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Ginkgetin, the extract of Ginkgo biloba leaves, has been reported to exert preventive and therapeutic effects on cardiovascular
disease. However, little is known about its role in myocardial ischemia-reperfusion injury (MIRI). The present study aimed to
unveil the function of ginkgetin in cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Cell Counting Kit-8 (CCK-
8) was employed to evaluate the impact of ginkgetin on cell viability in the absence or presence of H/R. Proinflammatory
cytokines and malondialdehyde (MDA), reactive oxygen species (SOD), and lactate dehydrogenase (LDH) were determined via
corresponding kits. In addition, flow cytometry was performed to detect apoptotic level. Western blot analysis was utilized to
estimate caspase-3 and cytochrome C. Ginkgetin had no significant effect on cell viability; however, it could enhance viability of
H9C2 cells exposed to H/R. Inflammation and oxidative stress induced by H/R injury were relieved via pretreatment with
ginkgetin. Preconditioning of ginkgetin also decreased apoptotic rate and the protein levels of caspase-3, cytochrome C under
H/R condition. Furthermore, 2-HBA, an inducer of caspase-3, was used for the activation of caspase-3 signaling pathway. It was
found that induction of caspase-3 eliminated the protective effect of ginkgetin on H9C2 cells exposed to H/R. These results
indicated that ginkgetin attenuated inflammation, oxidative stress, and apoptosis. These protective roles of ginkgetin may
attribute to caspase-3 dependent pathway.

1. Introduction

Myocardial ischemia and hypoxia triggered by coronary cir-
culation alterations are considered as the cornerstones of
ischemic heart disease, which pose serious threats to human
health [1]. Ischemic heart disease is often accompanied by
myocardial ischemia-reperfusion injury (MIRI), the gener-
ated oxygen free radicals and apoptosis of which are the piv-
otal mechanisms of MIRI. Researches have illustrated that
the apoptosis of myocardial cells induced by MIRI is closely
associated with oxygen free radicals, calcium overload, mito-
chondrial damage, and heat shock protein [2–4], which is an
important way to affect cardiac function [5].

MIRI is still a major clinical challenge; hence, many
scholars are committed to discovering effective therapies to
alleviate MIRI [6]. Numerous studies have found that phar-
macological preconditioning is an effective approach for
myocardial protection, with broad research prospects, which
can enhance the body’s ability to tolerate ischemia reperfu-
sion, shrink the area of myocardial injury as well as improve
prognosis [7–9].

The extract of Ginkgo biloba leaves has been widely used
for the prevention and treatment of cardiovascular disease
[10]. Ginkgetin, a biflavonoid from Ginkgo biloba leaves,
manifests strong neuroprotection for SH-SY5Y and PC12
cells against cytotoxic insults induced by oxidative stress or
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amyloid beta [11]. It can also mitigate autophagy and apo-
ptosis caused by cerebral ischemia/reperfusion (I/R) through
inhibiting the NF-κB/p53 signaling pathway [12]. Ginkgetin
protects neurons against I/R-induced inflammation in rats
via inhibiting the TLR4/NF-κB pathway [13]. Moreover,
I/R-induced apoptosis could be initiated by the release of
caspase-dependent cytochrome C in cardiomyocyte injury
model [14]. However, the role of ginkgetin in MIRI is rarely
studied. In this work, we established hypoxia/reoxygenation
(H/R) injury model to mimic MIRI and investigated the
effects of ginkgetin on H/R injury from the perspectives of
oxidative stress and apoptosis, among which caspases were
further explored, intending to provide experimental founda-
tion for application of ginkgetin.

