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Role for Drug Transporters in Chemotherapy-Induced 
Peripheral Neuropathy

Tore B. Stage1,*, Shuiying Hu2, Alex Sparreboom2 and Deanna L. Kroetz3

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity to widely used chemothera-
peutics. Although the exact molecular mechanism of chemotherapy-induced peripheral neuropathy remains elusive, there is 
consensus that it is caused by damage to the peripheral nervous system leading to sensory symptoms. Recently developed 
methodologies have provided evidence of expression of drug transporters in the peripheral nervous system. In this literature 
review, we explore the role for drug transporters in CIPN. First, we assessed the transport of chemotherapeutics that cause 
CIPN (taxanes, platins, vincristine, bortezomib, epothilones, and thalidomide). Second, we cross-referenced the transporters 
implicated in genetic or functional studies with CIPN with their expression in the peripheral nervous system. Several drug 
transporters are involved in the transport of chemotherapeutics that cause peripheral neuropathy and particularly efflux 
transporters, such as ABCB1 and ABCC1, are expressed in the peripheral nervous system. Previous literature has linked 
genetic variants in efflux transporters to higher risk of peripheral neuropathy with the taxanes paclitaxel and docetaxel and 
the vinca alkaloid vincristine. We propose that this might be due to accumulation of the chemotherapeutics in the peripheral 
nervous system due to reduced neuronal efflux capacity. Thus, concomitant administration of efflux transporter inhibitors 
may lead to higher risk of adverse events of drugs that cause CIPN. This might prove valuable in drug development where 
screening new drugs for neurotoxicity might also require drug transporter consideration. There are ongoing efforts targeting 
drug transporters in the peripheral nervous system to reduce intraneuronal concentrations of chemotherapeutics that cause 
CIPN, which might ultimately protect against this dose-limiting adverse event.

Chemotherapy-induced peripheral neuropathy (CIPN) is 
a dose-limiting toxicity that is correlated with a number 
of widely used chemotherapeutic drugs. CIPN presents 
predominantly as a sensory polyneuropathy with paresthe-
sia sometimes accompanied by pain, and patients often 
describe the symptoms as “walking on needles.” These 
symptoms follow a symmetric, distal, stocking and glove 
distribution. CIPN can be very serious, but even mild to 
moderate symptoms commonly persist for up to 2  years 
after treatment cessation, significantly impairing quality of 
life.1,2 With more patients surviving cancers due to improved 
pharmacological treatment, this severe and long-lasting 
adverse reaction is particularly concerning and of public 
health interest. The risk and incidence of CIPN depends 
on chemotherapeutic agent, cumulative dose, chemother-
apy regimen, duration of exposure, and a number of both 
genetic and nongenetic factors. Clinical strategies for re-
ducing these debilitating symptoms include dose reduction/
delay, alternative chemotherapy when feasible, increasing 
duration of infusion, and experimental approaches, such 
as cryotherapy.3 A number of pharmacological agents have 
been tested to treat or prevent CIPN, but results have been 
disappointing, leaving this clinical challenge unresolved.

Numerous effective chemotherapeutic drugs can cause 
CIPN. The incidence of CIPN varies between chemother-
apeutics and depends on the specific drug and indication 

for treatment. Recent evidence indicates that cancer itself 
may exacerbate CIPN.4 In this review, we have focused on 
the most widely used chemotherapeutics that produce sub-
stantial risk of developing CIPN. The taxanes paclitaxel and 
docetaxel both cause CIPN, with paclitaxel being slightly 
more neurotoxic than docetaxel.4 Taxane-induced periph-
eral neuropathy will normally improve 4–6  months after 
treatment cessation, but some patients may experience 
varying degrees of peripheral neuropathy up to 2 years later.1 
Platinum-based chemotherapeutics (cisplatin, oxaliplatin, 
and carboplatin) also cause CIPN. Symptoms of cispla-
tin-induced and oxaliplatin-induced peripheral neuropathy 
may continue to worsen after cessation of treatment and 
some patients may experience initial symptoms after con-
cluding treatment. The widely used vinca alkaloid vincristine 
causes peripheral neuropathy in nearly all patients, and, in 
contrast to the abovementioned chemotherapeutics, may 
cause motor neuropathy and autonomic neuropathy with 
symptoms such as constipation and abdominal pain. The 
proteasome inhibitor bortezomib, the microtubule-stabiliz-
ing epothilone ixabepilone and the angiogenesis inhibitor 
thalidomide also cause CIPN.5

The pathogenesis of CIPN differs between chemother-
apeutics. Primary axonopathy of peripheral neurons have 
been described along with demyelination of large myelin-
ated sensory fibers during taxane treatment.6 Mechanisms, 
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such as mitochondrial dysfunction and production of ox-
idative stress and immune-mediated toxicity, have also 
been linked to CIPN.7 Exposure of the peripheral neurons 
to chemotherapeutic agents is also considered a criti-
cal determinant of the risk of CIPN, and variation in both 
drug metabolizing enzymes and transporters have been 
investigated as potential mechanisms underlying this 
dose-limiting toxicity.

