 × 512
pixels using, for example, a Windows computer with 1.9 and
2.5 GHz Intel dual-core and 16 GB memory. This processing
speed would not allow for a real-time analysis. Our code
performance evaluation showed that the main reason is due
to inefficient loop operations in MATLAB. MATLAB offers
some strategies such as data vectorization, which can save
computational time but is limited by the data structure currently
used in the FIRE algorithm. Hence, in order to significantly speed
up the fiber extraction, we converted three major steps of the
FIRE algorithm from MATLAB code to C++ MEX code, part
of which is using the C++ multithread library (i.e., OpenMP)
for parallel processing. The C++ MEX implementation mostly
follows the algorithm originally described but with some
exceptions. Some key points of the implementation for each of
the three steps are described below.

Find Nucleation Points
Nucleation points follow the same definition described in FIRE
(Stein et al., 2008); i.e., they occur at local maxima (of a box
whose size is defined by a pre-defined radius) where the distance
function also exceeds a pre-defined threshold. The search for
nucleation points loops through all the pixels with assessment of
relevant local box of each pixel, with the loop in one dimension
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being parallelized. The thread number is used as index to the
nucleation point. Given the same input, this implementation
may not necessarily yield the same output as the MATLAB code
because the C++MEX function uses a different random number
generator to randomize the distances.

Extend From Nucleation Points to Form Fiber
Branches
In this conversion, both the structure of a fiber and the function
of extending branches from nucleation points are defined.
The procedure of extending branches at each nucleation point
follows the original algorithm but how to remove the redundant
directions is different. The extension at each nucleation point is
independent and is parallelized. At each nucleation point, there
are mainly three steps:

(1) Look for the local maximum points (LMPs) as the extension
points, which occur on the surface of a box (whose size is
defined by the distance value of the current position) and
their distance values are larger than a pre-defined threshold.
If two LMPs are too close, only one LMP is kept;

(2) When a fiber segment is extended from one point to
another, extension direction is calculated and the fiber tip
direction is updated with memory on previous directions;
and

(3) If there is no LMP or another nucleation point is found, the
branch extension will be terminated. Thereafter, the parallel
processing is used to populate the fiber link map, delete
duplicated fibers, and populate fiber index map.

Given the fact that this C++ implementation does not exactly
follow the same procedure as the MATLAB implementation,
the two implementations may yield slightly different extended
branches for a same set of nucleation points.

Link Fiber Branches to Form a Fiber
This conducts fiber linking when both branches and fiber
segments share a same nucleation point. The linking criterion
is first found first link. In other words, if a pair of branches are
linked, they will be removed from the branches pool until all
the branches are looped through. To link two branches, they
have to share the same nucleation point, and the directions of
the branch tips have to be similar or within the threshold of
angle differences. If more than one branches satisfy the angle and
nucleation joint requirement, the one that is more aligned to the
current branch (or has the least difference in direction) is selected.
In the calculation of fiber end direction, a spacing parameter is
used to specify the distance between the end and another vertex
along the fiber.

In Supplementary Figure 1, a speed test on both synthetic
images and real images shows that MEX functions are more
than 100x faster than the original code to complete the
above three steps of fiber extraction from single images
while leading to similar orientation and alignment. This is
a first step toward greatly improving speed of the CT-
FIRE program, and future directions will build on this work
and address other performance bottlenecks in the collagen
analysis workflow.

Synthetic Fiber Generation Using
User-Specified Fiber Parameters
To verify the accuracy and test the limits of CT-FIRE and
CurveAlign, a Java-based software module was developed
and can be launched from CT-FIRE that allows the user
to generate synthetic images of collagen fibers with specific,
known properties.

To generate fibers, a length, starting width, and straightness
are all drawn from the user-defined distributions. The end-to-
end directions are chosen such that all fibers, when considered
together, have the specified mean angle and alignment.
A recursive bridging algorithm is used to choose a specific path
between fiber endpoints. Suppose that a fiber consists of 16
unit length segments, and that it has endpoints at (0, 0) and
(10, 0). A midpoint is chosen by randomly sampling from the
intersection of two disks of radius 8 centered at the endpoints.
These disks represent the region reachable from an endpoint
after 8 steps. The disk intersection process is repeated between
the newly chosen midpoint and each of the endpoints in turn.
The process continues recursively until all points composing the
fiber have been determined. The width of the fiber changes from
segment to segment by adding a uniformly distributed delta. This
delta is specified in the user interface as “width change.” The main
features of this fiber generator include the following:

(1) The definition of all fiber parameters follows those in CT-
FIRE and CurveAlign. This makes it possible to validate
our existing tools while the output can be used to generate
new fiber images.

