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Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in

the development of Alzheimer’s disease (AD) and Parkinson’s disease (PD), yet the clinical

failures of the recent decades indicate that there are further pathological mechanisms at

work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay

of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and

mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral

insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of

course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive

and motor impediments. Interestingly, the acylated form of the hormone ghrelin has

shown the potential to ameliorate the latter pathologic changes, although some studies

indicate a few complications that need to be considered in the long-term administration

of the hormone. As such, this review will illustrate the wide-ranging neuroprotective

properties of acylated ghrelin and critically evaluate the hormone’s therapeutic benefits

for the treatment of AD and PD.

Keywords: growth hormone secretagogue receptor 1 alpha, mitochondrial dysfunction, inflammation, autophagy,

insulin resistance, dopamine, neurodegeneration, ghrelin

INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are multi-faceted neurodegenerative
diseases that reach far beyond the accumulation and aggregation of Amyloid Beta (Aß), Tau
and Alpha (α)-synuclein. Indeed, the last decades of research have indicated that cognitive
decline is driven by the interplay of various pathologic processes, involving insulin-associated
bioenergetic impairments and the reduced cerebral metabolization of glucose (Neth and Craft,
2017), mitochondrial defects (Bose and Beal, 2016; Onyango et al., 2016), vascular abnormalities,
reduced blood flow, blood brain barrier (BBB) damage (Kisler et al., 2017; Sweeney et al., 2018),
dysfunctional autophagy and mitophagy (Kerr et al., 2017; Fujikake et al., 2018; Liu J. et al.,
2019), oxidative stress (Cenini et al., 2019), chronic systemic inflammation, pathological immune
cell infiltration into the brain (Amor and Woodroofe, 2014; Anderson et al., 2014; Stephenson
et al., 2018), inflammasome activation (Ising et al., 2019; Stancu et al., 2019), demyelination
(Wang S. S. et al., 2018), the degeneration of axons (Kandan et al., 2013), the development
of type 2 diabetes mellitus (T2DM), the cerebral desensitization of growth and neurotrophic
factors, in particular insulin (Gault and Holscher, 2018; Holscher, 2019), as well as alterations
of the dopaminergic system, including the extensive atrophy of substantia nigra pars compacta
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(SNpc)-located dopaminergic neurons and dopamine depletion
in the striatum in PD (Martorana and Koch, 2014; Poewe et al.,
2017).

Especially in the case of AD, countless Aβ and a handful of
Tau-directed therapies have been tested in clinical trials, yet none
of them, including a very recent phase II trial with the anti-Tau
antibody semorinemab, have come to fruition. Such discouraging
findings have come to question the amyloid hypothesis, as
reflected by the notably diminished numbers of Aβ-based
and elevated quantities of neuroprotection-focussed and anti-
inflammatory approaches in the clinic in 2019. Moreover, while
Aβ may be the undisputed culprit in familial AD patients
with respective genetic mutations (<1%), sporadic AD patients
(>99%) may endure several other risk factors, such as secondary
inflammatory conditions, head injuries, the APOE4 allele,
T2DM/insulin resistance and brain glucose hypometabolism, the
presence of metabolic and vascular syndrome and presumably
many more. This is paralleled in the varying clinical profile, as
sporadic AD patients may exhibit high or low Aβ1−42 burden,
with or without the prevalence of Tau of Lewy body biomarkers,
in the cerebrospinal fluid. This suggests that multiple pathologic,
but also protective, factors cooperate in the progression of AD
and that that a differential treatment regimen, which commonly
necessitates the use of multiple drugs for chronically advancing
disorders, might be necessary for individual patients. Therefore,
monotherapies are presumably an ineffective way of approaching
AD and PD and are more likely to fail, supporting the concept
that multi-targeted therapies are more profitable (Iqbal and
Grundke-Iqbal, 2010; Adams, 2020; Huang et al., 2020).

THE GHRELIN SYSTEM AND ITS
PHYSIOLOGICAL ROLE

Belonging to a group of physiologically secreted hormones,
ghrelin serves numerous important functions. Ghrelin is
predominantly produced by gastric X/A-like cells that are located
in the oxyntic gland of the stomach (Date et al., 2000), although
a lower degree of the hormone is also expressed in various
peripheral tissues, in lymphocytes and in the CNS (Ferrini et al.,
2009). In a serious of catalytic steps, the precursor preproghrelin
is expressed, cleaved to proghrelin and transported to the Golgi
body, where it may be acylated by the linkage of an O-linked
octanoyl lipid group (C:8.0) at Ser3 via ghrelin O-acyltransferase
(GOAT). Ultimately, following translocation to the endoplasmic
reticulum (ER), proghrelin is further processed by prohormone
convertase 1/3 to generate the 28 amino acid-long anorexigenic
hormone ghrelin. Mature ghrelin is stored within secretory
granules of X/A-like cells and released into the bloodstream
upon fasting to stimulate appetite (Cummings et al., 2001; Yanagi
et al., 2018). Conversely, increased circulatory levels of glucose
and long-chain fatty acids (LCFA) following meal intake as
well as the postprandial release of insulin block the secretion
of ghrelin (Gagnon and Anini, 2012; Lu et al., 2012; Sakata
et al., 2012). Depending on the presence or absence of the
acyl group at Ser3, mature ghrelin can be further distinguished
into its active form, acylated ghrelin (AG), and desacylated

ghrelin (DAG) (Hosoda et al., 2000; Yanagi et al., 2018). The
acylation state of ghrelin is transient, however, as liberated AG
is continually deacetylated by acyl-protein thioesterase 1 and
butyrylcholinesterase in the blood stream (De Vriese et al., 2004;
Satou et al., 2010; Schopfer et al., 2015). Through the circulatory
system, AG is able to reach and cross the blood brain barrier
(BBB) in either direction through the recognition of the lipophilic
acyl/octanyloid side chain and saturable systems, whereas DAG
obtains brain entry through non-saturable diffusion through
the BBB (Banks et al., 2002; Diano et al., 2006). Furthermore,
although still unidentified, the liberation of fasting-associated
plasma factors appear to further stimulate the BBB translocation
of AG (Banks et al., 2008). Notably, the presence of GOAT
has been detected in human serum, the hippocampus and the
temporal gyrus (Gahete et al., 2010; Goebel-Stengel et al., 2013;
Murtuza and Isokawa, 2018). It has been verified that DAG
can be locally modified by GOAT, which presumably allows
ghrelin to exert centralized effects in selected tissues and brain
areas, such as the hippocampus (Murtuza and Isokawa, 2018).
Ultimately, AG stimulates intracellular downstream signaling
through its cognate G-protein coupled receptor (GPCR), known
as the growth hormone secretagogue receptor type 1α (GHS-
R1α). Importantly, DAG is incapable of interacting with GHS-
R1α, yet the existence of distinct DAG-binding receptors has been
postulated (Howard et al., 1996; Yanagi et al., 2018).

GHS-R1α is widely transcribed in multiple key areas of the
brain, such as the hippocampus, hypothalamus, cortex, ventral
tegmental area (VTA), SN, spinal cord, dorsal and median raphe
nuclei, sympathetic preganglionic nerves and endothelial cells
of the cerebral vasculature, yet it is also expressed by various
immune cells and in peripheral tissue (Guan et al., 1997; Hosoda
et al., 2000; Gnanapavan et al., 2002; Jiang et al., 2006; Pan
et al., 2006; Ferens et al., 2010). Notably, only GHS-R1α, but
not its truncated and non-functional splicing variant GHS-R1ß,
is capable of interacting with AG. In contrast, a dominant-
negative role for GHS-R1ß has been suggested, in which
heterodimerization of GHS-R1ß with GHS-R1α encourages
receptor endocytosis to obstruct intracellular signaling (Leung
et al., 2007).

As a major metabolic hormone, AG elevates the secretion
of growth hormone (GH) by the pituitary gland, reduces
insulin, yet increases glucagon secretion by pancreatic cells
and promotes the hepatic release of glucose into the blood,
thus maintaining steady plasma glucose levels during fasting
(Mani et al., 2019). Furthermore, AG induces the expression
of the orexigenic peptides neuropeptide Y (NPY) and agouti-
related protein (AgRP) in the hypothalamus to stimulate
appetite, as extensively described in Yanagi et al. (2018). Other
physiological processes that are commanded by ghrelin include
the regulation of the gastrointestinal motility and acid secretion,
cardiac function, osteoblast proliferation, bone maturation and
muscular/myoblast outgrowth, the formation of long-term
memory, the control of behaviors such as spontaneity, anxiety,
food/reward behavior as well as the navigation of the circadian
rhythm (Abdalla, 2015; Shi et al., 2017; Yanagi et al., 2018).

Following receptor stimulation in the brain, AG exerts a broad
range of neuroprotective effects and has, thus, emerged as a
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potential candidate for the treatment of AD and PD. Despite
the selectivity of GHS-R1α for AG, DAG has demonstrated its
own neuromodulatory effects, although the underlying signaling
mechanisms remain a mystery and appear to be limited to the
periphery (Yanagi et al., 2018). For the sake of this review and
in association to AD and PD, the focus will be placed on the
multifarious neuroprotective actions of AG.

MITOCHONDRIA AND THE NEURONAL
ENERGY METABOLISM

Impairments in the Mitochondrial Function
and Adenosine Triphosphate Production
Are Key Events in Alzheimer’s and
Parkinson’s Disease’
Generally, it has been well-established that mitochondrial
dysfunction, originating from genetic mutations of key
mitochondrial proteins, environmental toxins, excessive
oxidative stress, or aging, is a key driver of PD. Similarly,
oxidative stress and pathological Aß, which accumulates
in mitochondria, depolarizes the mitochondrial membrane
potential, inhibits electron transport chain (ETC) enzymes and
provokes the production of reactive oxygen species (ROS),
trigger mitochondrial and, thus, bioenergetic defects in AD. The
mitochondrial pathology in AD and PD is further exacerbated
by impaired mitochondrial biogenesis, a mechanism that leads
to the generation of additional mitochondria to meet greater
energetic demands in cells, and mitophagy, which is a form
of autophagy that mediates the degradation of malfunctional,
ROS-overproducing mitochondria (covered in chapter 4) (Bose
and Beal, 2016; Onyango et al., 2016; Fang et al., 2019; Liu J.
et al., 2019).

Importantly, it must be pointed out that all cellular
functions necessitate energy and, therefore, the availability of
two bioenergetic substrates: ATP and guanosine-5’-triphosphate,
which may be converted into ATP. The latter is generated in
mitochondria through the ETC. In this oxygen-requiring process,
electrons (H+) are drawn from the reducing agents NADH
and FADH2 and funneled through the inner mitochondrial
membrane to the outer compartment of the mitochondrion via
complex I, III, and IV. This establishes an electrochemical proton
gradient (also known as protonmotive force1p) and, thus, elicits
the influx of electrons from the outer to the inner compartment
through complex 5 (ATP synthase), which subsequently converts
ADP to ATP. To recharge NAD+ and FAD+ and to resume
ATP generation, the brain relies on glucose as major energy
substrate as well as its metabolization in the tricarboxylic acid
cycle (TCA) as main bioenergetic pathway (Penicaud et al., 2002;
Arun et al., 2016; Martinez-Reyes and Chandel, 2020). Generally,
functional deficits in complex 1 are associated with PD and
defects in complex IV are implicated in AD (Cottrell et al.,
2002; Arun et al., 2016). Given the pivotal role of mitochondrial
dysfunction in PD, toxins that are selectively taken up by
dopaminergic neurons and impair mitochondrial complex 1,
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
kill SN-located, dopaminergic neurons and induce Parkinsonism

in humans and rodents (see Figure 2) (Langston et al., 1983;
Meredith and Rademacher, 2011).

As reviewed in Muddapu et al. (2020), the neuronal
populations in the hippocampal CA1 region as well as the SN
are more vulnerable toward metabolic deregulation, which
may be linked to the progression of AD (CA1) and PD (SN).
Generally, the oxidative phosphorylation of glucose via the
TCA poses the primary energy source for neurons and the
cellular stress associated with aging and neurodegenerative
diseases, for example amyloid aggregation or the prevalence
of genetic risk factors, provoke greater bioenergetic demands.
As a direct consequence of these higher energetic needs, the
neuronal mitochondria are forced to generate excessive amounts
of ATP at the cost of the elevated co-production of ROS. The
increased oxidative burden, on the other hand, may subsequently
spark glial dysfunction and the excessive release of glutamate,
NMDA/AMPA receptor activation and aberrant intraneuronal
Ca2+-amassment, neuroinflammation and astroglial scar
formation, inflammation-driven permeabilization of the BBB
and pro-inflammatory cytokine-driven insulin resistance. It
is incompletely understood whether mitochondrial defects
elicit insulin resistance or vice versa, however. It has also been
hypothesized that both factors might negatively influence each
other (Neth and Craft, 2017). In any way, the desensitization
of insulin in the CNS is linked to reduced cerebral glucose
uptake, the diminished liberation of lactate, another pivotal
energy source for neurons, by astrocytes and chronic glucose
hypometabolism (Muddapu et al., 2020), as evident in the brains
of both AD (Lyingtunell et al., 1981; Hoyer et al., 1988; Ogawa
et al., 1996; Drzezga et al., 2003; Mosconi et al., 2008) and PD
patients (Huang et al., 2008; Hosokai et al., 2009; Liepelt et al.,
2009; Borghammer et al., 2010; Berti et al., 2012). It has been
postulated that the development of cerebral insulin resistance, in
the long-term, enforces the utility of energy sources other than
glucose and the TCA cycle. Most notably, this bioenergetic shift
is thought to preferentially promote the β-oxidation of ketone
bodies (lipids) to produce ATP in the brain (see Neth and Craft,
2017).

More implicit, mitochondrial dysfunction is connected to
the impairment of key effectors. As indicated in an AD animal
model, APPswe/PS1dE9 mice displayed reduced hippocampal
levels of the catalytic α2-subunit of 5’ adenosinemonophosphate-
activated protein kinase (AMPK) (Pedros et al., 2014), which
is a master effector that upregulates ATP synthesis, curbs
ATP utility, maintains the mitochondrial homeostasis and
navigates mitophagy when the cellular energy stores are depleted
(Herzig and Shaw, 2018). Additionally, the transcription of
the biogenesis-mediators PGC1α and mitochondrial nuclear
respiratory factor (NRF)1/2 were reduced in the hippocampi
of the APPswe/PS1dE9 mice (Pedros et al., 2014). Strikingly
diminished levels of the mitochondrial markers PGC1α,
succinate dehydrogenase complex A (which participates in the
TCA cycle) and translocase of outer mitochondrial membrane 20
have also been observed in the post-mortem-derived SNpc of PD
patients. In the context of PD, as further confirmed by genetic
deletion in rodents, PGC1α is crucial for the survival of SNpc-
located dopaminergic neurons and, thus, dopamine production
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(Jiang et al., 2016). As such, the function of variousmitochondrial
master modulators, including AMPK and PGC1α, is disturbed
in AD and PD. For more information about AG’s influence
on insulin resistance and glucose hypometabolism in the CNS
(chapter 7) as well as the dopaminergic pathology (chapter 8),
please see the respective chapters.