Over the last decade, a number of clinical pharmacoge-
netic studies have associated polymorphisms in transporter 
genes with risk of CIPN (Table 1), although these associa-
tions are not consistent and are rarely validated. This effect 
was assumed to be caused by altered pharmacokinetics, 
but polymorphisms in transporter proteins only cause minor 
pharmacokinetic differences.8 Consistent with the findings 
in humans, Mdr1a/Mdr1b knockout mice only exhibit 30% 
higher area under the paclitaxel concentration-time curve 
after intravenous administration.9 The peripheral nervous 
system is not protected by the blood-brain barrier,10 which 
protects the central nervous system from xenobiotics. This 
may explain why chemotherapeutics cause peripheral- and 
not central nerve damage. Although it is well-known that 

drug transporters play a key role in regulating tumor toxicity 
of chemotherapeutics, their role in regulating tissue-spe-
cific toxicity has only recently been elucidated. A number 
of studies have highlighted the role of drug transporters 
in chemotherapy-induced ototoxicity, nephrotoxicity, and 
cardiotoxicity.11–13 Due to the high number of studies link-
ing CIPN to transporter polymorphisms, we reviewed the 
literature to find plausible mechanisms underlying these 
associations.

TRANSPORTER-MEDIATED DISTRIBUTION OF 
CHEMOTHERAPEUTICS THAT CAUSE PERIPHERAL 
NEUROPATHY

Below, we have assessed the role for membrane transport-
ers in the uptake and efflux of chemotherapeutic agents 
that lead to substantial risk of CIPN. Direct evidence for 
transport (i.e., genetic overexpression or knockdown of 
transporters) is summarized in Table 2. Although tha-
lidomide treatment is associated with CIPN,14 there is no 
evidence for its transport by SLC or ABC transporters and 
this chemotherapeutic was not considered further.

Table 1 Clinical pharmacogenetic studies correlating risk of chemotherapy-induced peripheral neuropathy to genetic variants in genes 
encoding drug transporters

Class Drug Transporter (gene) dbSNP Outcome
Odds ratio [95% 

confidence interval] Ref.

Taxanes Paclitaxel P-gp (ABCB1) rs3213619 NCI CTCAE version 2. Grade ≥ 2 
neurotoxicity.

0.5 [0.3–0.8] 71

rs1045642 NCI CTCAE version 4. Grade ≥ 2 
neurotoxicity.

2.8 [1.2–6.5] 72

rs1128503 NCI CTCAE version 4. Grade ≥ 2 
neurotoxicity.

2.4 [1.1–5.4] 73

MRP2 (ABCC2) rs17222723 NCI CTCAE version 2 Grade ≥ 2 
neurotoxicity.

0.6 [0.4–0.9] 71

Docetaxel P-gp (ABCB1) rs2032582 NCI CTCAE version 2. Time to 
onset of peripheral neuropathy.

1.9 months for reference 
genotypes vs. 

0.7 months for carriers 
of variant

27

Platinum-based Oxaliplatin BCRP (ABCG2) rs3114018 NCI CTCAE version 2. Grade ≥ 2 
neurotoxicity when combined 

with CCNH rs2230641.

2.5 [1.2–5.1] 74

Vinca alkaloids Vincristine MRP1 (ABCC1) rs3887412 NCI CTCAE version 3. Grade 2-3 
peripheral neuropathy vs. no 

peripheral neuropathy after two-
three cycles of vincristine.

3.4 [1.5–7.7] 75

rs2644983 4.2 [1.7–10.5]

rs11864374 Obtained from medical records. 
Grade 1-4 peripheral neuropathy 

vs. no peripheral neuropathy.

0.4 [0.2–0.8] 76

rs3743527 0.3 [0.1–0.8]

rs1967120 0.4 [0.2–0.8]

rs17501331 2.5 [1.1–5.7]

rs12923345 2.4 [1.1–5.3]

rs11642957 0.4 [0.2–1.0]

rs3784867 NCI CTCAE version 4. Grade ≥ 2 
peripheral neuropathy.