(2) The number of fibers, fiber width change, length of fiber
segments (each fiber is composed of linear segments),
alignment of all fibers, and mean orientation of all fibers
can be specified.

(3) The distribution of length, width, and straightness can be
set as Gaussian, uniform, or piecewise linear. The Gaussian
distribution is parameterized by its mean and standard
deviation, the uniform distribution by its minimum and
maximum values, and the piecewise linear function by
comma-separated lists of two dimensional coordinates, i.e.,
X and Y values.

(4) Three different smoothing methods were implemented and
can be used independently or together. The smoothing
methods include the following: (1) bubble: sweeps over the
fiber and swaps adjacent segments; the parameter value
gives the number of passes to make; (2) swap: swaps
random pairs of segments; the parameter value gives the
average number of swaps attempted per segment; and
(3) spline: uses polynomial splines to interpolate extra
points; the parameter value is roughly the ratio of the
number of points after smoothing to the number of points
before smoothing.

(5) Image width and height as well as the size of the edge buff
are required for the synthetic fiber image generation.

(6) To mimic real images, additional operations can be
applied to the output image. These include rescaling,
down sampling, blur, addition of noise, distance filter,
thresholding, and normalization.
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Automatic Tumor Boundary Creation
To have a map of tumor locations for relative alignment analysis,
besides a manual boundary creation function, we developed
an automatic boundary creation module based on the bright-
field H&E image. This module can be used to first register
the H&E image to the SHG image, and then do a subsequent
segmentation. In the registration algorithm: first enhance the
colors using decorrelation stretch (Gillespie et al., 1986), then
extract the collagen-like structure from bright-filed image by
color separation, and lastly register the image from the previous
step to the SHG image using an iterative algorithm at different
scales. More details about this registration algorithm can be seen
in our recent work (Keikhosravi et al., 2019). The segmentation
algorithm includes the steps of image color enhancement, color
segmentation, finding nuclei and grouping them, and removing
unwanted regions. To improve the accuracy of the segmentation,
a white balancing as a pre-processing step was implemented. Two
steps of color enhancement in the algorithm were implemented
to overcome the variations in stain hue or imaging systems.

To best use the registration algorithm, the fields of view of the
bright-field and SHG images shouldn’t differ by, e.g., more than
10% and the SHG image should show detectable collagen signals.
To reduce the errors introduced by possible subjective selection
of parameters, the user only needs to enter the pixel resolution
of the SHG image (i.e., pixel per micron one parameter) to run
this module. This module can process a single image pair or
multiple ones sequentially. The output of this module are tumor
boundary masks following the mask naming convention and path
requirement in CurveAlign.

Parallel Computing With Multi-Core
Computers or Distributed Computers
To speed up the batch-mode analysis for processing, e.g.,
hundreds even thousands of images, we implemented parallel
processing/computing in two ways:

Utilization of Multi-Core Processing
Parallel loops were implemented for CT-FIRE fiber extraction,
CT-FIRE post-processing, and CurveAlign full image analysis. If
all the cores are used simultaneously, using parallel loops can
reduce the computation time to about 1/n (number of cores) of
the normal process time when the tool runs on a single core.
In the implementation, we make sure that all the processes in
the parallel loop are independent, the functions that are not
supported in parallel computing are replaced, and the random
number generator generates the same numbers that are to be used
in the algorithm such that the results from the parallel computing
are identical to the conventional sequential processing. To enable
the parallel processing in a local computer, the user only needs to
check the corresponding checkbox and set the number of cores
(the default value is number of available cores minus one).

Utilization of Distributed Computing
We modified the essential code of CT-FIRE and CurveAlign to
make them as headless executables that can run in a distributed
computing environment. The parameter settings can be passed to
the process functions in the form of text files instead of graphical

interface. Five running modes were set, which allows CT-FIRE
and CurveAlign as well as some ROI analysis functions can run
separately or sequentially. The MATLAB code was compiled in
the compilation node with Linux MATLAB support through the
server running by the Center for High Throughput Computing
(CHTC) at the University of Wisconsin-Madison. Users are
provided with a workflow with all the necessary executable files
as well as the templates to set both the submission file and the
fiber analysis parameter files to run on the CHTC servers.

