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lation of sulfonamides via visible
light-mediated deamination†

Yong Luo, *a Hao Ding,b Jing-Song Zhen,a Xian Du,a Xiao-Hong Xu,a Han Yuan,a

Yi-Hui Li,a Wan-Ying Qi,a Bing-Zhe Liu,a Shi-Man Lu,a Can Xue *c

and Qiuping Ding *b

A novel arylation of sulfonamides with boronic acids to afford numerous diaryl sulfones via a visible light-

mediated N–S bond cleavage other than the typical transition-metal-catalyzed C(O)–N bond activation

is described. This methodology, which represents the first catalyst-free protocol for the sulfonylation of

boronic acids, is characterized by its simple reaction conditions, good functional group tolerance and

high efficiency. Several successful examples for the late-stage functionalization of diverse sulfonamides

indicate the high potential utility of this method in pharmaceutical science and organic synthesis.
Introduction

Sulfonamide drugs discovered in the 1930s rst systemically
used as antibacterials have continuously received renewed
interest for the treatment of numerous diseases.1 Since then,
a large number of synthetic routes towards diverse sulfon-
amides have been developed, which make the sulfonamide
moiety prevalent in bioactive molecules and commercial
chemicals.2 Therefore, the transformation of sulfonamide
skeleton to other groups, such as sulfones, is a convenient
method to construct a pharmacophore-containing molecule
library for drug discovery. Moreover, the activation of sulfon-
amides could be used for the deprotection of sulfonyl group-
protected amines,3 late-stage functionalization of sulfonamide
drugs,4 and sulfonylation with sulfonamides as stable and good
functional group-tolerant reagents. However, sulfonamides are
usually considered as the nal products of the construction of
N–S bonds rather than reactive substrates because efficient
strategies for the functionalization of N–S bonds are limited.

Previous exploration on the N–S bond cleavage of sulfon-
amides mainly focused on desulfonylation to generate corre-
sponding amines.3 The functionalization of the sulfonyl group
resulted from the deamination of sulfonamides still meets great
challenges. Recently, Fier and Maloney4 reported an efficient
pathway to convert primary and secondary sulfonamides to
sulnate anions in the presence of an NHC catalyst or
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phosphine reagent (Scheme 1a). Further with the addition of
electrophiles, a variety of sulfones and modied sulfonamides
could be obtained. By utilizing Pyry-BF4, Cornella5 found that
primary sulfonamides could react with nucleophiles to generate
sulfonyl chlorides, uorides, and sulfonic acids. Despite these
signicant progresses, the functionalization of tertiary sulfon-
amides, which are usually considered as terminal functional
groups to synthesize sulfones and related compounds, has not
been achieved yet.

On the other hand, despite sulfonyl chlorides,6 sodium sul-
nates,7 and sulfur dioxide8 being widely used for sulfonylation
towards aryl sulfones in recent years, novel sulfonylation
reagents still need to be explored to extend the research in this
area. The stability and good tolerance for other functional
groups make tertiary sulfonamides to be good sulfonylation
reagents. Herein, we report that N-acylsulfonamides as novel
sulfonyl radical precursors react with aryl boronic acids to
generate various diaryl sulfones via visible-light-mediated N–S
Scheme 1 Strategies for the functionalization of sulfonamides and the
synthesis of sulfones.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Scope of boronic acidsa
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bond activation without any catalyst (Scheme 1b), while these
substrates typically proceed a C(O)–N bond cleavage in the
presence of transition metals.9 The mechanism investigation
showed that a radical cross-coupling is probably involved in our
protocol, which provides an alternative strategy for the late-
stage functionalization of sulfonamides. Moreover, N-acylsul-
fonamides synthesized from sulfonyl chlorides and amides
could act as the surrogates of the sulfonyl chlorides under
incompatible reaction conditions to proceed with late-stage
sulfonylation.

Results and discussion

In our investigation, sulfonamide 1a went through arylation
with boronic acid 2a in the presence of K3PO4 and CH3CN under
blue LED irradiation, providing diaryl sulfone 3a with 57% yield
(Table 1, entry 1). No ketone product was observed. Further
screening showed that DMF, PhCF3, or DCE was inefficient
(entries 2–4). However, ether solvents exhibited superiority in
this reaction (entries 5–7), and 70% yield was obtained with 1,4-
dioxane. A lower yield was detected when Cs2CO3 or K2CO3 was
employed (entries 8 and 9). CsF (99.99% metal basis) gave the
best result in the screening of the bases, affording the desired
product 3a in 75% yield (entry 10). The decomposition of
sulfonamide 1a was observed in these reactions and hampered
the elevation of the product yield. Therefore, the ratio of 1a and
2a was changed to 2 to 1, resulting in a signicant increase of
the yield of 3a (95%, entry 11). The corresponding amide 4 was
also collected and identied with a yield of 114% based on 2a
owing to the visible light-mediated desulfonylation of the
starting material 1a. Visible light and base were proved to be
necessary since no product was detected when this reaction was
performed in dark or without base (entries 12 and 13).
Table 1 Optimization of the reaction conditionsa