2. Materials and Methods

2.1. Reagents and Antibodies. Ginkgetin (CAS No.: 481-46-9)
and 2-hydroxy-benzylidene (2-HBA; CAS No.: 131359-24-5)
were purchased from MedChemExpress (Shanghai, China).
MTT was obtained from Sigma-Aldrich (St. Louis, MO,
USA). Radio immunoprecipitation assay (RIPA) lysis buffer
(P0013K) and BCA Protein Assay Kit (P0011) were obtained
Beyotime Institute of Biotechnology (Shanghai, China). The
anti-Bcl-2 (sc-7382) and anti-Bax (sc-7480) antibodies were
purchased from Santa Cruz Biotechnology (CA, USA). The
anti-Nox 2 (19013-1-AP), anti-Nox 4 (14347-1-AP), anti-
GAPDH (10494-1-AP), and anti-cytochrome C (10993-1-
AP) antibodies were obtained from Proteintech Group (Chi-
cago, IL, USA). The anti-NF-κB (ab194726), anti-pro-cas-
pase-9 (ab184786), anti-caspase-9 (ab52298), anti-caspase-3
(ab13847), and anti-pro-caspase-3 (ab184787) antibodies
were purchased from Abcam (Cambridge, UK). HRP-
conjugated Affinipure Goat Anti-Mouse IgG (SA00001-1)
and HRP-conjugated Affinipure Goat Anti-Rabbit IgG
(SA00001-2) were obtained from Proteintech Group (Chi-
cago, IL, USA).

2.2. Cell Culture and H/R Model. Rat H9C2 cells were pur-
chased from Cell Bank of Chinese Academy of Sciences
(Shanghai, China) and cultured in Dulbecco’s modified
Eagle’s medium (Invitrogen, Carlsbad, CA) containing 10%
fetal bovine serum (Hyclone, UT, USA) under a humidified
atmosphere of 95% air and 5% CO2 at 37°C. Cells were
treated with ginkgetin (1, 5, and 10μM) or vehicle (DMSO)
at 70-80% confluence for 4 h prior to H/R. To establish the
H/R model, H9C2 cells were maintained in serum and
glucose-free DMEM under an atmosphere of 95% N2 and
5% CO2 at 37

°C for 6 h followed by reoxygenation for 10 h
with fresh culture medium (95% air and 5% CO2).

2.3. Cell Viability Assay. H9C2 cells were planted into a 6-
well plate at a density of 1 × 104 cells/well. After correspond-
ing treatments, cells were incubated with 20μl MTT
(0.5mg/ml) for 4 h at 37°C in the dark. Next, 200μl DMSO
was added into each well to dissolve the formazan crystals.
The optical density (OD) was recorded on a BioTek micro-
plate reader (BioTek, Richmond, VA, USA) at 490nm. The

results were represented as the relative percentage of the con-
trol group.

2.4. Measurements of LDH Activity, SOD Activity and MDA
Content. The activities of LDH and SOD as well as the con-
tent of MDA were evaluated according to the manufacturer’s
protocol (Solarbio Science & Technology Co., Ltd. Beijing,
China). In brief, medium was discarded, cells were collected
into tubes, extraction reagent was added at a ratio of 1ml
reagent/5 × 107 cells, and then, the mixture was centrifuged
(8000 g) for 10min at 4°C. For detection of MDA content,
with addition of other reagents, the mixture was stored at
100°C for 60min and centrifuged at 10000 g for 10min after
cooling. The absorbance value of each well was measured at
450 nm, 532nm, and 600nm. For LDH activity, correspond-
ing reagents of LDH assay kit were supplemented, after
which the mixture was incorporated thoroughly, placed at
room temperature for 3min, and then, the absorbance value
was measured at 450nm. To detect SOD activity, the mixture
was placed in a water bath at 37°C for 30min for measuring
the absorbance value at 560nm.

2.5. Measurements of Inflammation Cytokines and
Cytochrome C. TNF-α, IL-6, IL-1β, HMGB1, and cyto-
chrome C were estimated using Assay Kits (Jiancheng Bioen-
gineering Institute, Nanjing, China) according to the
manufacturer’s protocol, respectively. Triplicate wells were
set up for each group. Results were assessed from three inde-
pendent experiments.

2.6. Western Blot Analysis. H9C2 cells were washed with PBS
three times. After PBS was removed completely, RIPA lysis
buffer was added, and then, cells were scraped and centri-
fuged at 10,000 g at 4°C for 15min. Following the collection
of the supernatant, protein concentrations were determined
by using the BCA Protein Assay Kit. Proteins were separated
by 10% SDS-PAGE gels and subsequently transferred onto
the PVDF membranes (Millipore, MA, USA). The mem-
branes were blocked with 5% nonfat milk at room tempera-
ture for 2 h, followed by incubation with the primary
antibodies overnight at 4°C. Subsequently, membranes were
conjugated with secondary antibodies at room temperature
for 1 h. Protein quantity was analyzed using the Image J soft-
ware (National Institutes of Health, Bethesda, MD, USA).