As a test case, we used the HTCondor-based (Thain et al.,
2005) cluster servers. As the tasks of fiber quantification can
be allocated to different computers running independently, the
computational time can ideally be reduced to 1/N (number of
computers used in the cluster node set in a job submission file) of
the convention computation time when the tool runs on a single
computer without enabling multi-core computing. For example,
we had run the CHTC workflow on a breast cancer dataset
containing 5726 images with a size of 1024× 1024 pixels for each
image, and the dataset was assigned to 287 jobs with each job
processing up to 20 images. The 287 jobs run simultaneously, and
most jobs took 1–2 h to complete with a few taking up to ∼9 h.
However, if running this workload on a single core sequentially,
assuming that each image takes 0.1 h to process, it would take
more than 500 h.

ROI Analysis
Full image analysis can be time-consuming and may lack
the specific information of some ROIs such as the regions of
tumor cells or cells cluster. To quantify the collagen in given
regions, ROI module was developed that provides the user with
operations for annotating/saving/deleting/loading/analyzing
ROIs of any arbitrary or user-specified shapes. Automatic ROI
generation code was also developed, and the computed ROI files
can be loaded into the tools. In addition, intensity calculation on
or within or outside specified ROI(s) was also developed based
on the Tumor Trace tool (Pehlke, 2012). This intensity measure
can be in combination with other measures such as alignment
and fiber density for a better tumor or cell characterization.
For use in tumors, high collagen concentrations result in an
increased rate of tumor progression. Intensity can be used to
identify areas of high-density collagen. Intensity around the
outline of an ROI can be used to determine if invasive clusters
remodeled collagen differently from non-invasive clusters. When
combined with orientation, high-intensity values can be used
to detect areas where compounds attract collagen together.
Analyzing collagen in this way can help understand relationships
of collagen and different compounds, which can be used to
identify agents capable of shrinking tumors, and concepts such
as the epithelial–stromal relationship. In the operating room,
collagen density and collagen fiber alignment can be used to
determine the extent to which a tumor has been removed, or in
a pathology lab to determine the patient prognosis and help find
the best therapeutic approach.

To use the ROI analysis module, the user can first launch
the ROI manager module to prepare the ROI annotations or
load available ROI files. In ROI management, in addition to ROI
annotation, the user can also do ROI analysis for one or more
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selected ROIs in a single image. A separate ROI analysis module
was designed to run specified ROI analysis on all the defined
ROIs of each input image. Figures 2, 3 show the analysis of
rectangular ROIs.

Pre- and Post-processing Modules
In CT-FIRE, a post-processing module was implemented to
enable the user to visualize individual fibers and check their
properties based on the fiber labels. Four different thresholds
based on absolute value, percentage, top and bottom number of
fibers for length, width, straightness, and angle were developed
and can be used to select fibers of interest. The threshold
can be applied to one or a combination of two or more
fiber properties. For instance, while we can select the 10
longest fibers, we can also select the fibers whose length is
longer than 100 pixels and average width is thicker than 8
pixels. If no threshold is applied, this module can merely be
used as a tool to combine the separate output files into one
excel sheet and combine the summary statistics of each image
including median, mode, mean, variance, standard deviation,
minimum, maximum, etc.

In CurveAlign, the post-processing module was developed to
combine the output files of all the images in the output folder
including the summary statistics of the fiber features and the
features of curvelets or individual fibers.

In distributed computing applications, a separate MATLAB
GUI was developed to enable the user to prepare job files that
can be recognized by the job submission file in the CHTC server
and unzip the output files from CHTC server into a same folder.
Depending on the analysis mode, the user can compress image file
or a combination of image file and ROI folder/CT-FIRE output
folder/tumor boundary folder into a compressed job file.

RESULTS

The description of the images processed here can be found in
Section “Materials and Equipment.”

Validation Using Synthetic Fiber
Generator
In CT-FIRE, the background threshold was set to 60. In
CurveAlign CT mode analysis, 0.35% largest coefficients at
the second finest scale were selected and the curvelets group
radius was changed from the default of 10 pixels to 8 pixels.
Default values were used for other running parameters in the
validation. Both CT-FIRE mode and CT mode were tested for
all the images in each dataset. The orientation measurement
is the most concerned features in the applications on which
the most important features extracted from our tools are based
including the relative alignment to the tumor boundary and the
relative alignment to each other as indicated in TACS models.
A two-sided t test was used to test whether the calculated
overall orientation and alignment equal to the specified values,
i.e., 90◦ and 0.2, respectively. The level of significance was set
at p< 0.05.