Acylated Ghrelin Ameliorates Oxidative
Stress and Enhances the Mitochondrial
Function, Adenosine Triphosphate
Generation and Biogenesis
In the context of mitochondrial dysfunction, AG strengthens the
mitochondrial vigor in multiple ways. Notably, as depicted in
Figure 1, AG drives mitoprotection and autophagy by activating
shared key effectors. While mitochondria-based investigations
are limited in the field of AD, it was demonstrated that
AG guards primary rat and N42 hypothalamic neurons from
Aß oligomer-provoked depolarization of the mitochondrial
membrane (Martins et al., 2013; Gomes et al., 2014). Further
mechanistic insight can be derived from studies in PD models.
In the 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP)
mouse model of PD, AG protected from neuronal death in
the SNpc, as displayed by the normalized B-cell lymphoma
2 (Bcl-2)/Bax ratio and lowered caspase-3 activity, stimulated
the neuronal activity, elevated the production of multiple
LCFAs, for instance palmitic acyl CoA (C16:0), and improved
the mitochondrial respiration by activating the ROS-buffering,
mitochondrial uncoupling protein 2 (UCP2).

Furthermore, AG promoted the mitochondrial biogenesis,
resulting in increased numbers of nuclear respiratory factor
(NRF)1-positive mitochondria (Jiang et al., 2008; Andrews et al.,
2009a; Donadelli et al., 2014). Based on previous propositions,
AG may support the execution of the mitochondrial ß-oxidation
and evoke the generation of LCFAs as a fuel source for ATP
production upon mild negative energy balance in the CNS
(Andrews et al., 2009a; Horvath et al., 2009). This idea must be
addresses with care, however, since AG differentially navigates
lipid metabolism in a tissue-specific manner. In the periphery,
for example, independent of the hormone’s orexigenic effects,
AG stimulated the expression of lipogenic enzymes (fatty acid
synthase (FAS), lipoprotein lipase and more) and lessened the
transcription of carnitine palmitoyltransferase Ia (CPT1a), a rate-
limiting effector necessary to induce fatty acid oxidation, in white
adipose tissue to promote fat storage (Theander-Carrillo et al.,
2006; Perez-Tilve et al., 2011). In stark contrast, AG enhanced
fatty acid oxidation and lipolysis in mouse skeletal muscles
(Kraft et al., 2019). In the brain, it was discovered that AG
selectively diminishes the expression of the lipogenesis-affiliated
FAS in the VMH, which appears to be a site-specific process to
promote ß-oxidation and induce the expression of anorexigenic
NPY. In the other hand, AG does not modulate FAS in other
brain areas, including the amygdala, striatum, hippocampus,
several cortical regions and others (Lopez et al., 2008; Yanagi
et al., 2018). Moreover, under physiological conditions, AG was
shown to discourage, rather than elevate, fatty acid oxidation
in the hypothalamic ARC and in the cortex (Lage et al., 2010;

Gao et al., 2013; Mir et al., 2018). As such, at least under
physiological conditions, AG presumably does not induce β-
oxidation in brain areas other than the VMH. On the other
hand, it must be noted that the prevalence of cerebral insulin
resistance during AD leads to defects in the metabolism of
glucose, which is believed to provoke the use of β-oxidation and
lipids (ketones) as primary energy sources for neurons (Neth
and Craft, 2017). Thus, it is plausible that AG may assist the
compensatory execution of ß-oxidation in neurons that may
occur during more advanced stages of AD and, possibly, PD. As a
word of caution, while the β-oxidation of lipids has been proven
in astrocytes, its utility by neurons is yet to be verified (Tracey
et al., 2018). In any case, given that neurons enter an initial
hyperglycolytic state and overproduce ATP plus, inevitably, ROS
in their mitochondria to cope with the additional cellular stress in
AD and, presumably also, PD (Neth and Craft, 2017; Muddapu
et al., 2020), AG may alleviate glucose hypermetabolism and
the associated oxidative stress. By activating the ROS-ablating
UCP2 and driving mitochondrial biogenesis, AG enhances the
functionality and bioenergetic efficiency of mitochondria during
AD and PD, as further outlined below.

Of note, mutational studies in UCP2-modified and MPTP-
treated mice revealed that UCP2 is a joint key mediator in the
protection of SN-VTA dopaminergic neurons from apoptosis,
the decrease of ROS as well as the increase of mitochondrial
biogenesis (Andrews et al., 2005; Conti et al., 2005). Cell culture
studies have implied that AG increases the steady state levels of
UCP2 by preventing its ubiquitination and degradation, resulting
in the cellular accumulation of this ROS-quenching protein
(Zhang, 2017). Mechanistically, AG induces UCP2 by inhibiting
acetyl-CoA carboxylase (ACC), leading to the intracellular
depletion of malonyl-CoA stores and, thus, the activation of the
LCFA-transporter CPT1a in the outer mitochondrial membrane
(Yanagi et al., 2018). In conjunction with Acyl-CoA synthases
in the outer and acylcarnitine translocase plus CPT2 in the
inner mitochondrial membrane, respectively, CPT1a delivers
and processes converts LCFAs into acyl-CoA and delivers the
latter into the inner mitochondrial compartment for β-oxidation
and ATP production (Schlaepfer and Joshi, 2020). As a direct
consequence of β-oxidation, nascent fatty acids are generated
in the inner-mitochondrial compartment and used as “flip-
flopping” proton translocators by UCP2 to shuttle H+ into
the inner-mitochondrial compartment. This process results in
mitochondrial uncoupling, partially dispels and reduces the
electrochemical proton gradient (1p) that is maintained by the
ETC and forestalls the 1p-dependent generation of ROS at
complex I and III. As such, the induction of UCP2 buffers the
glucose/TCA-exacerbated production of ROS by the ETC (see
Jezek et al., 2018 for an extensive description of UCP functions),
which may be protective in AD and PD. Similar to the SNpc
(Andrews et al., 2009a), AG also augmented the induction of
UCP2, mitochondrial respiration and mitochondrial abundance
in hypothalamic NPY/AgRP neurons in vivo (Andrews et al.,
2009b). Moreover, AG rescued neurons from apoptosis and
caspase-3 activation in a UCP2-dependent manner, improved
the mitochondrial ATP generation plus total ATP levels and
alleviated the ROS load in the brains of rodents that were
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FIGURE 1 | Illustration of the neuroprotective pathways following GHS-R1α activation by AG or ghrelin agonists in neurons and astrocytes. [1] Mitochondrial function:

By activating the key mediator AMPK, AG induces the transcriptional co-activator PGC1α. The latter, in concert with NRF1/2, enhances mitochondrial biogenesis, the

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 5 December 2020 | Volume 14 | Article 614828

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Reich and Hölscher Ghrelin as a Treatment for AD and PD

FIGURE 1 | synthesis of TFAM and TFAM-mediated mtDNA replication/transcription. By increasing the transcription of Mfn2, PGC1α protects from

MPTP/rotenone-driven mitochondrial fragmentation. In addition, AMPK/GAPDH-mediated phosphorylation of nuclear SIRT1 frees the latter deacetylase and leads to

the inactivation of pro-inflammatory NF-κB, the activation of the Bax-sequestrating Ku70 and the stimulation of FoxO1-regulated anti-oxidant and autophagy genes.

Lastly, the induction of the AMPK/CPT1a/UCP2 pathway prevents pathological mitochondrial depolarization (such as by Aβ). Furthermore, UCP2-driven mitochondrial

uncoupling increases the mitochondrial respiration, bioenergetic efficiency and mitigates the co-generation of ROS by the ETC, which may protect from the

stress-induced hyperproduction of ATP and ROS during early stages of AD. Given that more advanced stages of AD are characterized by neuronal glucose

hypometabolism and a chronic shift toward other bioenergetic processes, in particular the β-oxidation of lipids, AG may support the compensatory execution of

β-oxidation to generate ATP. Notably, AMPK inhibits ACC, thus depleting the intracellular malonyl-CoA pools and, in turn, elevating the activity levels of the

malonyl-CoA-regulated CPT1a (not shown). [2] Autophagy: (Macro)autophagy is primarily driven by the GHS-R1α/AMPK/TSC1/2-mediated inactivation of

mTOR/mTORC1 and the direct phosphorylation of ULK1 via AMPK, resulting in the degradation of cellular waste, amyloids (Aβ/Tau/α-synuclein) and defective

mitochondria. Moreover, by raising the intracellular NAD+ levels, AMPK reinforces its activity through the activation of the cytoplasmic, NAD+-dependent SIRT1 and

the AMPK-kinase LKB1. SIRT1 is also involved in the deacetylation of Tau at Lys174, which was reported to abrogate the pathological propagation of Tau throughout

the brain. Besides triggering autophagy, AG upregulates various ATGs and Beclin-1, while promoting autophagosome maturation and the autophagic flux. [3]

Astrocytes: The stimulation of GHS-R1α encourages the expression of the lactate-efflux transporter MCT4 by astrocytes, leading to the increased secretion of lactate,

a potent energy source for neurons.

FIGURE 2 | Overview of the anti-inflammatory capabilities of GHS-R1α receptor activation. AD and PD are characterized by chronic systemic inflammation, which

includes micro-/astrogliosis and inflammasome activation following the accumulation of amyloids and DAMPs in the CNS, vagus nerve and intestinal (microbiome)

inflammation in the periphery as well as pathologic CD4+ T-cell infiltration into the brain, which is exacerbated by the inflammation-driven injury of the BBB and

vasculature. While AG has successfully prevented neuroinflammation in AD and PD models, the diagram further illustrates the beneficial effects of AG on

inflammasome induction, peripheral inflammation and adaptive immunity in other inflammatory disease models, which culminate in vascular protection as well as

enhanced blood flow, BBB stability, insulin sensitivity, oligodendrocyte survival and axonal myelination. Of note, GHS-R1α does not appear to be expressed by

microglia, suggesting that the anti-inflammatory benefits of AG in the CNS are indirect. Ghrelin agonists offer the additional benefit of blocking microglial CD36, thus

inhibiting Aβ-elicited inflammation.

subjected to cardiac arrest and/or traumatic brain injury
(Lopez et al., 2012a; Xu et al., 2019). In concert with the
animal experiments, AG decreased the ROS burden, rescued
the toxin-induced dysfunction of complex 1 in mitochondria,
normalized the mitochondrial transmembrane potential and
prohibited apoptosis, as shown with improvements in the Bcl-
2/Bax ratio, cytochrome C release and caspase-3/9 activity, in
various cell models, including MPTP- and rotenone-stressed
MES23.5 dopaminergic cells (Dong et al., 2009; Yu et al., 2016),

rotenone-burdened rat retinal ganglion cells (Liu et al., 2018)
and primary hypothalamic neurons during oxygen and glucose
withdrawal (Chung et al., 2007).

To unravel the pathways that drive mitochondrial biogenesis,
the missing links can be derived from related studies that center
on aging and caloric restriction, yet only indirectly use AG. In this
context, AG has been deemed as the main neuroprotective factor
that is secreted upon caloric restriction and is responsible for
the survival-promoting activation of AMPK (Bayliss et al., 2016).
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In rodents, dietary restriction reduces oxidative stress, increases
ATP production at a reduced cost of total oxygen, lowers
mitochondrial membrane potential and drives mitochondrial
biogenesis via the activation of peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1α) (Lopez-Lluch
et al., 2006). PGC1α acts as a master regulator that induces
mitochondrial biogenesis and upregulates the nuclear expression
of mitochondria-related genes, such as the transcription factors
NRF1, NRF2 and mitochondrial transcription factor A (TFAM).
Subsequently, NRF1, NRF2, and TFAM initiate the replication
of mtDNA, the transcription of mitochondrial respiratory
genes and the synthesis of anti-oxidative proteins, for example
glutathione peroxidase 1 and manganese superoxide dismutase
(MnSOD). Jointly, the PGC1α-induced transcriptional changes
in mitochondria-associated genes protect from MPTP oxidative
assault in cell and animal models of PD, whereas the deletion
of PGC1α exacerbates MPTP-induced injury and excitotoxicity
(Scarpulla, 2002, 2006; Kang and Hamasaki, 2005; St.-Pierre
et al., 2006; Mudo et al., 2012; Quan et al., 2020). The pro-
mitochondrial impact of PGC1α in PD, whose expression levels
were found to be decreased in the brains of PD patients, has been
made evident in knockdown studies, in which the suppression or
conditional knockdown of PGC1α led to the selective atrophy of
dopaminergic neurons in the SNpc and lessened dopamine pools
in the striatum of adult rodents (Shin et al., 2011; Jiang et al.,
2016).

As illustrated in Figure 1, PGC1α is regulated by the
coordinated actions of AMPK plus sirtuin 1 (SIRT1). And
indeed, the latter 3 effectors are all activated by AG (Bayliss
and Andrews, 2013). Initially, the canonical activation of GHS-
R1α involves, but is not limited to, Gαq/11 coupling to GHS-
R1α, the induction of phospholipase C (PLC), the PLC-mediated
turnover of phosphatidylinositol 4,5-bisphosphate (PIP2) into
inositol triphosphate (IP3) and the liberation of calcium (Ca2+)
from the intracellular ER stores by IP3. Additionally, Ca2+ influx
by the non-canonical association of Gαs with GHS-R1α, followed
by the activation of cAMP, PKA and opening of N-type Ca2+

channels have been reported. The induction of the cAMP/PKA
pathway is highly debated and appears to be conditional and
cell-type specific, however (Kohno et al., 2003; Yin et al.,
2014; Yanagi et al., 2018). Furthermore, cAMP/PKA-signaling
is evoked by the physiological release of AG-counteracting
and growth-promoting hormones that are associated with
nutrient abundance and increased glucose metabolism, such
as insulin and leptin (Yang and Yang, 2016). Therefore, in
general, AG induces intraneuronal Ca2+ accumulation in an
IP3-mediated manner, leading to the activation of the AMPK-
phosphorylating calmodulin-dependent protein kinase kinase-β
(CaMKKß) (Hawley et al., 2005; Anderson et al., 2008). Activated
AMPK further elevates PGC1α levels, directly phosphorylates
PGC1α to promote promotor binding and raises intracellular
nicotinamide adenine dinucleotide (NAD+) levels, leading to
activation of the NAD+-sensitive deacetylase SIRT1 (Iglesias
et al., 2004; Jager et al., 2007; Canto et al., 2009; Fujitsuka et al.,
2016). Furthermore, AMPK phosphorylates glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) at Ser122 during starvation
to encourage the nuclear trafficking of GAPDH and the
displacement of SIRT1 from its repressor Deleted in Breast

Cancer 1 (DBC1) (Chang et al., 2015). On the other hand, SIRT1
deacetylates and activates liver kinase B1 (LKB1), the second
major AMPK-targeting kinase besides CaMKKß, indicating a
reciprocal relationship between AMPK and SIRT1 (Lan et al.,
2008). Moreover, SIRT1 is capable of shuttling between the
cytoplasm and nucleus (Tanno et al., 2007) and deacetylates
nuclear PGC1α to initiate mitochondrial biogenesis (Lagouge
et al., 2006) as well as the transcription factor forkhead box
protein O1 (FoxO1) to amplify the expression of PGC1α
(Daitoku et al., 2003; Frescas et al., 2005; Nakae et al., 2008). AG
was shown to induce the synthesis of FoxO1 in the hypothalamus
(Lage et al., 2010) and, under conditions of cellular stress, FoxO1
drives the transcription of various anti-oxidant enzymes, such as
the PGC1α-co-activated, mitochondrialMnSOD (St.-Pierre et al.,
2006; Hsu et al., 2010; Tong et al., 2012). Besides the activation of
PGC1α and FoxO1, SIRT1 also improves stress tolerance through
deacetylation of other effector proteins, such as the inflammatory
master regulator nuclear factor κB (NF-κB) (Yeung et al., 2004)
or DNA repair factor Ku70, which was shown to scavenge pro-
apoptotic Bax from mitochondria to support cellular survival
(Cohen et al., 2004). The activation of the AMPK/Sirt1/PGC-
1α/UCP2 pathway by AG, in a GHSR1α-dependent manner,
has also been connected to the amelioration of oxidative
stress, neuronal atrophy and functional decline in response
to hypoxic-ischemic encephalopathy in vivo, emphasizing the
neuroprotective impact of this pathway (Huang et al., 2019).
As such, AG not only mitigates the stress-provoked ATP
hyperproduction and the associated excessive generation of
ROS by burdened mitochondria in a UCP2-driven manner, but
also re-invigorates mitoprotective and mitochondrial biogenesis-
inducing AMPK and PGC-1α signaling in AD and PD.