4.9 [2.0–12.1] 77

MRP2 (ABCC2) rs3740066 Obtained from medical records. 
Grade 1-4 peripheral neuropathy 

vs. no peripheral neuropathy.

0.2 [0.1–0.5] 76

rs12826 0.2 [0.1–0.5]

P-gp (ABCB1) rs4728709 NCI CTCAE version 3. Grade 1-2 
peripheral neuropathy vs. no 

peripheral neuropathy.

0.3 [0.1–0.9] 78

dbSNP, single nucleotide polymorphism database identifier; NCI CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events.
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Taxanes
Both the uptake and efflux of taxanes have been charac-
terized in vitro and their contribution to pharmacokinetics 
and peripheral neuropathy studied in rodents. Paclitaxel 
is a well-known substrate for P-gp (MDR1, ABCB1)9,15–17 
and P-gp inhibition enhances oral absorption of the 
drug.18 Multidrug resistance associated protein 2 (MRP2; 
ABCC2)9,19 and MRP7 (ABCC10)20,21 have been shown to 
efflux paclitaxel in vitro but their contribution to paclitaxel 
distribution outside the tumor cell is not well-characterized. 
Paclitaxel uptake by organic anion transporting polypep-
tide 1B3 (OATP1B3; SLCO1B3) and OATP1B1 (SLCO1B1) 
was highly dependent on the taxane solubilizer.22,23 
Additionally, paclitaxel is an OATP1B1 and OATP1B3 in-
hibitor at clinically relevant concentrations.24,25 Human 
OAT2 transports paclitaxel but OAT2-mediated paclitaxel 
transport is saturated at nM concentrations, which might 
limit its role at pharmacological concentrations.26 Another 
widely used taxane, docetaxel, is also a substrate for 
P-gp.27,28 Similar to paclitaxel, docetaxel is also a sub-
strate for MRP2.29 Docetaxel is transported by OATP1B1 
and OATP1B3,22,29–31 and in vivo evidence suggests that 
these uptake transporters play a more central role for the 
pharmacokinetics of docetaxel compared with paclitaxel. 
In Slco1b2(-/-) mice, the clearance of docetaxel is 66–83% 
lower30,32 compared with only 30% lower clearance for 
paclitaxel.33 Interestingly, despite minor changes in pacl-
itaxel pharmacokinetics, Slco1b2(-/-) mice are protected 
against paclitaxel-induced neurotoxicity.33 Whether this 
translates to humans is unknown.

Platins
The DNA-binding platinum-based chemotherapeutics 
cisplatin, carboplatin, and oxaliplatin were shown to be sub-
strates of copper carriers, such as copper uptake protein 
1 (CTR1),34,35 although a role for CTR1-mediated platinum 
cellular uptake appears limited.36 In mouse models, CTR1 
contributes to the basolateral uptake of cisplatin in the kid-
neys and regulates cisplatin-induced nephrotoxicity.37 In 
rat dorsal root ganglion (DRG), oxaliplatin appears to dam-
age primarily CTR1-expressing neurons,38 consistent with 
its importance in regulating oxaliplatin distribution to these 
cells. Although there are conflicting reports for transport of 
oxaliplatin by the organic anion transporters novel 1 and 2 
(OCTN1/2), a careful analysis in a tightly regulated expres-
sion system suggests that OCTN1 does not transport this 
platinum agent to any significant extent.39,40 This lack of 
transport of oxaliplatin by OCTN1 limits the interpretation 
of findings from oxaliplatin-induced peripheral neuropathy 
studies under conditions of OCTN1 inhibition in rats and 
highlights the sensitivity of both in vitro transport assays 
and in vivo neuropathy studies to experimental systems and 
species differences.41,42 Additionally, oxaliplatin and cispla-
tin are substrates for OCT2,43 which was shown to regulate 
the neurotoxicity of oxaliplatin in mice.44 Multidrug and toxin 
extrusion 1 (MATE1; SLC47A1) may play a role in the efflux 
of oxaliplatin.41 Knockdown of MATE1 using siRNA leads 
to increased oxaliplatin-mediated neuropathy in rats.41 
Transport of carboplatin is not well-characterized; carbo-
platin is not transported by OCT2,43 although its uptake Ta
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might be mediated by CTR1.35 All three platinum-based 
chemotherapeutics are substrates for OATP1B3 and cis-
platin is a substrate for OATP1B1.45