Figure 1 shows validation results of the fiber tracking or
orientation detection. The figure shows that both CT-FIRE fibers
and curvelets are mostly faithfully overlaid on the actual fiber
directions. The box plots show that the calculated orientations
and alignment are close to the setting parameters. The t test shows
that all the analysis modes yield same mean values as the control
values for the orientation. The CT-FIRE fiber mode yielded the
same values as the control value for the alignment coefficient but
the alignments calculated under the CT mode have a bias to the
setting value. This is largely due to the fact that the alignment
from CT mode is calculated from curvelets and not from the
individual fibers that were used to define the alignment in the
fiber generator. We noticed that the CT mode usually generates
much more fiber directions (same directions if fiber is straight or
different directions if fiber is curvy) than single fiber mode, which
may result in usually different alignment calculation and possible
different orientations (e.g., if fiber length is not equal or fiber is
curvy) between these two analysis modes.

In other tests on the individual fiber extraction, the CT-
FIRE-extracted fibers yielded a larger fiber width and smaller
overall fiber length. This might mainly be due to the error of
the fiber extract algorithm to resolve the joint points and fiber
end points as well as the approximation of the width calculation
method used. As it is beyond the scope of this paper, we do not
provide details here.

Comparison of Fiber Orientation
Calculation on Pancreatic Tissue Images
Figure 2 shows the comparison of the fiber orientation
calculation between our method and three other quantitative
approaches. The four images used here were taken from slides
of human pancreatic tissue. Two ROIs were annotated in each
image and the size of each ROI is 256 × 256 pixels. CurveAlign
CT mode and fiber segments mode were applied to the 8 ROIs
to calculate the orientation and alignment of each ROI. The
CT-FIRE analysis used the default running parameters with
the exception of setting fiber length threshold to 15 pixels (30
by default). The threshold of the remaining CT coefficients
was set to 20%. For the manual measurement, ImageJ plugin
NeuronJ (Meijering et al., 2004) was used to assist the fiber
annotation and record the fiber locations and fiber length.
A MATLAB script was used to calculate the fiber angle based on
the coordinates of two ends. The orientation was calculated from
the fiber angles that are weighted against the fiber lengths. The
alignment and orientation of manual annotations have the same
definition as those in CurveAlign. OrientationJ and CytoSpectre
use different definitions to characterize the anisotropy of fiber
orientations compared to CurveAlign. In Figure 2, the alignment
for OrientationJ uses the coherency calculated in the tool, while
the alignment for CytoSpectre equals 1 - circular variance of
the orientations. Default parameters were used to run both
OrientationJ and CytoSpectre.

The comparison shows that in the orientation calculation, all
the methods yielded similar results except for first two ROIs
where the CurveAlign curvelets analysis mode is closest to
the manual measurement; in the alignment calculation, it is
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FIGURE 1 | Validation of individual fiber tracking and orientation detection. (A) shows the 30 straight fibers with given fiber properties. (B) CT-FIRE individual fiber
overlay image of (A). (C) CurveAlign CT-curvelets overlay image of (A). (E) shows the 30 curvy fibers with given fiber properties. (F) CT-FIRE individual fiber overlay
image of (E); CurveAlign CT-curvelets overlay image of (A). Both CT-FIRE fibers [color lines in (B) and (F)] and curvelets [green lines with red center point in (C) and
(G)] are mostly faithfully overlaid on the actual fiber directions. The box plots of average orientation and alignment of the 100 synthetic images in each dataset are
shown in (D) and (H), respectively. The box plots (D) and (H) of the 100 synthetic images in each dataset show that the calculated orientations and alignment are
close to the setting parameters. In the boxplot, the red line represents the median; the blue lines represent the 25th and 75th percentiles, respectively; the dashed
lines and black lines indicate the lower and upper limits of the data points that are not considered as outliers; and the red crosses represent outliers. The t test shows
that all the analysis modes yield the same mean values as the control values for both orientation and alignment at the 5% significance level except for the alignment
calculated under the CT mode. CTF-S, CT-FIRE individual fiber mode for straight fiber images; CT-S, CT-curvelets mode for straight fiber images; CTF-C, CT-FIRE
individual fiber mode for curvy fiber images; CT-C, CT-curvelets mode for curvy fiber images.

expected that they are different as they are based on different
interpretations of individual orientations, but they share similar
alignment trends with the CurveAlign fiber segment analysis
mode being closest to the manual measurement.