A Possible Implication of Acylated Ghrelin
in the Enhancement of Mitochondrial
Fusion and Fission
Unsurprisingly, in accordance with general mitochondrial
dysfunction, the efficiency of mitochondrial fusion and fission
gradually declines during the aging process and is disturbed in
neurodegenerative diseases (Liu et al., 2020). Cell and animal
studies in AD models as well as post-mortem examinations
of patients, although not always matching perfectly, signify
that the transcription of fusion-enhancers (OPA1, mitofusin
(Mfn)1/2) is attenuated and the expression or activity of fission-
modulators (dynamin-related protein 1 (Drp1), mitochondrial
fission 1 protein (Fis1) and S-nitrosylated Fis1) are aberrantly
elevated. These alterations provoked mitochondrial hyperfission,
neuronal injury and synaptic degeneration in vitro and in
vivo (Wang et al., 2008, 2009; Cho et al., 2009). On the
other hand, in Aβ-based AD models, the genetic deletion
of the fission-inducer Drp1 rescued from mitochondrial
fragmentation, the drop of mitochondrial membrane potential
and ATP production, the generation of ROS in vitro and
prevented the accumulation of lipid peroxidation products,
beta-secretase 1 expression, the formation of amyloid plaques
and cognitive decline in APPswe/PSEN1dE9 mice (Baek et al.,
2017). Similarly, the pharmacological or genetic interference
with Drp-1 or the overexpression of the fusion-enhancers Mfn2
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and OPA1 ameliorated excessive mitochondrial fission and
impaired ATP production in PINK1/Parkin-mutant cells (Lutz
et al., 2009) and shielded against MPTP-driven mitochondrial
fragmentation, the stimulation of the pro-apoptotic activity
of p53, Bax and PUMA, dopaminergic neuron and nerve
terminal loss as well as motor deficits, but not micro- and
astrogliosis, in the murine SNpc (Filichia et al., 2016). In
opposition to Aβ, the role of PD-associated α-synuclein is
less evident. While mutant α-synuclein enhances mitochondrial
fragmentation, impairs the mitochondrial respiratory activity
and induces neuronal death by inducing the displacement
of wt α-synuclein from the inner-mitochondrial membrane
(Kamp et al., 2010; Nakamura et al., 2011; Guardia-Laguarta
et al., 2014), it must be noted that wt α-synuclein, in fact,
promotes fusion and its expression may be a compensatory and
protective mechanism to prevent hyperfission in PD (Berthet
et al., 2014; Guardia-Laguarta et al., 2014; Menges et al.,
2017).

Recent reports suggest a possible role for AG in the regulation
of the mitochondrial fission and fusion dynamics (Morgan et al.,
2018). In general, caloric restriction, which enhances the plasma
release of AG, favors mitochondrial fission, leading to an increase
in the expression levels of Drp1 and Fis1, while not altering
the transcriptional pools of fusion-modulators, such as Mfn1,
Mfn2 or OPA1 (Khraiwesh et al., 2013). Moreover, mitochondrial
toxins, such as the PD-poison rotenone, and the pharmacological
stimulation of AMPK activity, independent of any mitochondrial
damage, provoke mitochondrial fission. In the context of AMPK,
mitochondrial fission factor (MFF) has recently been identified
as a direct downstream target of AMPK and the AMPK-mediated
activation of MFF leads to the induction of the fission-promoting
Drp1 (Toyama et al., 2016).

Notably, the stimulation of PGC-1α in response to heightened
energy expenditure has been linked to the transcriptional
upregulation of the mitochondrial fusion-advocate Mfn2 in
the skeletal musculature of mice (Soriano et al., 2006). It
was also shown that the overexpression of PGC-1α opposed
unloading-associated muscular atrophy in the murine hindlimbs
and prevented the transcriptional decline of the fusion-
imparting proteins Mfn1, Mfn2 and OPA1, therefore restoring
mitochondrial defects by improving fusion (Cannavino et al.,
2015). Importantly, in the context of PD, the rotenone-evoked
mitochondrial fragmentation and dysfunction have been
connected to impairments in the mitochondrial biogenesis,
the decreased activity of TFAM and PGC-1α as well as
deregulated mitochondrial fusion and fission, which was related
to transcriptional alterations in Mfn2, OPA1, Drp1, and Fis1
in PC12 dopaminergic neurons. The application of PGC-1α
siRNA as well as the overexpression of this mitochondrial
effector confirmed that PGC-1α upregulates the synthesis of
Mfn2, while suppressing the transcription of Drp1. On the
contrary, the neuronal exposure to rotenone augmented p-Drp1
levels and promoted its translocation toward mitochondria to
evoke fragmentation, which was exacerbated by the muting of
PGC-1α and prevented through the overexpression of PGC-1α.
The results of this study imply a primarily fusion-enhancing
and fission-inhibiting function of PGC-1α under physiological
conditions, while the induction of PGC-1α protects from

stress-driven mitochondrial fragmentation in dopaminergic
neurons (Peng et al., 2017).

Considerably, AG stimulates the activity of the fusion/fission-
regulators AMPK and PGC-1α in GHS-R1α-expressing
cells, including neurons (Bayliss and Andrews, 2013; Huang
et al., 2019). Moreover, besides an impressive range of
other mitoprotective effects, the ghrelin analogs JMV2894
and/or hexarelin suppressed excessive, cisplatin-triggered
mitochondrial fission in the skeletal muscles of rats by reversing
the upregulation of Drp1 and the downregulation of Mfn2, thus
raising the Mfn2/Drp1 index back to the levels of control rodents
(Sirago et al., 2017). This is in line with the Mfn2-upregulating
and Drp1-impeding function of PGC-1α (Peng et al., 2017),
suggesting that AG stimulates the AMPK/PGC-1α axis to
ameliorate mitochondrial fragmentation in response to cellular
stress (Sirago et al., 2017). Therefore, AG may guard against
pathologic hyperfission in AD and PD. Nonetheless, future
studies are necessary to confirm a fusion/fission-navigating
function of AG in appropriate models of neurodegeneration.

Acylated Ghrelin Navigates the Release of
Lactate by Astrocytes
Interestingly, AG may coordinate bioenergetic communication
between astrocytes and neurons. Using a combination of rodents
and primary hypothalamic astrocyte culture, it was discovered
that AG downregulates the expression of glucose transporter
(GLUT)2, but not GLUT1 or GLUT3, increases the transcription
of glutamate-aspartate transporters in a GHS-R1α-dependent
manner, enhanced the expression of lactate dehydrogenase and
glycogen phosphorylase, diminished the transcriptional levels
of glutamine synthase and upregulated the lactate-transporter
monocarboxylate transporter 4 (MCT4). Ultimately, the latter
changes led to reduced glucose uptake, elevated glutamate uptake
and the steadily rising lactate levels in the cell culture medium
(Fuente-Martin et al., 2016). Although the latter study showed
some inconsistencies, AG appears to trigger a physiological,
metabolic switch in astrocytes to preserve glucose and curb its
uptake by astrocytes during fasting. In exchange, AG appears
to prime astrocytes toward glutamate and possibly glycogen
metabolism to generate ATP, while encouraging the liberation
of lactate as a powerful alternative energy source for neurons
(Schurr et al., 1988). Thus, AG possibly supports the neuronal
activity in face of AD/PD-associated bioenergetic deficiencies
and glucose hypometabolism in the brain (Neth and Craft, 2017;
Sweeney et al., 2018).

AUTOPHAGY AND MITOPHAGY

Deficiencies in Autophagy and Mitophagy
Promote the Accumulation of Amyloids
and Defective Mitochondria in Alzheimer’s
and Parkinson’s Disease
Classically, dysfunctional autophagy is a common trait shared
by most neurodegenerative diseases. Due to the less efficient
removal of waste proteins in neurons, deficits in autophagy are
thought to encourage the accumulation of toxic and misfolded
proteins, such as Aβ and Tau in AD as well as α-synuclein (Lewy

Frontiers in Neuroscience | www.frontiersin.org 8 December 2020 | Volume 14 | Article 614828

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Reich and Hölscher Ghrelin as a Treatment for AD and PD

bodies) in PD (Fujikake et al., 2018). As a side note, the genetic
deletion of the autophagy modulators autophagy related (ATG)5
and ATG7 evoked the age-dependent formation of ubiquitinated,
diffuse inclusions, severe neuronal atrophy and disturbances
in motor function and coordination. Thus, impairments in
autophagy induce neurodegeneration independent of amyloid
accumulation in affected brain areas (Hara et al., 2006; Komatsu
et al., 2006).

Immunohistological investigations in the brain tissue of AD
patients suggest that early increases in the neuronal rate of
autophagy compensate for the accumulation of waste products,
whereas the lysosomal function (proteolytic enzyme activity) and
the clearance of lysosomal vacuoles is gradually impaired. This
results in the intraneuronal accumulation of non-degraded and
amyloid-containing autophagosomes, co-localizing strongly with
neurons that display intracellular Tau pathology and the relative
loss of mitochondria and other organelles (Cataldo et al., 1994;
Nixon et al., 2005). An important distinction to make is that the
blockade of autophagy, as achieved with the inhibition of mTor,
obviously slowed the rate of degradation, yet showed no major
consequences. In contrast, the inhibition of lysosome-associated
proteolytic enzymes was capable of producing an AD-like
phenotype (Boland et al., 2008). Therefore, AD patients appear
to show deficits in the fusion of waste-filled autophagic vacuoles
with lysosomes and the intra-autophagosomal degradation
process. Nonetheless, AD patients showed a massive decline
in the transcriptional levels of the autophagy initiator Beclin-
1 during early stages of AD and strategies that have aimed
to enhance the degree of autophagy, such as the lentivirus-
mediated expression of Beclin 1 or the autophagy-inducing
blockage of mTor by rapamycin, have been successful in the
purging of Aβ and Tau pathology in in vitro and in vivo
models of AD (Pickford et al., 2008; Jaeger et al., 2010; Spilman
et al., 2010; Majumder et al., 2011). Such findings indicate that
autophagy-enhancing approaches must ensue early, since the
mere upregulation of autophagy is insufficient at an advanced
stage of AD, when insoluble and proteolysis-resistant aggregates
have already formed in the brain (Majumder et al., 2011).

Analogical to AD, late-stage PD patients showed diminished
levels of the LAMP1, LAMP2A, and heat shock cognate 70, which
execute chaperone-mediated autophagy, yet displayed elevated
LC3-II levels (symbolic for autophagosome accumulation) and
α-synuclein inclusions in the SN pars compacta (SNpc) and/or
the amygdala. This indicates that, similar to AD, autophagosomal
efficiency is lost during PD, leading to the amassment of
defective, waste-cluttered lysosomes and the failure of amyloid
clearance (Chu et al., 2009; Alvarez-Erviti et al., 2010; Dehay
et al., 2010). There is also evidence that proteins involved
in autophagosome initiation and formation, for example LC3
or ULK1/2, are sequestered into Lewy bodies in the brain of
PD patients (Tanji et al., 2011; Miki et al., 2016). However,
the lentiviral overexpression of Beclin 1 or the utility of the
autophagy-activator and mTor-inhibitor rapamycin rescued the
apoptosis of dopaminergic neurons in response to the loss of
proteasomal function or the accumulation of α-synuclein in
cells and animals (Pan et al., 2008; Spencer et al., 2009). These
findings propose that early pharmacological interventions to
potentiate the rate of autophagy may be useful to prevent the

harmful accumulation of amyloids, although such approaches,
due to dysfunctions in the autophagy machinery, are less likely
to succeed at more advanced stages of AD and PD. These later
defects in autophagy are likely to be the accumulative result
of general impairments in the neuronal metabolism, including
mitochondrial defects, heightened oxidative stress and amyloid
burden, glucose hypometabolism, diminished growth factor and
insulin-signaling etc, indicating that multi-targeted therapeutic
approaches are advantageous.

Notably, mitophagy poses a specialized form of autophagy
that rids cells from defective, ROS-generating mitochondria. As
expected, mitophagy is widely impaired in respective models as
well as in the brains of AD and PD patients, while the selective
pharmacological enhancement of mitophagy can reverse several
other pathological aspects, such as the generation of insoluble
Aβ, Tau hyperphosphorylation, neuroinflammation, neuronal
atrophy and cognitive impediments (Fang et al., 2019; Liu J. et al.,
2019).

A Mitophagy-Enhancing Role of Acylated
Ghrelin Has Been Strongly Indicated
Interestingly, ghrelin may improve mitophagy, an autophagy
derivate involved in mitochondrial quality control and disposal
of damaged mitochondria (Bayliss and Andrews, 2013). While
ghrelin is often praised for its ability to promote mitophagy, little
mechanistic research has been conducted. To our knowledge,
there is only a single study that has truly confirmed a
mitophagy-boosting function, showing that the administration
of AG enhanced autophagy and led to the emergence of
autophagosome-enclosed mitochondria at various stages of
degradation in HL-1 cardiac muscle cells (Ruozi et al., 2015).
At the time, Bayliss and Andrews also admitted that there is
no direct evidence that AG activates or promotes the activity of
the main mitophagy modulators Parkin or PTEN-induced kinase
1 (Bayliss and Andrews, 2013). Based on the current lack of
studies, it can only be assumed that AG promotes mitophagy
indirectly by generally enhancing cellular autophagy (see chapter
4.3 below) and reducing the mitochondrial generation of ROS
in a UCP2-conveyed manner, thus avoiding the accumulation of
dysfunctional mitochondria in the first place.