Vincristine
Among the antimitotic vinca alkaloids, vincristine is the most 
widely used chemotherapeutic. Vincristine is a substrate 
for P-gp46 and high expression of P-gp results in increased 
resistance to vincristine in cancer cells.47 Concomitant 
treatment of patients with vincristine and the known P-gp/
CYP3A4 inhibitor cyclosporin A leads to exacerbated CNS 
toxicity, suggesting potent inhibition of P-gp at the blood-
brain barrier.48 In addition to P-gp, vincristine is a substrate 
for MRP117 and knockout of this gene in mice reduces the 
maximum tolerated dose of vincristine, particularly when 
combined with genetic deletion of P-gp.49 MRP2 can also 
transport vincristine in cells but the significance of this 
transport in vivo is not known.50 Similarly, vincristine has 
been shown to be transported by OATP1B1 and OATP1B3 
in vitro,51,52 although their contribution to vincristine dispo-
sition or neurotoxicity are not characterized.

Bortezomib
There is limited information on the transport of the prote-
asome inhibitor bortezomib. Bortezomib cytotoxicity is 
influenced by the level of P-gp, but not BCRP or MRP153 ex-
pression in cancer cell lines but direct evidence of transport 
by P-gp is lacking. Polymorphisms in ABCB1 and ABCC1 
were linked to treatment response,54 although the signifi-
cance of these associations require validation. Interestingly, 
bortezomib appears to inhibit proteasome-mediated inter-
nalization of CTR1 caused by platinum-based chemotherapy 
in tumor cells, enhancing cisplatin uptake and cell killing 
both in vitro and in vivo.55 Transporter-mediated uptake of 
bortezomib by OATP1B1 was measurable but contributed 
insignificantly to intracellular levels of the drug.56

Epothilones
In vitro studies showed that the epothilone ixabepilone is 
a P-gp substrate, but not a BCRP substrate.57 Thus, P-gp 
inhibitors reverse MDR1-mediated drug resistance to ix-
abepilone in MDCK cells. Additionally, P-gp inhibition leads 
to reduced efflux of ixabepilone in LLC-MDR1 cells.57

EXPRESSION OF DRUG TRANSPORTERS IN HUMAN 
DORSAL ROOT GANGLION

The expression of drug transporters in the peripheral ner-
vous system was reported in several recent studies. Two 
studies utilized RNA sequencing of human DRG (hDRG),58,59 
whereas another study reported a proteomic analysis 
of hDRG lysate.60 To assess transporter expression, we 
cross-referenced these datasets for expression of drug 
transporters that transport chemotherapeutics with sig-
nificant CIPN, as outlined in the previous section. The 
expression of key transporters in hDRG that are relevant 
for chemotherapeutics that cause CIPN are summarized in 
Table 3. Expression of drug transporters was confirmed if 
FPKM was > 1 for RNA sequencing datasets. At the pro-
tein level, expression of drug transporters was defined as 

detectable protein expression in at least two samples from 
the proteomic dataset (table S1 from Schwaid et al.60).

The efflux transporters P-gp (ABCB1), BCRP (ABCG2), 
MRP1 (ABCC1), and MATE1 (SLC47A1) are expressed in 
hDRG, whereas MRP2 (ABCC2) is not. High expression of 
efflux transporters in the peripheral nervous system makes 
sense from an evolutionary standpoint. The peripheral ner-
vous system is not protected by the blood-brain-barrier and 
thus expression of efflux transporters is crucial to confer pro-
tection against neurotoxic agents. The uptake transporters 
OCTN1/OCTN2 (SLC22A4/SLC22A5) and CTR1 (SLC31A1) 
are expressed in hDRG. These transporters mediate cellular 
uptake of endogenous substances, such as OCTN1/OCTN2-
mediated uptake of ergothioneine or CTR1-mediated copper 
transport. The transcriptomic and proteomic data did not 
support expression of other SLC uptake transporters, such 
as OATP1B1 and OATP1B3, OAT2, or OCT2. This is in con-
trast to a previous report showing expression of OCT2 mRNA 
in human DRG.44 We were unable to find an exhaustive 
source for protein expression data in hDRG as the published 
datasets did not contain comprehensive evaluation of drug 
transporters (Table 3). Finally, these data highlight expres-
sion of drug transporters in the hDRG but do not provide 
evidence for localization or function. Further evaluation of 
these properties will be critical for the field.