Example Application on Human Breast
Cancer Diagnosis
Figure 3 shows tumor boundary creation from bright-field image
of a TACS-3 positive breast cancer H&E slide and SHG image as
well as the relative angle measurement. CT-FIRE ran first with the
default parameters, and then CurveAlign imported the individual
fibers output CT-FIRE and loaded the tiff boundary generated by
the boundary creation module with the distance threshold set to
150 pixels. The figure shows that the bright-field image is almost
perfectly overlaid on the SHG image, which indicates a successful
image registration. The segmented boundaries agree with real
boundaries in virtual inspection. The heatmap shows some
potential TACS-3-positive regions highlighted in red color. The
zoomed-in regions show a non-TACS region with all the fibers
parallelly oriented toward the boundary and a TACS region with
some of the fibers perpendicularly oriented toward the boundary.

Example Application on a Mouse Breast
Cancer Model
Figure 4 shows the quantification of collagen fiber alignment in
a cell-free area and a cell-dense area in a mouse breast cancer
model, respectively. The two ROIs were annotated in Fiji software
and then loaded into the CurveAlign “ROI Manager” module.
The CurveAlign curvelets mode was first used to analyze the
whole image with the threshold of the remaining CT coefficients
set to 8%. ROI analysis was then conducted in CurveAlign
software to extract the fiber angles within each ROI. Histograms
in Figures 4B,C indicate that collagen fibers in invading cell-
dense area are more aligned than those in the invading cell-free
area. To be noted, the presence of highly aligned collagen fibers
in regions with high cell density, suggesting organization of
this matrix by tumor cells, is in contrast to acellular regions
containing a random distribution of collagen fibers. Thus, when
combining multiphoton excitation of endogenous or exogenous
fluorophores to image cells with SHG to image the matrix,
quantitative information can be obtained to relate these critical
patterns to cell organization and phenotype to help facilitate
quantitative mapping of the heterogeneous tumor mass.
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FIGURE 2 | Collagen orientation calculation on SHG images of human pancreatic tissue with CurveAlign (CA) and its comparison with manual measurement and two
other open-source tools including structure tenor based OrientationJ (OJ) and Fourier transform-based CytoSpectre (CS). (A–D) show the original SHG images and
the location of eight ROIs. (E–H) show the manually labeled fibers (in magenta) overlaid on the original images of ROIs 1, 3, 5, and 7, respectively. (I–L) show
curvelets (in green color) represented orientations on the original images of ROIs 1, 3, 5 and 7, respectively. The bottom row shows the comparison in orientation
(left) and alignment (right). For the ROIs with relative larger alignment coefficient including ROIs 3–8, all the methods yield similar orientation. For ROIs 1–2 with
relative small alignment, the discrepancy becomes bigger, with the CurveAlign Curvelets analysis mode (CA-CT) being closest to the manual measurement. All the
methods share some similar trends in alignment measurement, with the CurveAlign fiber segments analysis mode (CA-CTF) being closest to the manual
measurement. The differences are mainly due to the different fiber orientation detection algorithm and fiber alignment definition. Images (A–D) are shown at the same
scale while images (E–L) are shown at the same scale. Scale bar equals 50 microns.
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FIGURE 3 | An example of using CurveAlign to create tumor boundary from a bright-field image and quantify the relative angle on a breast cancer TMA core. (A) The
SHG image, (B) Original bright-field image, (C) SHG image (in yellow) overlaid on top of the registered bright-field image. (D) Segmentation generated boundary
mask. (E) Heatmap of the relative angle with red color shows the region where one or more fibers have an angle larger than 60◦. (F) CurveAlign overlay image with
the lines indicating the fiber center locations and orientations overlaid on the top of the SHG image; the outline of the tumor boundary is highlighted in yellow, and the
two rectangular ROIs are in magenta; a blue line is used to associate the center of fiber with the corresponding boundary locations, and the red lines indicate the
fibers located either beyond the distance range or inside the boundary, and green lines are the fibers of interest. (G) and (H) Zoomed-in ROI results. The arrows in
these images show that the fibers either more parallelly aligned in (G) with respect to the boundary or are more perpendicularly aligned in (H) with respect to the
tumor boundary. In boundary creation, pixel per micron ratio was set to 1.65; fiber extraction in CT-FIRE used default settings; the distance parameter was set to
150 pixels; the SHG image size is 2048 by 2048 pixels, and the sizes of ROI are identically set to 256 by 256 pixels. Images (A,C–F) are shown at the same scale
while images (G) and (H) are shown at the same scale. Scale bar equals 100 microns.