Acylated Ghrelin Induces Autophagy in the
Periphery and in the CNS
Indeed, AG’s autophagy-enhancing features, as summarized
in Figure 1, have only recently emerged in the literature.
Nonetheless, there is abundant evidence that highlights
ghrelin’s autophagy-triggering and tissue-preserving function
in peripheral tissue. AG-driven autophagy is dependent on
the stimulation of AMPK, leading to increased levels of
ATG5, ATG7, ATG12, and Beclin-1, lessened p62 levels (an
autophagy marker that is adversely correlated with autophagy),
an elevated microtubule-associated protein light chain 3
(LC3)-II/LC3-I ratio, which serves as a marker to quantify
mature autophagosomes (Mizushima and Yoshimori, 2007),
and improvements in the autophagic flux (demonstrative of the
formation and degradation rate of autophagosomes in a given
time frame) (Slupecka et al., 2012; Tong et al., 2012; Mao et al.,
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2015; Ruozi et al., 2015; Ezquerro et al., 2016; Wan et al., 2016;
Xu et al., 2017).

In contrast, the cerebral induction of autophagy by ghrelin
has only sparsely been investigated. Nonetheless, it was
demonstrated that SH-SY5Y cells stably expressing mutant
amyloid precursor protein (APP) exhibit elevated anti-apoptotic
Bcl-2 levels, decreased caspase-3 and caspase-7 activities,
increased proteasome activity and improved autophagy, as
marked by increased Beclin-1, LC3-II and normalized p62
levels, upon treatment with AG. The cytoprotective effects of
AG were attributed to its ability to improve crosstalk between
proteasomal and autophagosomal pathways, leading to the
enhanced clearance of the overexpressed APP/Aß fragments
in this cell model (Cecarini et al., 2016). Another well-
constructed study discovered that caloric restriction raises both
mRNA and protein levels of NPY as well as ghrelin in rat
cortical neurons, resulting in diminished phospho-mTor levels,
increased LC3-II levels, decreased p62 pools and enhanced
autophagic flux (Ferreira-Marques et al., 2016). Importantly,
autophagy was independently achieved through the use of AG
or NPY, respectively, whereas the individual administration of
either GHS-R1α or Y1, Y2, or Y5 receptor antagonists were
able to attenuate autophagy, suggesting a synergistic effect
of both peptides. Although we will not further address the
neuroprotective properties of NPY (see Li et al., 2019), it must
be noted that AG was shown to raise the synthesis of NPY in
hypothalamic and cortical neurons (Wren et al., 2002; Ferreira-
Marques et al., 2016). As such, there is the need to clarify
which peptide acts in what brain region and which autophagy-
promoting pathways are activated by NPY or AG, respectively.

As it is the common consensus, (macro)autophagy is primarily
controlled by the activity of mTor or, more precisely, mTOR
complex (mTORC)1. In the absence of nutrients and in a cellular
effort to maintain the status quo, the deactivation of mTORC1
is linked to the decreased activity of ribosomal protein S6
kinase beta-1 (S6K1)/S6 protein, the elevated activation of the
transcription-repressor 4E-binding protein 1, the inactivity of
eukaryotic translation initiation factor 4E and, thus, the overall
decreased expression of proteins. Shut-down of the growth-
facilitating mTORC1 pathway, however, promotes the activity of
the unc-51 like autophagy activating kinase (ULK1/2) initiation
complex, which launches autophagosome maturation and the
cellular purging of waste products, such as Aß, Tau or α-
synuclein (Huang and Manning, 2008; Ma and Blenis, 2009;
Lan et al., 2017; Kaleli et al., 2020). Tuberous sclerosis (TSC)1/2
acts as a major regulatory switch for mTORC1-mediated growth
vs. autophagy and, typically in response to stressful cellular
conditions and starvation, the activating phosphorylation of the
cytoplasmic energy-sensor AMPK results in the AMPK-mediated
phosphorylation of TSC1/2 and the inhibition of mTORC1 (Inoki
et al., 2003;Manning andCantley, 2003; Demetriades et al., 2016).
Additionally, a reciprocal connection between mTor and AMPK
exists, in which the absence of nutrients promotes the AMPK-
driven suppression of mTor and the activating phosphorylation
of ULK1 at Ser317 and Ser777, whereas energetic abundance
stimulates the inhibitory phosphorylation of ULK1 at Ser757 via
mTor (Kim et al., 2011; Lan et al., 2017).

AG-evoked autophagy ismainly connected to the downstream
activation of the phospho-AMPK/mTOR axis, as it has been well-
described for the initiation of autophagy in peripheral tissue
(Tong et al., 2012; Mao et al., 2015; Ruozi et al., 2015; Ezquerro
et al., 2016; Xu et al., 2017). In contrast, the limited amount
of cerebral studies with AG, at the very least, have verified
the induction of autophagy via mTOR inhibition in cortical
neurons (Ferreira-Marques et al., 2016). The stimulation of
AMPK, which is a highly debated therapeutic option for the
treatment of PD, is, in fact, responsible for the large majority
of AG’s neuroprotective effects, including (macro)autophagy,
mitochondrial enhancement as well as the cellular safeguarding
from oxidative stress and inflammation (Bayliss and Andrews,
2013; Curry et al., 2018). Besides AMPK, another important
positive regulator of autophagy poses SIRT1 (Chen et al., 2020).
The activation of SIRT1 via AG has been confirmed in the
periphery (Fujimura et al., 2014; Tamaki et al., 2015; Fujitsuka
et al., 2016; Yang et al., 2016) as well as the hypothalamus in
adult rodents and mouse models of aging (Velasquez et al., 2011;
Fujitsuka et al., 2016). Indeed, SIRT1 is not only elevated upon
treatment with AG, but interference with AMPK/SIRT1 signaling
prevented the induction of autophagy in lymphoblastic leukemia
cells (Heshmati et al., 2020). It has also been reported that
SIRT1 directly deacetylates Tau protein at Lys174 and the viral
delivery of SIRT1 to the hippocampus of SIRT1-deficient and
P301S Tau transgenic mice attenuated the cerebral propagation
of Tau (Min et al., 2018). AG-upregulated and SIRT1-activated
and FoxO1 is well-known in aging research, responsible for the
transcription of ATG genes and the mTor-suppressor Sestrin 3,
therefore encouraging autophagy (see Figure 1 for an illustration
of the discussed pathways) (Lage et al., 2010; Zhang et al., 2015).

Interestingly, in some instances, AG induces counterintuitive
signaling pathways and stimulates neuroprotective Akt, which is
an mTor-activator. The AG-driven induction of these discrepant
signaling cascades seem to be highly conditional for preventing
neuronal apoptosis during cerebral ischemia and excitotoxicity,
however, and may be linked to the upregulation of other growth
factors, such as IGF-1 (Frago et al., 2011; Spencer et al., 2013).
In any case, the current evidence suggests that AG augments
the neuronal rate of autophagy by inducing AMPK-signaling
to inhibit mTor and upregulating the expression of various
autophagy-implementing effectors to degrade amyloids, such as
Aβ, in AD and PD. Since AG improves other pathologic areas,
for instance mitochondrial dysfunction (chapter 3.2), insulin
resistance and glucose hypometabolism (chapter 7.2) in neurons,
AG may further ameliorate the functional deficits in autophagy
that occur during later stages of AD and PD.

INFLAMMATION

Systemic Inflammation in Alzheimer’s and
Parkinson’s Accelerates Disease
Progression
The detrimental impact of the neuroinflammatory pathology,
which is believed to commence decades before the appearance
of any symptoms, is widely acknowledged in AD and PD.
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While beneficial in the healthy brain, neurodegenerative
conditions provoke a chronic shift of microglia as well as
astrocytes from the supportive M2 to the pro-inflammatory
M1 state, resulting in the release of various pro-inflammatory
cytokines, including TNF-α, IFN-γ, IL-1ß, IL-6, and IL-12, and
chemokines, for example the immune cell-recruiting monocyte
chemoattractant protein 1 (MCP-1), the generation of excessive
amounts of ROS and nitric oxide (NO) as well as the
secretion of glutamate. Over time, prolonged neuroinflammation
encourages various other secondary complications, such as
impairments in protein degradation, amyloid misfolding, Tau
hyperphosphorylation (in conjunction with the inflammation-
perpetuating activation of the inflammasome), permeabilization
of the BBB, peripheral immune cell infiltration into the CNS,
mitochondrial dysfunction, cerebral insulin resistance, injury
of the axonal myelin sheath and oligodendrocytes (evident
in AD, yet less clear in PD), axonal transport deficiencies,
synaptic damage, and, ultimately, widespread neuronal apoptosis
(Gonzalez et al., 2014; Najem et al., 2014; Chen et al., 2016;
Wang S. S. et al., 2018; Ising et al., 2019). Microglia may be
stimulated by the Toll-like receptor (TLR)-mediated recognition
of bacterial and viral particles, for example lipopolysaccharides
(LPS) (Boche et al., 2013), the TLR2-driven interaction with
α-synuclein (Kim et al., 2013), TLR2/4-binding to Aß (Reed-
Geaghan et al., 2009), and serum-derived or locally released TNF-
α and IFN-γ, whose combinatorial action was shown to be a
crucial inflammatory mediator of dopaminergic cell death in a
rodent model of PD (Mir et al., 2008; Barcia et al., 2011). In this
context, some genetic variants of TLR4 have been linked to AD
and the increased expression of TLR2 has been identified in AD
models (Balistreri et al., 2009; Letiembre et al., 2009), whereas the
enhanced transcription of TLR2 and TLR4 have been detected
in α-synuclein and MPTP mouse models of PD (Panaro et al.,
2008; Letiembre et al., 2009), indicating that immune regulation
is harmfully altered in AD and PD. Likewise, astrocytes may
be provoked by TLR2/4/5/6 receptor ligands, Aß or α-synuclein
as well as microglia-derived cytokines, in particular the key
stimulatory agents IFN-γ and TNF-α (Johnstone et al., 1999;
Bezzi et al., 2001; Lee H. J. et al., 2010; Barcia et al., 2011; Ma
et al., 2013).

Notably, there are other inflammatory triggers besides
amyloids in AD and PD. More precisely, fragments derived
from apoptotic neurons, termed damage-associated molecular
patterns (DAMPs), are capable of stimulating inflammatory
cascades via interaction with TLRs or receptors for advanced
glycation endproducts on microglia. DAMPs, of course, include
Aß, Tau and α-synuclein, but also encompass many more,
such as myelin debris, neuron-specific enolase (a glycolytic
enzyme), S100 calcium-binding protein β (S-100ß) (an astroglial
modulator), advanced glycation end products and many more.
Furthermore, pathogen-associated molecular patterns (PAMPs)
that originate from cerebral infections, such as LPS, or, in the
case of AD, infections with members of the Herpesviridae family
and Hepatitis C virus, may further potentiate neuroinflammation
(Morales et al., 2014; Sochocka et al., 2017; Cortes et al., 2018;
Stephenson et al., 2018).

Importantly, inflammation is not limited to the brain in AD
and PD, but is potentiated bymultiple inflammatorymechanisms

in the periphery. First, the presence of heightened levels of pro-
inflammatory cytokines in the blood stream can be sensed by
the CNS through the so-called gut-brain axis, also known as
the “vagal reflex.” The latter involves the intestinal monitoring
of the peripheral inflammatory status by the efferent ends
of the vagus nerve. In the presence of abnormally elevated
levels of pro-inflammatory cytokines in the blood stream or
following gut microbial inflammation, the vagal nerve signals
to the nucleus tractus solitarius (NTS), a major signaling hub
located in the brain stem, that receives input from multiple
peripheral organs. The NTS, on the other hand, further projects
across the entirety of the CNS, ultimately leading to the
intestinal return of immune-suppressing signals through the
afferent ends of the vagal nerve. It has been proposed that
chronic inflammation provokes NTS dysfunction, which, in turn,
propagates neuroinflammation and death across the brain in AD
(Daulatzai, 2012; Wang J. T. et al., 2018). Moreover, intestinal
inflammation and injury are strikingly pronounced prior to the
onset of AD and PD, which, besides the additional inflammatory
burden, induce the leakage of Aβ- and α-synuclein-like amyloids
that may cross the enteric nervous system (ENS), enter the
brain and stimulate cross-seeding (Ambrosini et al., 2019).
Second, blood-borne pro-inflammatory cytokines/chemokines,
PAMPs and DAMPs may access the CNS directly or indirectly,
by promoting BBB damage and leakage. In cooperation, the
cerebral and blood stream-derived inflammatory agents induce
neuronal death, kill oligodendrocytes, injure the axonal myelin
sheath, evoke atrophy of the neuronal projections and lead to
the assassination of astrocytes, further weakening the integrity
of the BBB (Sankowski et al., 2015). Notably, metabolic and
vascular disorders provoke chronic low-grade inflammation in
the peripheral system that, as anticipated, contribute to the
development of AD and PD (Chen et al., 2016). Third, as a
consequence of BBB permeabilization, immune cell infiltration is
encouraged. DAMPs, such as aggregated amyloids or fragments
of apoptotic neurons, may reach the circulatory stream through
the lymph nodes or following BBB breaching, while Aß may
also be drained at perivascular and leptomeningeal spaces.
Subsequent peripheral inflammatory responses by antigen-
presenting cells and lymphocytes (T-cells) then induce immune
entry into the CNS in AD and PD (Fisher et al., 2011; Anderson
et al., 2014).