DISCUSSION AND FUTURE PERSPECTIVES

This review highlights a number of important features of che-
motherapy transport in sensory neurons. Although there is 
very little direct human evidence of the importance of che-
motherapy transport in the peripheral nervous system, the 
number of clinical associations between polymorphisms in 
transporter genes with CIPN and expression of key trans-
porters in the dorsal root ganglion supports their role in the 
disposition of chemotherapeutics to the peripheral nervous 
system (Figure 1).

P-gp overexpression is a well-established cause of 
tumor resistance to chemotherapeutics and intestinal P-gp 
limits the oral absorption of drugs, such as paclitaxel.61 
Inhibition of this efflux transporter has been investigated 
as an approach to counter both intestinal and tumor ef-
flux of chemotherapeutics.62–64 Although organ or tumor 
level inhibition of P-gp could improve the bioavailability 
and tumor distribution of chemotherapeutics, inhibition 
of efflux transporters may cause increased accumulation 
of chemotherapeutics in the peripheral nervous system. 
Several pharmacogenetic studies have correlated poly-
morphisms in efflux transporters with risk of CIPN (Table 1). 
Additionally, a recent clinical study among patients with 
breast cancer showed that miR-451a regulates P-gp ex-
pression and may be a risk factor for paclitaxel-induced 
peripheral neuropathy.65 We recently showed that inhibi-
tion of P-gp leads to increased neuronal accumulation of 
paclitaxel in cultured neurons and in patients with breast 
cancer and ovarian cancer.66 Interestingly, several widely 
prescribed drugs that inhibit P-gp, including the prominent 
cholesterol-lowering drug atorvastatin, led to substantially 
increased risk of paclitaxel-induced peripheral neuropathy 
when used in combination with paclitaxel. Collectively, 
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this supports the proposal that inhibition of efflux trans-
port might cause increased accumulation and toxicity of 
paclitaxel in sensory neurons. This is further supported by 
a study showing that concomitant administration of pa-
clitaxel with the well-established P-gp inhibitor valspodar 
causes a minor shift in paclitaxel plasma pharmacokinet-
ics.63 Despite apparently unaltered plasma concentrations, 
this combination leads to higher risk of paresthesia and 
pain,62 supporting a protective role of P-gp in the periph-
eral nervous system. These interesting clinical findings 

warrant further evaluation. Additional investigation is also 
needed to understand why P-gp activity in the peripheral 
nervous system is more sensitive to changes in transport 
expression and function than P-gp at the blood-brain-bar-
rier. The relative expression levels of P-gp at peripheral 
and central nerve barriers and the contribution of other 
uptake and efflux transporters at these sites should also 
be evaluated.

CTR1 might play a key role for disposition of plati-
num-based chemotherapy. This transporter is highly 

Table 3 Data from RNA sequencing and proteomic studies show expression of drug transporters involved in transport of chemotherapeutics 
that cause peripheral neuropathy

Transporter (gene/transporter)

RNAseq hDRG (> 1 FPKM cutoff) Proteomics hDRG

Flegel et al. (2015) Ray et al. (2018) Schwaid et al. (2018) Stage et al. (2020)

ABCC1/MRP1 + + + +

ABCC2/MRP2 − − n.d. −

ABCC10/MRP7 + + n.d. n.d.

ABCG2/BCRP + + n.d. n.d.

ABCB1/P-gp + + + +

SLC22A2/OCT2 − − n.d. n.d.

SLC22A4/OCTN1 + + n.d. n.d.

SLC22A5/OCTN2 + + n.d. n.d.

SLC22A7/OAT2 − − n.d. n.d.

SLC47A1/MATE1 + + n.d. n.d.

SLCO1B1/OATP1B1 − − n.d. n.d.

SLCO1B3/OATP1B3 − − n.d. n.d.

SLC31A1/CTR1 + + n.d. n.d.

+ Expression confirmed.
− No expression
hDRG, human dorsal root ganglion; n.d., not determined.

Figure 1 Drug transporters regulate influx and efflux of chemotherapeutics in the peripheral nervous system likely modulating toxicity 
and peripheral neuropathy.
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expressed in many tissues, including peripheral neurons 
and tumor tissue and expression of CTR1 in tumor cells cor-
relates with response to platinum-based chemotherapy.67 
Although the attempt to increase CTR1 activity to increase 
platinum uptake in tumor tissue could improve chemother-
apy response, the wide tissue distribution of CTR1 might 
also lead to increased risk of off-target toxicity due to in-
creased permeability of platins. An additional concern to 
targeting CTR1 includes interfering with cell copper balance, 
which may result in unwanted toxicity. Clinical attempts to 
target CTR1 to increase tumor uptake of platinum-based 
chemotherapy should only be done with significant consid-
eration to adverse effects and toxicity.