DISCUSSION

CurveAlign CT mode requires that the user sets what percentage
of the largest curvelet coefficients will be used in an analysis. The
selection of this threshold can have an impact on the resulting
measurements; however, as indicated in our tests not shown here,
there is often little effect on the shape of the resulting fiber angle
distribution as the threshold is adjusted. The image is thresholded
by the user’s selection of a coefficient threshold with the largest
coefficients corresponding to the highest frequency edges in the
image, which, in the case of a collagen SHG image, are the
strongest and most defined fibers. The larger the threshold value,
the greater the number of fibers that will be analyzed. To be noted,
if the collagen intensity has a big variation within an image, only
the brightest collagen fibers can be detected by CT mode. To do
an accurate calculation, ROI may need to be defined to ensure
that collagen fibers are the dominated signal and do not have
apparent intensity variation.

The CT uses angled polar wedges or angled trapezoid windows
in frequency domain to provide higher directional selectivity
than both the Fourier transform and the conventional wavelet
transform (Ma and Plonka, 2010). Fourier analysis usually works
well on periodic structures, and wavelet analysis works well
on point singularities; however, neither is well suited for the
task of sparsely representing line-like edges. To be noted, the
Fourier filter extracts oriented patterns at all scales whereas the
curvelets are sensitive to oriented patterns at different scales
and can increase directional selectivity at fine scales according
to parabolic scaling law. Hence, CT is well suited to the
analysis and synthesis of images with highly directional features
(Püspöki et al., 2016).

In the comparison on orientation calculation between our tool
and three other quantitative approaches as shown in Figure 2,
large differences were observed when fibers are more randomly
oriented, for example in ROIs 1 and 2. Besides the accuracy
of each method compared, another reason might be due to
the observations that the ability of some methods including
the Fourier transform-based method to measure principal angle
tends to decrease as the anisotropy of orientations or alignment
becomes small (Sander and Barocas, 2009). As for the orientation
calculation by our tool, in practice, the user can rely on virtual
inspection to empirically verify the tracing results.

In the C++ implementation for fast individual fiber
extraction, although the MATLAB code was used as a reference to
validate the C++MEX code, the C++MEX functions have some
steps implemented differently from the MATLAB code and thus
identical fiber extraction results between the C++MEX code and
the original MATLAB code should not be expected. The current
MEX code can be used to estimate individual fiber parameters
in a much faster manner than the original code and should yield
similar fiber extraction for images with clear fiber presences as
indicated in our tests on synthetic fibers. However, the current
code cannot fill gaps between fiber segments or fiber branches,
which may lead to mis-segmented long fibers when intensity
changes along a fiber direction. The ongoing efforts lie on tackling
this issue, optimizing other necessary steps in C++ with the
long-term goal of integrating the C++ fast CT-FIRE code into
image acquisition software for real-time fiber estimation.

The synthetic fiber generator software tool has many useful
features. One of the remaining challenges is to better represent
the interactions between two fibers that have joint points. The
information of joint points is particularly useful when tissue
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FIGURE 4 | An example of quantification of invading cells reorganizing the ECM of an adult mouse implanted with xenograft of MDA-231 breast cancer cells for
3 weeks. (A) SHG image showing the boundary of tumor cell/collagen. (B) Histogram of fiber angles in the cell-free area of collagen. (C) Histogram of fiber angles in
the cell-dense area of collagen. The histograms indicate that the collagen fibers are more aligned in the cell-dense area than the fibers in the cell-free area. Scale bar
equals 25 microns.

mechanical properties are concerned. Another work on the list is
to automatically load the fiber parameters calculated from a large
dataset to generate more realistic, large scale synthetic fiber image
datasets that could be potentially used for machine learning
and other purposes. The current version can be run in a non-
interactive, command-line only mode by passing the parameter
settings through a standard JavaScript Object Notation (JSON)
data interchange file. One planned and straightforward way for
an automatic fiber generation would be to extract information
from the CT-FIRE/CurveAlign output files to automatically
update the JSON file.