Regarding immune infiltration, CD4+ T-cell-deleted
mice were shown to be protected from MPTP-triggered
neurodegeneration, proposing that the adaptive immune system
is heavily involved in PD pathology (Brochard et al., 2009).
Further in vivo studies in the MPTP model support the idea that,
in conjunction with BBB injury and the loss of tight junction
proteins in the nigrostriatal area, the pathological infiltration of
lymphocytes and other immune cells as well as the T-cell-driven
induction of microglia occur in the SN (Kurkowska-Jastrzebska
et al., 1999; Chao et al., 2009; Reynolds et al., 2010; Depboylu
et al., 2012). Moreover, it has been strongly implied that CD4+

T helper (Th)1 and Th17 cells, for instance immunoreactive
against α-synuclein, are the main lymphocyte populations that
contribute to the death of dopaminergic neurons (Brochard et al.,
2009; Reynolds et al., 2010). Moreover, the invasion of CD4+ and
CD8+ T-cells has been confirmed in post-mortem brain tissue of
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PD patients, co-localizing with lesioned brain regions (Brochard
et al., 2009). A clinical investigation concluded that the quantity
of serum CD4+ T-cells was correlated to the PD disease score
and the functional impairment of T-cell suppressing regulatory
T-cells (Tregs) was identified in the blood of PD patients
(Saunders et al., 2012). In addition, heightened numbers of
partially α-synuclein-reactive Th17 cells were discovered in the
blood of PD patients (Sulzer et al., 2017); to the degree that PD
has been postulated as an α-synuclein-reactive autoimmune
disease (Benner et al., 2008; Hu, 2011). Unsurprisingly, in
line with the encouraged cerebral trespassing of lymphocytes,
BBB leakage has been confirmed in the brains of PD patients
(Kortekaas et al., 2005; Pisani et al., 2012). A similar pathologic
role for T-cells has been implied in AD. For example, the
long-term administration of low-doses of IL-2, believed to assist
the activity of Tregs (Klatzmann and Abbas, 2015), enhanced the
levels of Tregs in the rodent brain, improved the Aß42/40 ratio,
stimulated the clearance of Aß plaques, elevated LTP, attenuated
spinal degeneration and reversed memory impediments in
the APP/PS11E9 mouse model of AD (Alves et al., 2017).
Additionally, altered adaptive immune mechanics have been
observed in the CNS of several Aß-based in vivo models of
AD, displaying hippocampal BBB disruption, the infiltration
of peripheral monocytes/macrophages, neutrophils and CD4+

T-cells (predominantly Th1 and Th17) as well as the increased
transcription of pro-inflammatory cytokines, such as IFN-γ
and IL-17, and chemokines, including MIP-1α (a macrophage
attractant) plus CXCL1 (implicated in neutrophil recruitment)
(Browne et al., 2013; Zhang J. et al., 2013; Minogue et al., 2014).
In accord with the animal studies, blood profiling of AD patients
indicated heightened adaptive immune responses, such as a total
reduction in naive T-cells, a tendency of T-cells to differentiate
into CD4+ subsets or the elevated activity of pro-inflammatory
CD4+ Th17 cells (Shalit et al., 1995; Richartz-Salzburger et al.,
2007; Speciale et al., 2007; Larbi et al., 2009; Saresella et al., 2011).
Another study further concluded that CD4+ T-cell counts might
be correlated to AD severity (Shalit et al., 1995).

Intriguingly, AG is capable of preventing the latter described,
AD/PD-associated cerebral, peripheral and adaptive immune
alterations, as condensed in Figure 2. The following chapters
will investigate these anti-inflammatory characteristics of AG
in greater detail. Although many of the subsequent studies
were not conducted in AD or PD models, they serve as a
proof of principle to emphasize that AG functions as a potent
systemic immunosuppressant, independent of the underlying
inflammatory context.

Neuroinflammation
Acylated Ghrelin Abrogates Neuroinflammation

Indirectly by Preventing the Apoptosis of Cerebral

Cells
Indeed, there is abundant evidence that the utility of AG
curbs pro-inflammatory responses in the CNS. A series of in
vivo/ex vivo studies has given clear indication that AG prevents
microgliosis, astrogliosis and/or the cerebral expression of pro-
inflammatory cytokines in animal models of AD, in which Aβ

was the primary inflammatory stimulator (Moon et al., 2011;

Dhurandhar et al., 2013; Santos et al., 2017; Jeong et al., 2018),
in the MPTP-induced PD rodent model (Moon et al., 2009a),
following various forms of ischemic CNS/spinal cord injury
(SCI) in rodents (Ersahin et al., 2010, 2011; Lee J. Y. et al.,
2010; Cheyuo et al., 2011; Kenny et al., 2013; Lee et al., 2014b,
2015), as well as drug-induced excitotoxicity (Lee J. et al.,
2010; Lee et al., 2012). However, despite AG’s well-established,
anti-inflammatory actions in the CNS, in vitro and in vivo
investigations have confirmed that neither brain- or spinal cord-
resident microglia, cultured BV-2 microglial cells nor primary
microglia express GHS-R1α (Moon et al., 2009a; Lee J. Y.
et al., 2010; Lee and Yune, 2014). In the case of astrocytes,
it was reported that AG directly decreases the secretion of
tumor necrosis factor alpha (TNF-α) by cultured hypothalamic
astrocytes, although the hormone stimulated the liberation of
interleukin (IL)-6 (Garcia-Caceres et al., 2014).

Instead of a direct, immunosuppressive effect on microglia
and astrocytes, the majority of studies suggest that AG operates
in an indirect manner and restrains neuroinflammation through
its cytoprotective properties in neurons and other cerebral
cells. For instance, in the MPTP mouse model of PD, AG
attenuated microglial induction, reduced the expression of IL-
1 and TNF-α and diminished nitrotyrosine and NO levels in
the SNpc, which protected local dopaminergic neurons and
striatal projections from neurotoxic assault (Moon et al., 2009a).
Importantly, while the authors verified the absence of GHS-R1α
on microglia, the use of GHS-R1α-antagonists fully ablated the
anti-inflammatory and protective effects of AG, highlighting that
there must be a GHS-R1α-attributed, yet indirect, mechanism
at work that inhibits pro-inflammatory immune responses.
Interestingly, a cell culture study demonstrated that the reduced
microglial activation following AG-treatment was linked to the
downregulation of matrix-metalloproteinase 3 (MMP-3) by co-
cultured, dopaminergic neurons (Moon et al., 2009a). Likewise,
AG guarded bEnd.3 microvascular endothelial cells from
oxygen-glucose deprivation/reoxygenation in vitro, hippocampal
neurons from kainic acid as well as spinal cord neurons from
mechanical injury in vivo, thus forestalling the release of MMP-3
by apoptotic cells. This, in a MMP-3-dependent manner, resulted
in diminished microglial inflammation (Lee J. et al., 2010; Lee
et al., 2015). Indeed, MMP-3, typically originating from apoptotic
neurons, but also dying astrocytes and endothelial cells, is a
well-known inflammatory stimulator of microglia that evokes
superoxide production and the microglial secretion of TNF-α,
IL-1β and IL-6. In a reciprocal manner, inflammation incites
the microglial expression and liberation of MMP-3, initiating a
wicked cycle of neuronal degeneration and neuroinflammation
(Kim et al., 2005; Kim and Hwang, 2011). Besides MMP-3, in
vitro studies have demonstrated that AG suppressed the LPS-
induced secretion of IL-6 in mouse dopaminergic SN4741 cells
and the MPTP-enforced induction of the inflammatory master
regulator NF-κB in mouse dopaminergic MES23.5 cells. The
latter was further accompanied by the attenuated formation of
the oxidative stress marker malonaldehyde, the normalization
of the transcriptional levels of the anti-oxidative enzymes SOD
and catalase as well as the upregulation of the Bax/Bcl-2 ratio,
symbolic for the protection from neuronal apoptosis (Liu et al.,
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2010; Beynon et al., 2013). As such, the existing evidence points
toward an inflammation-suppressing and survival-enhancing
function in non-microglial cerebral cells that is indirectly linked
to the reduced liberation of inflammation-stimulating damage
associated molecular patterns (DAMPs), such as MMP-3.

The Acylated Hormone Ghrelin Rescues

Oligodendrocytes and Prevents Demyelination
It must be mentioned that AG guards oligodendrocytes, the
exclusively myelinating cell type in the brain. As confirmed
with the utility of GHS-R1α, ERK and p38 inhibitors, an in
vitro study showed that the interaction of AG with GHS-R1α
on oligodendrocytes shields the cells from hydrogen peroxide
(H2O2) and apoptosis by potentiating oligoprotective ERK
signaling, while attenuating the pro-apoptotic activation of p38
(Lee et al., 2011). Another cell culture study emphasized that
AG is capable of blocking the LPS-provoked inflammatory
stimulation of the p38 and c-Jun N-terminal kinase (JNK)
stress kinase pathways, the release of pro-nerve growth factor
and the generation of ROS by BV-2 microglial cells, thus
protecting co-cultured oligodendrocytes from death by oxidative
assault (Lee and Yune, 2014). Collectively, previous research
has demonstrated that AG rescued oligodendrocytes from
inflammatory and oxidative damage, therefore protecting the
integrity of myelinated axons in in vivo models of SCI and MS
(Lee J. Y. et al., 2010; Lee et al., 2011; Liu F. et al., 2019). As such,
the utility of AG may be useful to ameliorate the age-associated
myelin pathology in neurodegenerative diseases (Wang S. S. et al.,
2018), yet further investigations in the context of AD and PD
are necessary.

Ghrelin Agonists May Suppress Microglial

Inflammation by Binding to CD36
Notably, human fetal microglia, N9 microglial cells as well as
microglia resident in the AD and non-AD brain, along with
monocytes, macrophages and endothelial cells, were shown to
express a GPCR known as cluster of differentiation 36 (CD36).
This receptor has been reported to act as an inflammatory
conductor for Aß, leading to the production of ROS and pro-
inflammatory cytokines upon the interaction of fibrillar Aß with
microglial or macrophage CD36 (Coraci et al., 2002; Bamberger
et al., 2003; El Khoury et al., 2003; Demers et al., 2004).
Interestingly, a receptor binding site for hexarelin, a synthetic
DAG analog, was identified on CD36 (Demers et al., 2004).
Furthermore, a study uncovered that DAG, but not AG, was
capable of binding to CD36 receptors on cultured N9 cells,
preventing fibrillar Aß25−35-triggered release of IL-1ß and IL-
6 (Bulgarelli et al., 2009). Since anti-CD36 antibodies strongly
attenuated N9 microglial H2O2 production (Coraci et al., 2002),
it is likely that the binding of DAG sterically hinders the pro-
inflammatory interaction of CD36 with Aß (Bulgarelli et al.,
2009).

Intriguingly, some ghrelin agonists show affinity toward
both GHS-R1α and CD36, for example hexarelin or GHRS-6
(Demers et al., 2004; Berlanga-Acosta et al., 2017). Hexarelin
was demonstrated to interact with both GHS-R1α and CD36 on
cultured THP-1 monocytes and primary peritoneal macrophages

derived from apoE−/− mice (Avallone et al., 2006). Moreover, the
prolonged daily injection of the CD36-favoring ghrelin derivate
EP 80317 dramatically ameliorated the development of vascular
lesions in the apoE−/− animal model of arteriosclerosis by
lessening the CD36-driven endocytosis of oxidized low density
lipoprotein (oxLDL) by macrophages (Marleau et al., 2005).
Thus, in direct comparison to the GHS-R1α-binding AG, it is
tempting to speculate that GHS-R1α/CD36 co-binding ghrelin
analogs may be a superior choice for the amelioration of Aβ-
driven microglial inflammation and ROS-production in AD.

Evidence that Acylated Ghrelin Opposes the

Activation of the Inflammasome in the Brain
The stimulation of the inflammasome and the associated
pyroptosis, the “fiery death” of microglia, oligodendrocytes and
other cells, a relatively recent upbringing, have been identified
as major drivers of neuroinflammation, demyelination and
degeneration of the spinal cord during MS (McKenzie et al.,
2018). The nod-like receptor protein 3 (NLRP3) inflammasome-
associated propagation of neuroinflammation has also recently
been identified in AD and PD, believed to sequentially involve
Aß accumulation, the Aß-triggered inflammasome activation,
inflammasome-induced cytokine production and the onset of
Tau pathology in AD (Mamik and Power, 2017; Ising et al., 2019;
Stancu et al., 2019).

Interestingly, in the experimental autoimmune
encephalomyelitis (EAE) mouse model, AG not only inhibited
microglial immunoreactivity, the activating phosphorylation of
NF-κB and the associated synthesis of various pro-inflammatory
cytokines in the spinal cord, but also prevented the activation
of the NLRP3 inflammasome complex and pyroptosis in the
spinal cord of EAE mice. Indeed, the transcriptional levels
of the inflammasome components NLRP3 and caspase-1, the
pyroptosis-inducer gasdermin D as well as the inflammasome-
derived cytokines IL-1ß and IL-18 were drastically reduced
in AG-treated EAE mice, resulting in ameliorated behavioral
symptoms (Liu F. et al., 2019). In this context, AG was reported
to obstruct the activation of NF-κB in the spinal cord of the EAE
animal model, in cultured dopaminergic neurons and in primary
human T-cells (Dixit et al., 2009; Liu et al., 2010; Liu F. et al.,
2019), with NF-κB driving the synthesis of the inflammasome
sensor NLRP3 as well as the pro-inflammatory cytokines pro-IL-
1/IL-1, pro-IL-18, TNF-α and many more (Afonina et al., 2017).
Moreover, AG downregulated the transcription of IL-1 and/or
the inflammasome-activating cytokine TNF-α in face of MPTP-
injury (PD), threohydroxyaspartate (THA)/kainic acid-assault
(excitotoxicity), subarachnoid hemorrhage and SCI (Moon
et al., 2009a; Ersahin et al., 2010; Lee J. et al., 2010; Lee et al.,
2012, 2014b; Alvarez and Munoz-Fernandez, 2013). As such,
AG is adept in blocking the initial steps necessary for NLRP3
inflammasome induction, as observed in the EAE-based study
of Liu F. et al. (2019). While it is not entirely evident how AG
inhibits NF-κB signaling in GHS-R1α-negative microglia (Moon
et al., 2009a; Lee J. Y. et al., 2010; Lee and Yune, 2014), it can be
assumed that the prevention of neuronal and oligodendrocyte
death, leading to the reduced liberation of DAMPs, indirectly
avert inflammatory processes, the sensing of DAMPs by NLRP3
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and other inflammasome conductors and, thus, inflammasome
formation (see also chapter 5.2.1).

Peripheral Inflammation
Acylated Ghrelin Suppresses Inflammatory

Responses in Mononuclear Phagocytes and

Quenches Peripheral Inflammation in vitro and in vivo

Cell culture studies have indicated that AG exerts direct anti-
inflammatory actions in the peripheral mononuclear phagocyte
system. The expression of GHS/R1α has been confirmed in
the murine RAW264.7 macrophage-like cell line as well as in
primary immature and mature monocyte-derived dendritic cells
of human origin (Dixit et al., 2004; Waseern et al., 2008).
Furthermore, in vitro studies have shown that the administration
of AG downregulated the synthesis of IL-1β, IL-6, and TNF-
α in human peripheral blood mononuclear cells following
irritation with the mitogen phytohemagglutinin (Dixit et al.,
2004). Also, AG dose-dependently blocked the transcription of
pro-inflammatory cytokines via the inhibition of NF-κB in LPS-
induced RAW264.7 mononuclear cells in a GHS-R1α-dependent
manner. Interestingly, AG evoked NF-κB-independent p38
signaling in these cells as well, promoting the secretion of the
anti-inflammatory cytokine IL-10 (Waseern et al., 2008). As such,
AG dampens the production of pro-inflammatory mediators
by mononuclear cells, while encouraging the liberation of anti-
inflammatory cytokines. In concert, AG ameliorated the LPS-
driven systemic accumulation of pro-inflammatory IL-1β, IL-6,
and TNF-α in the plasma, spleen, liver, lungs and lymph nodes,
thus protecting mice from endotoxic shock (Dixit et al., 2004).