Both paclitaxel and ixabepilone were shown to activate 
the nuclear pregnane X receptor,68 which is a known mech-
anism for induction of ABCB1 expression. Activation of this 
receptor by St. John’s wort, rifampicin, or dicloxacillin causes 
upregulation of a number of important pharmacogenes, 
including CYP3A4 and ABCB1.69 Increased expression 
of ABCB1 and corresponding increases in P-gp function 
could influence chemotherapeutic distribution to peripheral 
neurons. Induction of drug-metabolizing enzymes or drug 
transporters through pregnane X receptor typically requires 
prolonged exposure to the inducer and as both paclitaxel 
and ixabepilone treatment are given weekly or every third 
week, the clinical impact of potential induction of ABCB1 will 
require further investigation.

Published transcriptomic data do not support expression 
of OATP1B transporters in hDRG. This is in contrast to rodent 
studies that have shown both gene and protein expression 
of OATP1B2.33,70 Additionally, RNAseq data does not sup-
port OCT2 expression, although Sprowl et al. showed that 
OCT2 is expressed in hDRG using quantitative polymerase 
chain reaction.44 The expression of drug transporters in the 
peripheral nervous system should be supported by quantita-
tive protein determination by liquid chromatography-tandem 
accurate mass spectrometry in hDRG before being dis-
missed. Species differences in transporter expression in the 
peripheral nervous system require consideration in the de-
sign and interpretation of drug transporter studies.

Very little is known about the role of membrane trans-
porters in drug disposition to the human peripheral nervous 
system. Recent transcriptomic approaches and extensive 
rodent studies have shed important light on expression 
and activity of drug transporters in these tissues, although 
their function and impact in human models is unknown. 
There are two ongoing clinical studies (clinicaltrials.gov 
identifiers NCT04205903 and NCT04164069) aiming to 
inhibit uptake transporters of oxaliplatin and paclitaxel 
to reduce paclitaxel-induced and oxaliplatin-induced 
peripheral neuropathy in patients with cancer. These 
studies and continued laboratory efforts may lead to an 
increased understanding of the disposition of neurotoxic 
drugs that could also inform drug development. Cellular 
influx and efflux mechanisms are critical for drug distribu-
tion and should be considered when attempting to target 
drugs to the peripheral nervous system. For example, 
P-gp and MRP1 are highly expressed in sensory neurons 
and drugs that are substrates of these efflux transport-
ers may not reach sufficient therapeutic concentrations in 

the peripheral nervous system. Expression and activity of 
transporters in supporting cells, such as Schwann cells 
or satellite cells, is currently unknown and should be as-
sessed in the future.

As discussed previously, it seems tempting to try to 
upregulate efflux transporters to promote efflux of chemo-
therapy agents from sensory neurons. As this would also 
increase efflux of chemotherapeutics from tumor cells, 
this is not a compelling therapeutic strategy. However, 
using antibody-directed delivery of transport modulators 
to peripheral sensory neurons might prove a useful tool 
to modulate chemotherapy transport in the peripheral 
nervous system. This approach might be useful to inhibit 
uptake transporters or induce efflux transporters in the 
human DRG, ensuring low sensory neuron concentrations 
of chemotherapeutics, which are expected to limit CIPN. 
Future development is needed to test this approach in pre-
clinical models and in humans.

It is important to note that CIPN is a complex phenotype. 
In this review, we have attempted to highlight the role of 
membrane transporters in the peripheral nervous system 
and their putative influence on CIPN. The evidence linking 
drug transporters to CIPN is primarily based on in vitro or 
animal studies and thus more work in human models is war-
ranted. Although drug transporters may present a piece of 
the puzzle to help explain variability in CIPN, there are many 
other factors that should be taken into account. Predicting 
and understanding CIPN will require collaboration across 
research disciplines to build models to provide a deeper un-
derstanding of this dose-limiting toxicity.

In conclusion, drug transporters, particularly efflux trans-
porters, are highly expressed in the human peripheral 
nervous system. Although there is limited direct evidence 
supporting a functional role of these transporters in sen-
sory neurons in humans, an increasing body of evidence 
supports their involvement in regulating disposition of che-
motherapeutics to the peripheral nervous system and thus 
drug transporters may play a role in CIPN.
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