The CHTC workflow for large-scale fiber quantification has
been tested and used successfully in some real projects including a
prostate cancer dataset and a breast cancer dataset each consisting
of thousands of images. To be noted, for the distributed
computing systems, the job files need to be carefully configured
to fully use the computing power while reducing the time of file
pre-/post-processing and file transfer to and from the server.

Heatmaps have been created for relative angle and a local
alignment feature that can facilitate the detection of ROIs. We
are planning to create heatmaps for all the individual fiber
properties as well as the localized fiber density and alignment
features. Commonly used statistical analysis such as Student’s t
test, boxplot, clustering, and classification are hopefully added

to our fibrillar collagen quantification workflow to gain valuable
insights from the output features.

To take advantage of the ecosystem of ImageJ/Fiji (Schindelin
et al., 2012; Schneider et al., 2012) and other SciJava-
compatible software systems being developed by our lab, an
ImageJ OPs (Rueden et al., 2017) for collagen orientation and
alignment analysis based on CT is under development. This
OPs will be part of a future comprehensive workflow that can
integrate the information from other OPs and plug-ins, such as
automatic segmentation, cell measurement, ROI management,
etc. Moreover, we have developed a prototype of KNIME
(Fillbrunn et al., 2017) nodes for CurveAlign and CT-FIRE
for a convenient feature statistical analysis, classification, and
visualization. These are all planned future additions for new
releases of the CurveAlign/CT-FFIRE platform.

In fibrillar collagen quantification, although we have
applications of using collagen fiber geometry properties such
as fiber width or thickness (LeBert et al., 2015) and fiber
length (Hanley et al., 2016), the collagen fiber alignment is the
most commonly used and robust measure in our applications
(Bredfeldt et al., 2014a; Drifka et al., 2015; Conklin et al., 2018).
This is partially because there are no mature research models
in thickness or length characterization like the TACS model
(Provenzano et al., 2006; Conklin et al., 2011) in alignment.
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Moreover, technically, there are challenges to accurately calculate
the thickness and length if the fibers are close to each other, have
joints, have significant intensity changes along their propagation
directions, etc. In addition, for the SHG imaging of collagen,
the width and length of the fiber are largely numeric aperture
(NA) dependent and we cannot know conclusively if the length
or width belong to a single fibril, fiber, or a bundle of fibers.
However, orientation and alignment are much less affected
by the NA. In our experience, to resolve a robust thickness
measurement in SHG imaging, the objective lens should usually
be 40× or higher with NA ≥ 1.0. A long collagen fiber may
be divided into smaller segments if the fiber is curvy and the
intensity or thickness along the fiber is varying or it has joints
with other fibers. In the individual fiber extraction algorithm, a
more accurate width at each nucleation point can be calculated
by improving the edge detection and taking into account the
distance to both fiber edges instead of using the distance to
one edge as the fiber radius. To improve the accuracy of fiber
length calculation, introducing the local orientation or anisotropy
information based on other available methods (Meijering et al.,
2004; Rubbens et al., 2009; Rezakhaniha et al., 2012; Kabir et al.,
2013; Quinn and Georgakoudi, 2013; Boudaoud et al., 2014; Sun
et al., 2015) into the fiber extraction algorithm may help form
an intact fiber. In addition, we can also try adapting energy
minimization (Mori and van Zijl, 2002) along the fiber direction
to the current algorithm.

Though the current version of our tools can be merely used for
2-D image analysis, both the CT and individual fiber extraction
algorithms have 3-D implementations and our tools could adapt
them if there are real needs. However, the commonly used
collagen imaging modalities either do not resolve sufficient depth
information (e.g., polarized light microscopy) or do not often
have good enough axial resolution (e.g., SHG) for 3D fiber
measurement. 3D fluorescence microscopy collagen images are
reported but have limited uses as yet. We will implement 3D fiber
analysis support as imaging methods for such 3D analysis evolve
and become available.

CONCLUSION

In summary, we developed a powerful, comprehensive fibrillar
collagen quantification platform based on the CT. This platform

can meet crucial needs from both the basic science research and
the clinical studies, and has been actively used by ourselves and
other researchers across the world for a wide array of applications.
We have been putting continuous efforts on getting the tools
ready for more and more new applications with a future focus
on improved performance and interoperability.
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