2.7. Flow Cytometry Analysis. The flow cytometry analysis
was employed to detect apoptotic cells. H9C2 cells were pre-
treated with ginkgetin or 2-HBA and cultured in the absence
or presence of H/R challenge. Apoptotic cells were examined
by Annexin V-FITC Apoptosis Detection Kit (Sigma-
Aldrich, St. Louis, MO, USA) according to the manufac-
turer’s instruction. Briefly, after washing with PBS, cells were
collected and incubated with binding buffer at 4°C for 10min
at room temperature in the dark. Next, cells were analyzed by
flow cytometry immediately. Based on the flow cytometry
scatter diagrams, Q1 quadrant represented necrotic cells
and Q4 quadrant represented living cells. The total apoptosis
rate was calculated as the sum of the Q2 (late apoptotic cells)
and Q3 quadrant (early apoptotic cells).
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2.8. Statistical Analysis. Data were presented as the mean ±
SD. Each experiment was repeated three times. One-way
ANOVA was performed for multiple-group analysis, and
Student’s t-test was exploited to compare differences between
two groups by GraphPad Prism 6.0. A value of P < 0:05 was
considered statistically significant.

3. Results

3.1. Ginkgetin Relieves Inflammation of H9C2 Cells Triggered
by H/R. In order to assess the impact of ginkgetin on H9C2

cell viability, cells were pretreated with different concentra-
tions of ginkgetin. The result of CCK-8 assay manifested that
ginkgetin had no effect on cell viability at the dose of 1, 5, and
10μM (Figure 1(a)). Then, we estimated viability of H9C2
cells exposed to H/R; it was observed that H/R apparently
decreased cell viability; however, pretreating cells with gink-
getin could elevate viability in a dose-dependent manner
(Figure 1(b)). Hence, 10μM ginkgetin was applied in
follow-up experiments. In addition, inflammatory cytokines
of H9C2 cells exposed to H/R were significantly increased,
while ginkgetin preconditioning greatly ameliorated
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Figure 1: Ginkgetin relieves inflammation triggered by H/R in H9C2 cells. (a) CCK-8 assay was employed to estimate viability of H9C2 cells
pretreated with ginkgetin. (b) H9C2 cells were pretreated with ginkgetin and exposed to H/R. Cell viability was estimated via CCK-8. C-F,
TNF-α, IL-6, IL-1β, and HMGB1 were determined via assay kits. (g) NF-κB was detected via western blot analysis. ∗∗∗P < 0:001 versus
control group; ##P < 0:01, ###P < 0:001 versus vehicle group.
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inflammation through reducing the secretion of TNF-α, IL-6,
IL-1β, and HMGB1 (Figure 1(c)–1(f)). NF-κB involves in the
response of cells to external stimuli, playing a key role in cel-
lular inflammatory response. H/R drastically promoted the
protein level of NF-κB in H9C2 cells, which was inhibited
under pretreatment with ginkgetin (Figure 1(g)). These
results illustrated that ginkgetin preconditioning effectively
ameliorated H/R-induced inflammation.