Entry Solvent Base Yield (%)

1 CH3CN K3PO4 57
2 DMF K3PO4 Trace
3 PhCF3 K3PO4 n.r.
4 DCE K3PO4 n.r.
5 THF K3PO4 66
6 DME K3PO4 61
7 1,4-Dioxane K3PO4 70
8 1,4-Dioxane Cs2CO3 53
9 1,4-Dioxane K2CO3 57
10 1,4-Dioxane CsF 75
11b 1,4-Dioxane CsF 95 (114c)
12b,d 1,4-Dioxane CsF n.r.
13b 1,4-Dioxane — n.r.

a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), base (0.5 mmol),
solvent (2 mL), 50 W blue LED, 12 h, 40 �C, isolated yield. b 1a (0.4
mmol), 2a (0.2 mmol). c Yield of 4 in the parenthesis. d In dark.

© 2021 The Author(s). Published by the Royal Society of Chemistry
The scope of boronic acids was then explored (Table 2).
Substituents with a large p system showed high efficiency. For
example, 2- or 1-naphthylboronic acid provided 97% and 87%
yields of the desired product, respectively (3b and 3c). Methyl
group substitution had nearly no affect on this reaction (3e).
Methoxy and phenyl group-attached substrates gave lower
yields probably owing to the instability of these sulfonamides
under blue LED irradiation (3d and 3f). It should be noted that
in some cases, product 3 was inseparable from the generated
amide 4. Therefore, 1b, which showed no obvious reactivity
difference compared with 1a, was employed for the convenience
of the isolation of product 3 (3b, 3c, 3e and 3f). Heterocycles,
such as quinoline and benzofuran, are compatible in this
system (3g–3k). Aldehyde, ketone, and amide group-attached
aryl boronic acids also could afford moderate yields of the
desired products (3l–3o), although an elevated concentration by
the addition of only 1 mL solvent was necessary in several
examples. Diverse electron-withdrawing (phenyl, cyano, and
silane) and electron-donating group (methoxy, methyl, and
a Reaction conditions: 1a (0.4 mmol), 2 (0.2 mmol), CsF (0.5 mmol), 1,4-
dioxane (2 mL), 50 W blue LED, 12 h, 40 �C. b 1b was used instead of 1a.
c Only 1 mL of 1,4-dioxane was added. d K3PO4 (0.5 mmol) was used
instead of CsF.

Chem. Sci., 2021, 12, 9556–9560 | 9557



Table 4 Scope of amidesa

a Reaction conditions: 1 (0.4 mmol), 2a (0.2 mmol), CsF (0.5 mmol), 1,4-
dioxane (2 mL), 50 W blue LED, 12 h, 40 �C. n.d. ¼ not detected.

Table 5 Late-stage arylation of drugsa
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amine) substituted diaryl sulfones could be synthesized using
corresponding boronic acids (3p–3v). The substrate bearing an
ortho methyl group could afford 3x in 68% yield. However,
aliphatic boronic acids, aryl triuoroborates, or aryl boronic
acid pinacol esters could not result in any product under these
reaction conditions or with a photocatalyst.

Aer that, the scope of sulfonyl groups was investigated
(Table 3). With an electron-donating group on either para- or
meta-position, sulfonamide 1 could react smoothly with boronic
acid 2a to generate the desired product in good yield (3y–3aa).
The arylation of naphthyl and phenyl sulfonamides also pro-
ceeded efficiently to afford sulfones 3ab and 3ac. Electron-
withdrawing groups, such as uorine, ester, cyano, and
sulfone, could all be tolerated in this system very well (3ad–3ag).
However, the alkyl sulfonyl group-embedded sulfonamide
showed no reactivity.

The protecting groups on the nitrogen atom were also
examined (Table 4). Alkyl group-attached sulfonamides 1b and
1c exhibited an inferior efficiency than 1a, leading to 76% and
60% yields of 3a, respectively. Aliphatic acyl group-protected
sulfonamides 1d and 1e could provide the desired product 3a
with moderate yields. Sulfonamide 1f bearing acetyl and benzyl
units, which were usually used as the protecting groups of
nitrogen atom, could also result in 3a with 53% yield, which
largely expands the practical utilization of our protocol in
organic synthesis. However, secondary sulfonamides 1g and 1h
only afforded trace amounts of 3a. Moreover, the acyl group in 1
was proved to be necessary since the two aryl group-attached
substrate 1i gave no desired product under the standard
conditions.