Over the previous two decades, AG has consistently
performed well in animal models of various inflammatory
conditions, guarding against endotoxemia/sepsis, pancreatic,
hepatic and kidney disease, cardiovascular conditions,
arteriosclerosis, colitis, arthritis, age-induced inflammation
and more (Baatar et al., 2011; Deboer, 2011). For instance,
the administration of AG succeeded in the animal model of
colitis, showing downregulated local and systemic release of
pro-inflammatory modulators, reduced inflammatory Th 1
activity, elevated action of immunosuppressive regulatory T-cells
(Tregs), diminished oxidative stress, ameliorated intestinal tissue
loss and reinvigorated mucosal vitality (Gonzalez-Rey et al.,
2006; Konturek et al., 2009; Pamukcu et al., 2013; Matuszyk et al.,
2015; Ceranowicz et al., 2017). Anti-inflammatory properties
of AG have also been confirmed in various clinical studies
(Kodama et al., 2008; Takata et al., 2015; Farokhnia et al.,
2020). As concluded elsewhere in the context of colitis, the
inflammation-ameliorating mechanisms of AG include (i) the
attenuation of systemic innate and adaptive immune responses,
which is dependent on the direct suppression of leukocytes; (ii)
the AG-stimulated liberation of tissue-strengthening GH and
insulin-like growth factor 1 (IGF-1) and (iii) the elevation of
the intestinal blood flow and motility, thus reducing the contact
time of inflammatory irritants with the intestinal mucosa (Baatar
et al., 2011; Deboer, 2011). Considerably, intestinal damage,
leakiness and inflammation co-occur in AD and PD, preceding
the manifestation of neurodegenerative processes. The early

inflammatory shift in the gut encourages the release of pro-
inflammatory cytokines and chemokines, bacterial stimulants
(i.e. LPS) as well as aggregation-prone amyloid-like proteins
into the blood stream. The inflammatory stress, combined
with the suspected trafficking of intestinal Aβ and α-synuclein
seeds across the ENS into the CNS, is thought to instigate
amyloid deposition and neuronal atrophy (Ambrosini et al.,
2019). As such, AG’s beneficial actions in the gut must not
be underestimated.

The Vasoprotective and Blood Flow-Enhancing

Properties of Acylated Ghrelin
In addition to modulating the monocyte system, AG protects the
endothelial vasculature and stimulates vasorelaxation to enhance
blood flow. Immunohistochemical examinations of human tissue
have confirmed the plentiful presence of GHS-R1α on endothelial
cells of variousmyocardial, but also pulmonary, renal and adrenal
blood vessels, whereas the receptor is sparsely expressed by the
blood vessel endothelium that supplies nerves and connective
tissue (Kleinz et al., 2006). Although to a low degree, GHS-
R1α is also expressed throughout the cerebral vasculature and
a markedly high density of GHS-R1α has been detected in
the microvasculature of the granular layer of the cerebellum
(Katugampola et al., 2001; Ku et al., 2015, 2016).

In cell culture studies using human umbilical vein endothelial
cells (HUVECs), it was demonstrated that AG inhibited
the nuclear translocation of NF-κB even in the absence of
inflammatory stimuli, quenched the basal and H2O2-triggered
release of IL-8 and oxLDL-encouraged release of IL-6, blocked
the endothelial expression of the immune cell-recruiting
monocyte chemoattractant protein 1 (MCP-1) and reduced the
TNF-α-incited adhesion of co-cultured monocytes/macrophages
to the vascular endothelial cells, which was presumably related
to the endothelial downregulation of vascular cell adhesion
molecule-1 (VCAM-1) and intercellular adhesion molecule 1
(ICAM-1) (Li et al., 2004; Zhang, 2017). Since DAG failed to
modify inflammatory reactions by HUVECs, it was implied that
the described inflammation-dampening effects were reliant on
GHS-R1α (Li et al., 2004). Moreover, a recent study revealed a
cytoprotective function of AG in palmitate- and glucose-stressed
human microvascular endothelial cells, in which AG rescued
apoptosis and caspase-3 activity by inhibiting the stress kinases
p38 and JNK1/2, diminishing the mitochondrial generation
of ROS and normalizing the rate of oxygen consumption
and ATP production (Liao et al., 2017). Additionally, clinical
studies indicate that AG, in an endothelial nitic oxide synthase
(eNOS)-mediated and GH-independent manner, enhances the
bioavailability of NO and elicits vasorelaxation, hence improving
blood flow and decreasing blood pressure (Nagaya et al.,
2001, 2004; Shimizu et al., 2003; Tesauro et al., 2005; Kleinz
et al., 2006; Virdis et al., 2015). Since AG enhances AMPK
activity in endothelial cells (Fang et al., 2013) and the
stimulation of AMPK was proven to trigger the AMPK-
conveyed activating phosphorylation of eNOS at Ser1177 in
cultured human and rat endothelial cells, thus strengthening
vasodilation in vivo (Morrow et al., 2003; Suzuki et al., 2008),
it is highly likely that the AG-evoked liberation of NO is
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AMPK-mediated. Thus, in GHS-R1α-expressing blood vessel
endothelial cells in the periphery, AG protects the vasculature by
inducing the mitochondrial ROS-scavenger UCP-2 to ameliorate
oxidative stress, inflammatory responses and vascular insult
by hyperglycemia and hyperlipidemia. Moreover, by increasing
blood flow, AG might ameliorate the pathologically diminished
cerebral blood flow and deficits in the CNS delivery of glucose
that have been detected in the brains of AD (Lyingtunell et al.,
1981, Eberling et al., 1992; Ogawa et al., 1996; Roher et al., 2012;
de Eulate et al., 2017) and PD (Huang et al., 2008; Hosokai et al.,
2009; Liepelt et al., 2009; Borghammer et al., 2010; Berti et al.,
2012) patients.

Acylated Ghrelin Stimulates Anti-inflammatory

Signaling Across the Vagus Nerve
Importantly, various investigations have indicated that AG
controls peripheral inflammation via the vagal nerve system. In
concert, the area postrema, the nucleus tractus solitarius and
the dorsal motor nucleus of the vagus (DMV) form the dorsal
vagal complex (DVC) that serves as a commanding platform
for the autonomic nervous system, navigating gastrointestinal
motility, secretory activity and pancreatic hormone release (Price
et al., 2008; Mussa and Verberne, 2013). Interestingly, GHS-
R1α is expressed in the DVC and the plasma GH pools and
c-Fos immunoreactivity in the DVC were found to decline
with age in Fischer344 rats. The injection of GH, on the other
hand, was capable of raising the transcriptional levels of GHS-
R1α and partially re-established c-Fos immunoreactivity in the
DVC of these aged rodents, suggesting that the GH-induced
expression of GHS-R1α regulates the vagal sensitivity toward
AG. Moreover, the administration of LPS into older animals,
which display lessened expression of GHS-R1α in the DVC,
evoked the excessive release of TNF-α and IL-6, far greater than
in younger littermates (Wu et al., 2009b). In agreement, the
utility of a GHS-R1α antagonist exacerbated the endotoxemia-
induced liberation of pro-inflammatory cytokines into the blood
stream in young rats (Wu et al., 2009b), implying an important
immunosuppressive function of AG within the vagal nerve
system that gradually deteriorates with age.

Besides the DVC, the presence of GHS-R1α was also
discovered on the nodose ganglion of the vagus nerve as well
as the nerve terminals of the outgrowing afferent vagal fibers,
which innervate the digestive tract and sense the systemic
conditions and circulatory hormone levels. The binding of
plasma AG to GHS-R1α on the afferent vagal ends mutes
vagal firing, contributing to the initiation of feeding and GH-
release (Date, 2012). In the context of inflammation, it is
broadly accepted that the afferent vagal nerves exert anti-
inflammatory (cholinergic) signaling via multiple mechanisms
following stimulation (see Bonaz et al., 2016). As confirmed
with vagotomy, the interaction of administered AG with the
vagal nerve not only quenched systemic inflammation during
sepsis (Wu et al., 2007, 2009a), but also suppressed inflammation
in in vivo models of traumatic brain injury, focal cerebral
ischemia and gut ischemia/reperfusion injury, thus attenuating
the accumulation of plasma and cerebral inflammatory cytokines
(Wu et al., 2008; Bansal et al., 2010, 2012; Cheyuo et al., 2011),

inflammation-driven intestinal permeabilization and atrophy
(Wu et al., 2008, 2009a; Bansal et al., 2010).

Adaptive Immunity and CNS Infiltration
Acylated Ghrelin Suppresses Pro-inflammatory

T-Cells and Blocks Immune Cell Invasion Into the

Brain
AG is also involved in the regulation of the adaptive immune
system, which is based on the modulation of T-cells. It
was confirmed that primary human blood mononuclear cells
and human T-cells express GHS-R1α and the treatment with
AG counteracted the leptin-induced secretion of the pro-
inflammatory cytokines IL-1, IL-6 and TNF-α by these cells in
vitro (Dixit et al., 2004). In agreement with this, the injection
of AG prevented the LPS-stimulated and T-cell-instructed
production of IL-1β, IL-6, and TNF-α in various organs and
the blood plasma, thus ameliorating anorexia in the in vivo
endotoxemia model (Dixit et al., 2004). In a follow-up study, the
same group demonstrated that AG restrains the production of
various cytokines by inhibiting the nuclear translocation of NF-
κB and the expression of pro-inflammatory genes. Interestingly,
AG was found to be endogenously expressed by T-cells (Dixit
et al., 2004) and its synthesis by T-cells declined with age, whereas
the infusion of AG reversed the age-correlating increase in a
large number of pro-inflammatory cytokines and chemokines in
old rats (Dixit et al., 2009). This suggests that the loss of GHS-
R1α/AG-signaling in immune cells contributes to the process
of immune-senescence during aging, also known as “inflamm-
aging.” Briefly, the process of inflamm-aging describes the
gradual manifestation of an asymptomatic, chronic, systemic and
low-grade inflammatory phenotype in the entire physiological
system with age that contributes to development of aging-related
diseases, such as insulin resistance, T2DM, AD, and PD (Xia et al.,
2016).

Besides managing the inflammatory state, it was shown
that AG dose-dependently inhibited the differentiation of
isolated lymphocytes into the pro-inflammatory T helper
cell (Th)17 subset, while GHS-R1α knockout mice exhibited
heightened splenic levels of Th17 cells. It was confirmed
that T-cell differentiation is coupled to the induction of
the mTor/S6K1 and mTor/signal transducer and activator
of transcription (STAT)3 pathways and AG blocked Th17
differentiation by inhibiting mTor activity (Xu Y. H. et al.,
2015). This proposes that, as observed in neurons, AG drives
the mTor-inactivating AMPK/TSC1/2 pathway in T-cells (Bayliss
and Andrews, 2013; Peixoto et al., 2017). In agreement,
AG elicits AMPK-evoked autophagy in the lymphoblastic
Jurkat and Molt-4 cell lines (Heshmati et al., 2020), also
considering that autophagy is initiated by the inactivation of
mTOR (Lan et al., 2017). Generally, the differentiation toward
the major, pro-inflammatory Th1 and Th17 subpopulations
is dependent on mTORC1/STAT3 signaling as well as the
presence of the cytokines IL-6 and transforming growth
factor beta (Th17) and mTORC1/STAT4 plus IL-12 (Th1)
(Saleiro and Platanias, 2015). As such, AG induces an anti-
inflammatory phenotype in lymphocytes by downregulating
the production of pro-inflammatory cytokines and, presumably
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in an AMPK/TSC1/2-mediated manner, limiting mTor-driven
differentiation and proliferation.

To investigate the impact on T-cell instructed immune
infiltration into the brain, studies in EAE models serve well in
the assessment of AG’s immunosuppressive capabilities. In the
EAE mouse model, AG, but not DAG, improved the overall
disease score, reduced lesion size, demyelination, microgliosis,
inflammasome induction as well as iNOS and NF-κB activity
in the spinal cord and downregulated the production of IL-1ß,
IL-6, TNF-α and cyclooxygenase-2 (COX-2) by microglia and
spinal cord-invading T-cells. Immune cell invasion into the spinal
cord was only blocked by AG in some of these studies, however,
which might have been related to the choice of the EAE-initiating
antigen used for immunization (Theil et al., 2009; Souza-Moreira
et al., 2013; Liu F. et al., 2019). Therefore, while highly implied,
a T-cell suppressing function of AG needs to be confirmed in
animal models of AD and PD.

Acylated Ghrelin Guards Against Blood Brain Barrier

Damage by Reducing Inflammation
The BBB is a continuous, selective cell barrier in cerebral
microvessels that separates the periphery (the circulating blood)
from the brain. The vascular BBB is composed of an initial
layer of endothelial cells, which seal off the paracellular gaps
through the expression of tight junction proteins, and is further
strengthened by pericytes and astrocyte end-feet. The breaching
of the BBB/blood vessels, the leakage of peripheral material into
the brain, fluid influx (edema), ion disbalance, the trespassing
of peripheral immune cells as well as interrupted cerebral blood
flow, are not only a concern in response to mechanical CNS
injury, but are also major pathological features of AD and PD
(Sweeney et al., 2018).

Importantly, inflammation augments the cerebral entry of
peripheral immune cells by provoking the disruption of the
BBB. For example, the genetic deletion of TNF-α and the
utility of the microglial inhibitor minocycline attenuated the
MPTP-induced permeabilization of the BBB in this PD animal
model (Zhao et al., 2007). Furthermore, the cerebral infusion
of LPS, in a mostly MMP-3-conyeyed manner, injured the BBB
through the upregulation of MMP-3, MMP9, and the MMP-
driven degradation of various tight junction proteins in rodents
(Gurney et al., 2006). MMP-3 is also implicated in BBB damage
in PD (Chung et al., 2013) and activates MMP-9 (Lee et al.,
2014a), the MMP family member that directly proteolyzes BBB
components (Lakhan et al., 2013).

AG not only quenches cerebral and systemic inflammation, as
exemplified in the previous pages, but also protected endothelial
cells of the BBB and neurons from apoptosis in various contexts,
leading to the reduced release of the microglial inflammatory
activator MMP-3 (Kim et al., 2005; Moon et al., 2009a; Lee J.
et al., 2010; Lee et al., 2015). During various forms of CNS
injury, AG was further shown to suppress systemic inflammation
by stimulating anti-inflammatory signaling across the vagus
nerve (Cheyuo et al., 2011), which led to reduced BBB damage
and permeabilization, the transcriptional maintenance of the
BBB tight junction proteins occludin and zonula occludens by
vascular endothelial cells, the decreased death of neurons and

astrocytes as well as the reduced spillage of DAMPs by apoptotic
cells, such as neuron-specific enolase and S100β, into the blood
stream. Thus, by diminishing total inflammation, the secretion of
pro-inflammatory DAMPs and inflammation-driven BBB injury,
AG was capable of preventing neutrophil infiltration into the
CNS (Ersahin et al., 2010, 2011; Lopez et al., 2012a,b, Mohaddes
et al., 2017).