3.2. Ginkgetin Alleviates H/R-Induced Oxidative Stress and
Apoptosis of H9C2 Cells. Oxidative stress and apoptosis of
H9C2 cells were examined in subsequent experiments. It
was identified that MDA content in H9C2 cells subjected to
H/R was markedly upregulated but reduced markedly when
cells were pretreated with ginkgetin (Figure 2(a)). SOD activ-
ity was downregulated in H9C2 cells under H/R condition;
however, ginkgetin partly restored SOD activity
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Figure 2: Ginkgetin alleviates H/R-induced oxidative stress and apoptosis of H9C2 cells. (a–c) MDA, SOD, and LDH were detected using
assay kits. (d) Western blot analysis was conducted to assess the protein levels of Nox2 and Nox4. (e, f) Flow cytometry analysis was
employed to screen apoptotic rate. (g) Bcl-2, Bax, caspase-9, and pro-caspase-9 were estimated by western blot analysis. ∗∗∗P < 0:001
versus control group; #P < 0:05, ##P < 0:01, ###P < 0:001versus vehicle group.
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Figure 3: Ginkgetin attenuates inflammation induced by H/R through caspase-3 dependent pathway. (a) Cytochrome C, caspase-3, and pro-
caspase-3 were estimated by western blot analysis. (b) Cytochrome C was evaluated using an assay kit. (c) H9C2 cells were treated with 0.6 μM
2-HBA, and then, cytochrome C, caspase-3, and pro-caspase-3 were estimated via western blot analysis. (d) Assay kit was employed to
determine the level of cytochrome C. (e–h) TNF-α, IL-6, IL-1β, and HMGB1 were determined using assay kits. ∗∗∗P < 0:001 versus
control group; ##P < 0:01, ###P < 0:001versus vehicle group; △P < 0:05, △△P < 0:01, △△△P < 0:001 versus ginkgetin group.
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(Figure 2(b)). Ginkgetin also decreased H/R-triggered LDH
release of H9C2 cells (Figure 2(c)). Nox2 and Nox4 belong
to NADPH oxidase; the main function of them is to produce
ROS [15, 16]. Nox2 and Nox4 were both enhanced after cells
challenged with H/R, whereas ginkgetin preconditioning
limited the elevation of Nox2 and Nox4 (Figure 2(d)). Fur-
thermore, we conducted flow cytometry to evaluate apoptotic
rate. Extensive apoptotic cells were observed after cells were
subjected to H/R, whereas ginkgetin successfully reduced
the number of apoptotic cells (Figure 2(e)). Determinations
of apoptosis-related proteins Bcl-2, Bax, and caspase-9 vali-
dated the antiapoptotic effect of ginkgetin (Figure 2(f)). Col-
lectively, ginkgetin could alleviate H/R-induced oxidative
stress and apoptosis.

3.3. Ginkgetin Attenuates Inflammation Induced by H/R
through Caspase-3 Dependent Pathway. The Bcl-2 protein
family determines the commitment of cells to apoptosis
[17]. The mitochondrial apoptotic pathway is largely medi-
ated through Bcl-2 family, which inhibits the mitochondrial
release of cytochrome C [18]. Cytochrome C leakage can
activate caspase-9, which in turn activates caspase-3 [19].
Notably, ginkgetin had no obvious influence on the expres-
sion of cytochrome C or caspase-3 in H9C2 cells under basal
condition, while it significantly decreased levels of cyto-
chrome C and caspase-3 in H9C2 cells exposed to H/R
(Figure 3(a)). A similar result was testified via cytochrome
C immunoassay kit (Figure 3(b)). In order to investigate
whether anti-inflammatory effect of ginkgetin depends on
caspase-3, 2-HBA, an activator of caspase-3, was exploited
for gain-of-function studies. 2-HBA significantly promoted
the expression of cytochrome C and caspase-3 (Figures 3(c)
and 3(d)). Subsequently, TNF-α, IL-6, IL-1β, and HMGB1
were assessed again, which found that 2-HBA could partially
abrogated the anti-inflammatory effect of ginkgetin
(Figures 3(e)–3(h)). The detection of NF-κB also validated
the outcome (Figure 3(i)). Taken together, these results indi-

cated that ginkgetin relieved inflammation triggered by H/R
may, which depended on caspase-3.

3.4. Ginkgetin Ameliorates H/R-Triggered Oxidative Stress
and Apoptosis via Caspase-3 Dependent Pathway. To further
explore the oxidative stress and apoptosis involved in
ginkgetin-mediated caspase-3 pathway, relevant experiments
were performed. Cotreatment of 2-HBA and ginkgetin
enhanced MDA content and LDH activity in H9C2 cells,
contrasted by ginkgetin preconditioning alone under H/R
condition, whereas SOD exhibited an opposite trend with
MDA and LDH (Figures 4(a)–4(c)). The expression of
Nox2 and Nox4 in different groups also demonstrated the
antioxidative capacity of ginkgetin was counteracted by 2-
HBA (Figure 4(d)). Furthermore, a number of apoptotic cells
detected via flow cytometry in cotreatment group were more
than that in ginkgetin group (Figure 4(e)). Finally, Bcl-2, Bax,
and caspase-9 were estimated using western blot analysis;
results of which showed that 2-HBA reversed the antiapopto-
tic effect of ginkgetin (Figure 4(f)). Overall, these results dis-
played that 2-HBA could counteract the functions of
ginkgetin towards oxidative stress and apoptosis under H/R
condition.