To examine our strategy in the late-stage functionalization of
sulfonamides, several commercial drugs were used to proceed
acylation and methylation to provide the starting material 1.
Aer that, diverse aryl groups and heterocycles could be
introduced under the standard arylation reaction conditions
(Table 5). The 6-quinoline group could be installed into the
drugs derived from Celecoxib and Valdecoxib with 67% and
Table 3 Scope of sulfonyl groupsa

a Reaction conditions: 1 (0.4 mmol), 2a (0.2 mmol), CsF (0.5 mmol), 1,4-
dioxane (2 mL), 50 W blue LED, 12 h, 40 �C.
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61% yields, respectively (3ah and 3ai). 4-Methox-
ycarbonylphenylboronic acid could give 91% yield of the
desired product (3aj). The amide group remained intact in this
procedure, affording corresponding products 3ak and 3al
stemmed from glibenclamide precursor in 90% and 65% yields,
respectively. Free alkyl and aryl amine groups were protected by
acylation under the prefunctionalization conditions, affording
the products 3am and 3an in moderate yields.

Besides the arylation of the sulfonyl group in sulfonamides,
alkylation could also be achieved by altering the reaction
conditions. The N–S bond of sulfonamides was cleaved by
photocatalysis to deliver the sulfonyl radical. Then, the in situ
methylation of the sulnate resulted from the reduction of the
sulfonyl radical proceeded to afford methyl sulfones (Table 6).
a Reaction conditions: 1 (0.4 mmol), 2 (0.2 mmol), CsF (0.5 mmol), 1,4-
dioxane (2 mL), 50 W blue LED, 12 h, 40 �C. Isolated yields of the
arylation step. b 1 (0.2 mmol), 2 (0.4 mmol).

© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 6 Late-stage methylation of drugsa

a Reaction conditions: 1 (0.2 mmol), Hantzsch ester (0.4 mmol),
[Ir(ppy)2 (dtbbpy)]PF6 (5 mol%), K2CO3 (1.0 mmol), MeI (1.0 mmol),
DMF (2 mL), 50 W blue LED, 15 h, 40 �C.
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Substrates 1j and 1k synthesized from primary sulfonamides
furnished the methylated products with 93% and 90% yields,
respectively. Secondary sulfonamide-based substrates 1l and
1m could also be prefunctionalized and methylated with this
method. These successful transformations implied the poten-
tial for the rapid construction of a molecule library from not
only tertiary but also primary and secondary sulfonamides for
the screening of new lead compounds.

The mechanism of this reaction was investigated by
measuring the UV-Vis absorption spectra of substrates and
reaction solutions (Scheme 2). Individual solutions of sulfon-
amide 1a and boronic acid 2a in 1,4-dioxide showed
a maximum absorption at approx. 250 nm, and a very low
absorption at 460 nm (blue LED). A mixture of 1a and 2a dis-
played a slight red-shi of the absorption peak. When CsF was
added, a further red-shi and higher absorption under a blue
LED were observed. These details suggested that complex A,
which was formed with 1a, 2a, and base could be directly
photoexcited by blue LED without the presence of a photo-
catalyst (Scheme 2b). The Cs+-coordinated six-membered ring in
complex A might also explain the indispensability of the acyl
group (Table 4) in the substrate. This phenomenon of the
combination of a substrate and a reagent affording a photo-
excitable complex in situ has been reported in several
Scheme 2 Mechanism investigation. (a) UV-Vis absorption spectra. (b)
Proposed mechanism.

© 2021 The Author(s). Published by the Royal Society of Chemistry
studies.10 With blue LED irradiation, complex A gave a rise to
the amide radical B and the sulfonyl radical C.3 Aer that, the
attack of a nitrogen radical to the boron complex D resulted in
an aryl radical E (ref. 11) with the concomitant generation of
amide 4. The capture of the sulfonyl radical by E provided the
product sulfone 3. This reaction was inhibited by the addition
of the radical scavenger TEMPO (Scheme 2b), also indicating
the involvement of a radical process.
Conclusions

In summary, we have developed an efficient and practical strategy
for the late-stage arylation of sulfonamides via a visible light-
mediated N–S bond cleavage other than typical transition-
metal-catalyzed C(O)–N bond activation. It also represented the
rst catalyst-free sulfonylation of boronic acids to synthesize aryl
sulfones. The employment of diverse boronic acids and sulfon-
amides exhibited good functional group tolerance and high
efficiency. The mechanism investigation revealed that the photo-
excitable complex formed from sulfonamide, boronic acid, and
base was crucial to afford sulfonyl radicals and furnish the
desired products. This achievement inspired us to explore other
strategies for the late-stage functionalization of sulfonamides.
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