ACYLATED GHRELIN INDUCES THE
RELEASE AND SYNTHESIS OF
NEUROPROTECTIVE INSULIN-LIKE
GROWTH FACTOR 1

It must not be neglected that AG is involved in the expression
and release of other powerful agents, such as the neuroprotective
growth factor IGF-1 (reviewed in Costales and Kolevzon, 2016).
In the periphery, AG has been deemed as the most powerful
stimulator of the GH/IGF-1 axis (Nass et al., 2011). A clinical
trial, although slightly underpowered, has indicated that the
injection of the ghrelin analog MK-677 proved to sustain IGF-
1 release in the long-term, which led to enhancements in the
lean body mass of healthy, aged and non-obese subjects after
a 1-year treatment period (Nass et al., 2008). Interestingly,
AG equally appears to elevate the synthesis of IGF-1 in some
brain regions. The injection of the ghrelin agonist GHRP-6 into
healthy, adult rodents elevated the transcription levels of IGF-
1 in the hypothalamus, the cerebellum and the hippocampus,
but not the cortex (Frago et al., 2002). Furthermore, in IGF-
1-positive brain areas, the increased phosphorylation of Akt,
enhanced levels of the apoptosis-suppressing protein Bcl-2 as
well as the inactivation of the apoptosis-mediator Bad were
detected (Datta et al., 1997). This suggests that the AG-driven
upregulation of IGF-1 in various brain areas occurs in the
absence of any toxic insults, encouraging anti-apoptotic signaling
in neurons. And indeed, the administration of GHRP-6 to old
rats ameliorated the age-associated decline in IGF-1 levels in
the cerebellum, inhibited caspase 9/3 and reduced cerebellar
apoptosis (Paneda et al., 2003). The elevated hypothalamic
synthesis of IGF-1 was also observed in AG or GHRP-6-injected
obese rodents that were placed on a high fat dietary regiment
(Garcia-Caceres et al., 2014).

INSULIN RESISTANCE

Early Cerebral Insulin Resistance Is Linked
to Glucose Hypometabolism, Amyloid
Pathology, and Cognitive Decline in
Alzheimer’s and Parkinson’s Disease
While insulin is well-known for its metabolic role in the
periphery, the insulin receptor is also widely expressed in the
CNS. Indeed, insulin regulates various pivotal processes in
neurons, such as the expression of glycolysis-associated enzymes
and, thus, glucose metabolism, mitochondrial function and
biogenesis, memory, gene and protein synthesis, cellular growth,
functional autophagy, the protection from oxidative and ER
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stress and the induction of survival pathways. Given the pivotal
and neuroprotective role of insulin-signaling in the brain and that
T2DM is one of the greatest known risk factors for AD and PD, it
is no surprise that its early desensitization in the CNS, believed
to predominantly occur in response to chronic inflammation,
promotes the development of AD and PD (see Holscher, 2019 for
further information) (Blazquez et al., 2014; Werner and LeRoith,
2014; Holscher, 2020).

The negative effects of desensitized insulin on the brain
are very apparent, especially in AD. For instance, a high-
fat diet, which induces systemic insulin resistance, was shown
to attenuate neuroprotective brain-derived neurotrophic factor
levels, long-term potentiation (LTP) and dendritic spine
density in the hippocampus of previously healthy mice, while
accelerating Aβ plaque formation and memory loss in Aβ-
transgenic animals (Ho et al., 2004; Stranahan et al., 2008).
In addition, insulin suppresses the activity of GSK-3ß, a well-
known Tau kinase (Lei et al., 2011), hence the loss of insulin
signaling initiates Tau hyperphosphorylation and aggregation
in AD (Hong and Lee, 1997; Schubert et al., 2003, 2004).
Most importantly, insulin resistance results in pronounced
glucose hypometabolism in the CNS. Studies in AD patients
have confirmed the reduced sensitivity of the post-mortem-
derived hippocampal and cortical brain tissue toward insulin.
Moreover, the rate of inhibitory serine phosphorylation of IRS-
1 (as a marker of insulin resistance), independent of even
T2DM or the APOEε4 allele, rose gradually from previously
healthy suspects to mild cognitive impairment (MCI) to AD
patients, correlated with the quantity of Aß deposits and
was inversely associated with episodic and working memory
(Talbot et al., 2012). Such and related investigations led to
the designation of AD as “type 3 diabetes” (Steen et al., 2005;
Moloney et al., 2010). Furthermore, quantitative microarray
RNA studies have revealed that AD patients, prior to the
appearance of other neuropathological hallmarks, including Aß
plaques and Tau neurofibrillary tangles, exhibit a decline in
the cerebral expression of insulin-regulated genes that drive
TCA and pyruvate metabolism (Zhao et al., 2015). In accord
with insulin resistance, glucose hypometabolism in the CNS,
for instance within the cortex, has been linked to the transition
from MCI to AD and cognitive dysfunction (Lyingtunell et al.,
1981; Hoyer et al., 1988; Ogawa et al., 1996; Drzezga et al., 2003;
Mosconi et al., 2008). These early impediments in the neuronal
insulin and glucose metabolism have been proposed to trigger
a detrimental bioenergetic shift from glucose to alternative and
less efficient energy substrates (reviewed in Neth and Craft,
2017) and have been suggested to precede any other pathological
alteration, including even mitochondrial dysfunction, in AD
patients (Zilberter and Zilberter, 2017; Holscher, 2019). This
is further exacerbated by general reductions in the rate of
blood flow and, therefore, cerebral glucose delivery in AD
patients (Lyingtunell et al., 1981, Eberling et al., 1992; Ogawa
et al., 1996; Roher et al., 2012; de Eulate et al., 2017). The
latter may be another consequence of insulin resistance, since
insulin promotes the cerebral blood flow by enhancing NO-
driven vasoconstriction and endothelin 1-mediated capillary
recruitment (Craft, 2009).

Impaired neuronal insulin signaling has also been identified
in PD patients, with post-mortem analysis indicating that
the prevalence of insulin receptors is reduced in the SNpc,
the amygdala and the frontal white matter. Furthermore,
components of the insulin pathway were found to be deactivated
by inhibitory serine phosphorylation in the SN and basal ganglia,
which appeared to precede dopamine neuron death, implying
that the functional deterioration of insulin signaling manifests
prematurely (Moroo et al., 1994; Takahashi et al., 1996; Tong
et al., 2009; Morris et al., 2014). Interestingly, various studies
have indicated that PD patients also exhibit cortical glucose
hypometabolism and diminished blood flow in this area (Huang
et al., 2008; Hosokai et al., 2009; Liepelt et al., 2009; Borghammer
et al., 2010; Berti et al., 2012), a decreased rate of glucose
consumption in the frontal lobe and caudate putamen (Xu Y.
Q. et al., 2015) as well as the reduced expression of glycolytic
enzymes in the putamen and the cerebellum (Dunn et al., 2014).
Indeed, the bioenergetic alterations, in particular when present
in the cortex, were associated with cognitive decline in PD
patients, thus posing a potential predictor for the onset of PD-
related dementia (Huang et al., 2008; Hosokai et al., 2009; Liepelt
et al., 2009). In resemblance to AD, it has been postulated that
these impairments in the cerebral turnover of glucose manifest
prior to the appearance of other pathologic changes, for example
the formation of Lewy bodies, in the PD brain (Zilberter and
Zilberter, 2017).

Acylated Ghrelin Prevents the
Pathology-Associated Development of
Insulin Resistance
Intriguingly, AG appears to preserve the cerebral insulin
sensitivity. For example, The Aβ25−35-induced mouse model
of AD displayed pathologic weight loss, decreased energy
expenditure, deregulated insulin secretion and elevated HOMA-
IR scores, which signified the presence of peripheral insulin
resistance, whereas centrally administered AG restored these
metabolic alterations. In the brains of these AD-like mice,
AG further suppressed glycogen synthase kinase 3β (GSK-3β)
activity and Tau hyperphosphorylation (Kang et al., 2015). GSK-
3β is a Tau-phosphorylating kinase whose activity is aberrantly
enhanced in response to the desensitization of insulin and the
associated loss of Akt-signaling during diabetes mellitus and
AD (Jolivalt et al., 2008; Zhang et al., 2018). Aβ, in turn,
induces insulin resistance and GSK-3β by trapping insulin
receptors in the neuronal cytoplasm and promoting inhibitory
serine phosphorylation of insulin pathway components, for
example IRS-1. As such, Aβ weakens insulin and Akt-signaling
in the CNS (Zhao et al., 2008; Najem et al., 2016). In the
MSG-generated rat model of obesity and cognitive decline,
the administration of the ghrelin analog GHRP-6 normalized
the plasma concentrations of various hormones, decreased the
abnormally elevated hippocampal pools of Aβ and acetylcholine
and enhanced the spatial memory of these rodents (Kutty and
Subramanian, 2014). Also, in APPSwDI mice that were fed with
a high glycemic index diet, AG, in fact, promoted weight loss,
motor activity and spatial memory, while decreasing the degree
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of Ser636 phosphorylated IRS-1 in the mouse hippocampus,
indicating that AG prevented the desensitization of insulin
(Kunath et al., 2015). Lastly, the combinatorial application of AG
and the insulin-re-sensitizing drug liraglutide, a glucagon-like
peptide-1 (GLP-1) analog, was tested in the R6/2 Mouse Model
of Huntington’s disease (HD), resulting in the normalization of
the chronically raised blood glucose levels as well as improved
peripheral insulin sensitivity (HOMA-IR) and pancreatic ß-
cell function (HOMA-ß) (Duarte et al., 2018). Notably, the
co-injection of liraglutide and AG was more beneficial than
liraglutide alone and prevented hyperinsulinemia in the cortex,
forestalled the accumulation of pro-inflammatory triglycerides
and cholesterol, increased IGF-1 levels, decreased lactate and
AMP pools and doubled the cortical energy charge (Duarte
et al., 2018). Therefore, the latter in vivo studies suggest that,
via the elevated clearance of Aβ or related amyloids, AG fosters
the cerebral insulin sensitivity and prevents insulin resistance-
associated bioenergetic impairments, thus elevating cognition
during AD.

Mechanistically, it is likely that AG prevents the
desensitization of insulin through its potent anti-inflammatory
properties (see also Figure 2). In the high-fat diet in vivo model
of obesity, which shows low-grade systemic inflammation, AG
counteracted the diet-driven rise in pro-inflammatory plasma
free fatty acids and attenuated the amassment of triglycerides,
the nuclear translocation of NF-κB and pro-inflammatory
TNF-α production (Barazzoni et al., 2011, 2014). According to
Barazzoni et al. and García-Cáceres et al., the administration of
AG results in a phenotype that, despite exhibiting weight gain,
displays low systemic inflammation and diminished triglyceride
burden (Barazzoni et al., 2011; Garcia-Caceres et al., 2014).
Additional studies indicated that AG, despite its orexigenic
effects, blunted the amount of circulatory cytokines, such as
IL-1β and IL-6, and oxidative stress markers in T1DM/T2DM
animal models (Kyoraku et al., 2009; Garcia-Caceres et al.,
2014). Indeed, AG acts as a potent immunosuppressor in the
periphery and in the brain (as expounded in chapter 5 and shown
in Figure 2). Given that inflammation is the driving factor in
the maturation of insulin resistance during obesity, T2DM
and neurodegenerative diseases, including AD and PD (Tateya
et al., 2013; Holscher, 2019), it is implied that AG enhances
insulin sensitivity by suppressing systemic inflammation,
hyperlipidemia and oxidative assault.

The Orexigenic Effects of Ghrelin May
Encourage Secondary Metabolic
Deregulation
Despite the latter promising studies, the long-term metabolic
effects of AG are questionable. Generally, as concluded by
a recent meta-analysis in diabetic patients suffering from
gastropareses, the long-term clinical use of AG seems to be
safe and is well-tolerated, even in metabolically susceptible
populations (Hong et al., 2019). However, clinical studies in
healthy, non-obese subjects have shown that the infusion of AG
impairs the glucose-stimulated secretion of insulin, diminishes
glucose tolerance and worsens insulin sensitivity (Gauna et al.,
2004; Vestergaard et al., 2007; Tong et al., 2010, 2014).

Furthermore, GHS-R1α antagonists, GOAT inhibitors and the
genetic deletion of GHS-R1α enhanced the release of insulin,
glucose tolerance, insulin sensitivity and weight loss in in vivo
models of obesity (Sun et al., 2006; Esler et al., 2007; Longo
et al., 2008; Barnett et al., 2010; Qi et al., 2011). Indeed, as an
appetite-stimulating hormone, the long-term administration of
a ghrelin analog promoted weight gain, which led to increased
fasting blood glucose levels and deteriorated insulin sensitivity
in healthy, aged adults (Nass et al., 2008). On the other hand,
the injection of AG worsened glucose tolerance directly after
administration, yet had rather beneficial metabolic long-term
consequences, including weight loss, in T1DM, AD, and HD in
vivo models (Granado et al., 2009; Kyoraku et al., 2009; Kunath
et al., 2015; Duarte et al., 2018). Likewise, chronically increased
plasma ghrelin levels did not lead to any complications in adult
rodents, although it might promote hyperglycemia with age
(Iwakura et al., 2005; Reed et al., 2008).

In conclusion, the injection of AG is safe, ameliorates the
insulin resistance-driving inflammatory pathology and does not
inducemetabolic deregulation per se. Nonetheless, the orexigenic
effects of the hormone, which encourage weight gain, may
negatively affect the systemic insulin sensitivity and glucose
tolerance in the long-term, favoring AD and PD.

DOPAMINE

Acylated Ghrelin Protects Nigrostriatal
Dopaminergic Neurons and Boosts
Dopamine Release in Parkinson’s Disease
According to a previous analysis, ∼30% of the dopamine-
producing neurons in the SNpc are lost at the time at
which clinical motor symptoms, including tremor, rigidity and
bradykinesia, manifest in PD. Furthermore, neuronal death is
accompanied by the independent destruction of axonal terminals
in the SNpc and the degeneration of around 50–60% of neuronal
projections from the SNpc toward other brain regions, in
particular the striatum. Ultimately, these adverse alterations
result in an estimated 50–70% reduction of total dopamine
levels in the striatum/putamen (Cheng et al., 2010). Typically,
symptomatic relief is provided through the supplementation of
the lost striatal dopamine, yet these medications desensitize over
time (Armstrong and Okun, 2020).