4. Discussion

The basic physiological process of ischemic heart disease is
myocardial ischemia. The main strategy in the clinical ther-
apy of ischemic heart disease is restoring the blood perfusion
to ischemic myocardium as soon as possible [20, 21]. How-
ever, blood reperfusion often leads to more severe injury to
ischemic myocardium, also called MIRI [22]. It is generally
believed that the mechanism of MIRI includes the outbreak
of free radicals, mitochondrial damage, cell apoptosis, and
inflammation, and that these injury factors are interrelated
and often trigger or indirectly aggravate another injury
factor.
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Figure 4: Ginkgetin ameliorates H/R-triggered oxidative stress and apoptosis via caspase-3 dependent pathway. (a)Western blot analysis was
conducted to assess the protein expression of NF-κB. (b–d) MDA, SOD, and LDHwere detected using assay kits. (e) Levels of Nox2 and Nox4
were detected via western blot analysis. (f, g) Flow cytometry analysis was employed to screen apoptotic rate. (h) Bcl-2, Bax, caspase-9, and
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Pharmacological preconditioning is one of the important
approaches to relieve MIRI [23]. Previous researches have
elucidated the anti-inflammatory and antioxidative proper-
ties of ginkgetin [24–27]. In addition, ginkgetin could atten-
uate cerebral I/R-induced injury [12, 13, 28], suggesting that
ginkgetin can be a promising treatment for IRI.

In this study, H9C2 cells, subclone of the original clonal
cell line derived from embryonic rat heart tissue [29], may
not be representative of effects potentially seen in the intact
myocardium; however, they are widely used for the establish-
ment of H/R injury cell model to mimic MIRI [30, 31]. In this
work, ginkgetin preconditioning hardly affected H9C2 cell
viability; however, it enhanced the viability of cells under
H/R condition. Existing reports have shown that I/R results
in significant oxidative stress, further promoting cardiomyo-
cytes death [32–34]. Herein, H/R also altered inflammatory
factors and oxidative stress of H9C2 cells, which were allevi-
ated effectively by pretreatment of ginkgetin. It is well-known
that reperfusion after myocardial ischemia causes cardio-
myocytes apoptosis [35, 36]. We analyzed apoptotic rate of
H9C2 cells via flow cytometry and unmasked that ginkgetin
could inhibit apoptosis of H/R-treated H9C2 cells. Moreover,
ginkgetin preconditioning reduced the expression of caspase-
3 and cytochrome C. To verify whether the myocardial pro-
tective effect of ginkgetin depended on caspase-3 signaling
pathway, 2-HBA, an inducer of caspase-3, was employed. It
was found that 2-HBA eliminated significantly the anti-
inflammatory, antioxidative, and antiapoptotic effects of
ginkgetin on H/R-injured H9C2 cells, implying that ginkge-
tin protected H9C2 cells against H/R injury through
caspase-3 signaling pathway.

The signal transduction of apoptosis is divided into two
basic pathways, exogenous pathway that is mediated by death
receptors such as TNF-α, TRAIL, and FAS-L [37, 38], and
another endogenous pathway regulated by the increased per-
meability of mitochondrial outer membrane [39]. This study
focused on endogenous apoptosis pathway through investi-
gating caspase-9, caspase-3, and cytochrome C. Members of
the Bcl-2 family are located in mitochondria. They control
mitochondrial permeability, cytochrome C release, and initi-
ator caspase-9 activation, subsequently activating executor
caspase-3 and exerting proapoptosis function [40, 41]. How-
ever, the regulatory mechanism of cytochrome C release and
mitochondrial membrane permeability during apoptosis has
not been fully elucidated. Future work will pay close attention
to the regulatory signal of cytochrome C release through tes-
tifying the activities of caspases and mitochondrial mem-
brane potential. In summary, our present study manifested
that ginkgetin alleviated H/R-triggered inflammation, oxida-
tive stress, and apoptosis of H9C2 cells via caspase-3 signal
pathway.
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