In the context of PD, there is evidence that AG not only
supports the survival of SNpc-located neurons, but also boosts
the availability of dopamine. As demonstrated in vitro, AG
ameliorated the neuronal viability, cell death, caspase-3 activity
and Bcl-2/Bax ratio, normalized the mitochondrial membrane
potential, attenuated the production of ROS and malonaldehyde,
stimulated the antioxidant enzymes MnSOD and catalase and
inhibited the pro-inflammatory master transcription factor NF-
κB in MPTP-stressed and GHS-R1α-expressing dopaminergic
MES23.5 cells (Dong et al., 2009; Liu et al., 2010). Another
study in the SN-derived SN4741 cell line, as confirmed with
a GHS-R1α antagonist, showed that AG suppresses the LPS-
provoked secretion of the pro-inflammatory cytokine IL-6
(Beynon et al., 2013). Similar to MPTP, AG was also capable
of reversing the rotenone-induced blockade of mitochondrial
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complex 1 and prevented the toxin-induced drop in the
mitochondrial membrane potential, resulting in the lessened
leakage of the apoptosis-prompting cytochrome C, reduced
caspase-3 activation and diminished cell death (Yu et al., 2016).
In vivo, multiple independent studies in the MPTP rodent model
of PD have shown that AG binds to GHS-R1α and activates
SNpc dopaminergic neurons, rescues from neuronal death and
prevents the depletion of dopamine in the striatum (Jiang et al.,
2008; Andrews et al., 2009a; Moon et al., 2009a). Intriguingly,
AG preserved the neuronal projections from the SNpc toward
the striatum, indicating that AG has axoprotective capabilities
(Moon et al., 2009a). Mechanistically, AG is responsible for
the neuroprotective effects of caloric reduction and stimulates
AMPK activity in the SN of MPTP-treated rodents (Bayliss
et al., 2016). Furthermore, AG strengthens the neuronal resilience
toward oxidative stress in an AMPK/UCP2-mediated manner,
while improving the mitochondrial respiration, ATP production
and the number of functional mitochondria through the
induction of biogenesis (see chapter 3.2 for further insight). On
the other hand, the deletion of ghrelin or GHS-R1α potentiated
the neuronal loss and striatal dopamine deprivation in the MPTP
mouse model (Andrews et al., 2009a). In addition, Andrews et al.
showed that AG reversed the MPTP-provoked downregulation
of TH in SNpc neurons in vivo. This effect was presumably
a combination of the improved mitochondrial ATP generation
and, thus, neuronal metabolism (Andrews et al., 2009a), the
shielding from ROS that are generated through mitochondrial
intoxication with MPTP (Andrews et al., 2009a), the reduction of
microglial activation, the decreased release of pro-inflammatory
cytokines, such as TNF-α and IL-1β, the diminished formation
of NO metabolites (Moon et al., 2009a) as well as the anti-
apoptotic effects of AG, as evident by the normalization of the
Bcl-2/Bax ratio and the inhibition of caspase-3 (Jiang et al., 2008).
Moreover, the stimulation of mitophagy via AG may prevent
the accumulation of defective mitochondria and the associated
generation of ROS (Bayliss and Andrews, 2013). For an overview
of the neuroprotective pathways of AG, please refer to Figure 1.

Besides safeguarding SNpc neurons, AG stimulates dopamine
release in a physiological manner, as depicted in Figure 3. In
an extensive study, it was demonstrated that AG binds to
nigral neurons, triggers neuronal firing and enhances dopamine
turnover, achieving an impressive three-fold increase in total
dopamine levels in the striatum of healthy mice (Shi et al., 2013).
The same group further discovered that the unilateral injection
of AG into the SNpc ameliorated the cataleptic symptoms
induced by the dopamine D2 receptor antagonist haloperidol,
thus immediately improving the posture of the mice. The intra-
SN injection of AG also improved themotor skills of haloperidol-
treated DATSN::DTA rodents in a recent study (Suda et al.,
2018).In line with AG’s role in dopamine metabolism, the
injection of a GHS-R1α-antagonist into the SNpc was sufficient
to cause motor disturbances and catalepsy in healthy rodents
(Suda et al., 2018). Furthermore, the reduced expression of
GHS-R1α was verified in induced pluripotent stem cells with
a mutated or disrupted PARK2 gene, which is a mitochondrial
gene implicated in mitochondrial quality control, mitophagy,
and the development of early-onset PD (Pickrell and Youle,

2015), and in the SNpc of an in vivo model of PD (Suda
et al., 2018). This implies that mitochondrial and bioenergetic
deficits in dopaminergic neurons, which obviously impede the
cellular gene transcription, culminate in the downregulation of
GHS-R1α. Additionally, the co-emergence of insulin resistance,
leading to reductions in PI3K/Akt/mTORC1-driven protein
translation in dopaminergic neurons (Athauda and Foltynie,
2016; Anandhan et al., 2017; Holscher, 2019), presumably
aggravates dopaminergic dysfunction and neuronal insensitivity
toward AG.

As a side note, the combinatorial administration of the ghrelin
agonist HM01 or AG with the dopamine-replacing drugs L-
dopa or L-dopa/levodopa prevented the L-dopa- and 6-OHDA-
associated slowing of the gastric motility and constipation in
the 6-OHDA rodent model of PD (Wang et al., 2012; Karasawa
et al., 2014). This resulted in markedly enhanced plasma levels
of L-dopa and dopamine, indicating that ghrelin may improve
the gastrointestinal absorption of dopamine replacement drugs
(Wang et al., 2012). On the other hand, in a phase II clinical trial
to investigate the constipation-mitigating effects of the ghrelin
analog relamorelin, only 18 of the originally recruited 56 PD
patients were able to finish the trial. In the vast majority of PD
patients, relamorelin potentiated the frequency of incomplete
bowel movements to a degree that the prolonged participation
of the patients was impossible (Parkinson Study Group, 2017).
As such, while AG can evidently improve gastrointestinal
dysfunction (Hong et al., 2019), the occurrence of unwanted
gastrointestinal side-effects in some PD patients may restrict the
administration of ghrelin agonists in the long-term.

Acylated Ghrelin Induces Dopamine
Transmission in the Ventral Tegmental Area
and Stimulates Locomotor Activity and
Memory
Noteworthy, GHS-R1α was found to be expressed by ∼60% of
dopaminergic neurons in the VTA of rats (Abizaid et al., 2006).
Collectively, animal experiments indicate that the injection
of AG stimulates the mesolimbic transmission of dopamine
from the VTA to the nucleus accumbens, thus heightening the
release of dopamine in the nucleus accumbens and increasing
food intake. When injected intracerebroventrically or intra-
VTA, AG further enhanced the locomotor activity of rodents
(see Figure 3) (Abizaid et al., 2006; Jerlhag et al., 2007, 2012;
Quarta et al., 2009; Skibicka et al., 2011, 2012; Cornejo et al.,
2018). Accordingly, knockout or pharmacological inhibition of
GHS-R1α diminish mesolimbic dopamine transmission from
the VTA to the nucleus accumbens, disheartening locomotion
and the willingness of rodents to work for food rewards
(Abizaid et al., 2006; Jerlhag et al., 2010, 2012; Skibicka et al.,
2011, 2012). Given that dopamine deprivation in the VTA
is linked to hypokinesia and bradyphrenia in PD patients
(Yokochi, 2007), AG-associated improvements in this brain
area might provide symptomatic relief. Moreover, even though
the VTA predominantly projects dopamine toward the nucleus
accumbens, it is also connected to the hippocampus (mesolimbic
system) and the prefrontal cortex (mesocortical route) (Serrenho
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FIGURE 3 | Depiction of the physiological dopamine transmission by AG from the SN to the dorsal striatum (nigrostriatal route) and the VTA to the nucleus

accumbens and hippocampus (mesolimbic route). Notably, in addition to the loss of SN dopaminergic neurons and dopamine depletion in the dorsal striatum, PD

patients exhibit neuronal degeneration in the VTA at a later stage, leading to bradyphrenia and dyskinesia. The mesocortical route of the VTA is not shown.

et al., 2019). Intriguingly, a study demonstrated that AG
improved the object recognition memory of rats only when
administered alone, but not when co-given with the D1R
antagonist SKF 83566. Moreover, the injection of SKF 83566
itself did not negatively affect the behavioral performance of
the rodents (Jacoby and Currie, 2011). Indeed, the presence of
GHS-R1α and D1R heterodimers has been confirmed in the
mouse hippocampus. While we will not further discuss this
topic, cross-talk between ghrelin/GHS-R1α and dopamine/D1R-
signaling was responsible for synaptic modifications as well as
enhanced glutamate transmission, hippocampal plasticity and
memory in rodents (Kern et al., 2015). Therefore, AG may
elicit dopaminergic neurotransmission from the VTA to the
hippocampus to improve cognition.

ACYLATED GHRELIN ENHANCES
MEMORY IN HEALTHY RODENTS AND IN
AD ANIMAL MODELS

AG also plays a major role in the retention of long-term
memory. Various groups have reported that that the
intracerebroventricular, intrahippocampal, or peripheral
injection of AG or ghrelin agonists resulted in the binding
of AG to GHS-R1α on hippocampal neurons, indicating that
AG readily crosses the BBB. Furthermore, the administered
AG increased the density of dendritic spines and synapses,
enhanced LTP in the hippocampal CA1 region and led to
improved learning and memory in healthy rodents (Carlini et al.,
2002, 2004; Diano et al., 2006; Atcha et al., 2009). Impressively,
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the intracerebroventricular administration of AG restored the
undernutrition-induced drop in the cognitive aptitude of rodents
(Carlini et al., 2008), which is in line with ghrelin’s physiological
role as survival hormone (Mani and Zigman, 2017). On the other
hand, the genetic deletion of ghrelin or knockdown of GHS-R1α
lessened the numbers of hippocampal synapses, worsened LTP
and impaired long-term memory (Diano et al., 2006; Davis et al.,
2011), although discrepancies between spatial and contextual
memory have been reported in GHS-R1α-null mice (Albarran-
Zeckler et al., 2012). Albeit in the context of feeding, for a review
of the physiological regulation of the hippocampal circuits via
AG please see (Serrenho et al., 2019).

Additionally, by ameliorating the underlying cerebral
pathology, AG and ghrelin agonists enhanced the cognitive
performance of AD-like animals in multiple behavioral
paradigms. In such AD in vivo models, AG rescued from
hippocampal atrophy, synaptic damage and the degeneration
of cholinergic projections, heightened brain glycogen levels,
diminished Aß aggregation and deposition, blocked Aβ-
imparted deficits in LTPs, normalized plasticity-associated
p-CREB levels, improved insulin sensitivity, ameliorated
microglial and astroglial immunoreactivity, augmented AMPK
and suppressed cerebral GSK-3ß activity as well as Tau
hyperphosphorylation (Moon et al., 2011; Dhurandhar et al.,
2013; Kutty and Subramanian, 2014; Kang et al., 2015; Kunath
et al., 2015; Ortega-Martinez, 2015; Bartolotti et al., 2016; Santos
et al., 2017; Eslami et al., 2018; Jeong et al., 2018). In line with
these findings, ghrelin knockout mice displayed deficits in spatial
and recognition memory, worsened olfactory distinction and
heightened micro- and astrogliosis in the rostral region of the
hippocampus (Santos et al., 2017). The latter in vivo models of
AD strongly imply that, at least in part, AG raises cognition by
countering Aß and Tau toxicity. Direct cytoprotective properties
were also observed in primary hippocampal and mHypoE-N42
hypothalamic neurons, in which AG opposed the Aß oligomer-
induced cell death in a GHS-R1α-driven manner, diminished
superoxide production, restored the neuronal Ca2+ homeostasis,
rescued from mitochondrial membrane depolarization and
reduced the activation of the Tau-kinase GSK-3ß (Martins et al.,
2013; Gomes et al., 2014).

ACYLATED GHRELIN INDUCES
NEUROGENESIS IN THE HIPPOCAMPUS

Various studies have testified that the administration of AG
boosts adult hippocampal neurogenesis in healthy rodents (Zhao
et al., 2014; Kent et al., 2015; Hornsby et al., 2016), dwarf
rats (Li et al., 2013), in the 6-OHDA rodent model of PD,
although neurogenesis was only enhanced in the non-lesioned
brain hemisphere (Elabi et al., 2018), and the 5xFAD animal
model of AD (Moon et al., 2014). Within the hippocampus, mice
and dwarf rats were shown to possess Ki-67-positive, GHS-R1α-
expressing immature neuroblasts in the granule cell layer of the
DG (Moon et al., 2009b; Li et al., 2013; Hornsby et al., 2016).
It was confirmed that, in an IGF-1-independent manner, AG
stimulates the proliferation of neuroblasts, leading to an enlarged,

doublecortin (DCX)-positive progenitor cell population in the
DG of healthy mice and dwarf rats (Moon et al., 2009b; Li
et al., 2013; Kent et al., 2015). There is also evidence that the
injection of AG or overnight fasting raise the expression levels
of the neurogenic transcription factor early growth response 1
(Hornsby et al., 2016). On the other hand, the antibody-mediated
depletion of ghrelin decreased the DCX-expressing population of
neuroblasts in the DG (Moon et al., 2009b). In concert, a study in
depression-prone GHS-R1α−/− mice revealed that the deletion
of GHS-R1α exacerbated neuronal loss in response to chronic
social defeat stress and diminished the proliferation of progenitor
cells in the ventral DG (Walker et al., 2015). Interestingly, caloric
restriction not only failed to demonstrate anti-depressive effects
in these GHR-R1α knockout mice, but also provoked apoptosis
within the neurogenic domain of the DG, as opposed to the
growth-stimulating effects that were observed in control mice.

Notably, it has been postulated that GHS-R1α is, in fact, not
present on immature neuroblasts and that AG possibly drives
neurogenesis by stimulating the release of neurogenic factors
by GHS-R1α-expressing adult dentate granule cells (Buntwal
et al., 2019). Additional studies are needed to confirm these
propositions in the hippocampus of healthy rodents and in vivo
models of AD, however.

SIGNS OF GHRELIN RESISTANCE DURING
OBESITY, AGING, AND ALZHEIMER’S
DISEASE

Unfortunately, age- and disease-associated deteriorations in
ghrelin-signaling have been implied. For instance, in elderly
individuals, the plasma ghrelin levels, along with GH, were
found to be decreased (Rigamonti et al., 2002). Similarly, obese
individuals and patients with metabolic syndrome displayed
reduced plasma ghrelin pools (Tschop et al., 2001; Rigamonti
et al., 2002; Shiiya et al., 2002; Tesauro et al., 2005). While
no relevant alterations in the blood levels of ghrelin have been
observed in AD patients (Proto et al., 2006; Theodoropoulou
et al., 2012), the basal plasma levels of ghrelin and the
postprandial secretion of the hormone were diminished in
PD patients (Fiszer et al., 2010; Unger et al., 2011). It has
been proposed that the PD-related Lewy body pathology in
the myenteric plexus of the stomach and in the DMV, which
innervates the gut and navigates the gastrointestinal motility,
might impair the release of ghrelin (Stoyanova, 2014). Strikingly,
it was revealed that the locally synthesized levels of ghrelin, its
recently discovered splicing analog ln2-ghrelin, GOAT and GHS-
R1α were markedly downregulated in the temporal gyrus of AD
patients. In contrast, the transcriptional levels of the GHS-R1α-
trapping GHS-R1ß were significantly increased, indicating the
desensitization of ghrelin in cognition-processing brain areas
during AD (Gahete et al., 2010). Thus, the reduced secretion
of ghrelin in PD as well as the emergence of cerebral ghrelin
resistance in AD have been indicated.

Based on the latest evidence, obesity and T2DM seem to
encourage the development of ghrelin resistance (Zigman et al.,
2016). Interestingly, obese rodents not only display chronically
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lowered plasma levels of AG and total ghrelin as well as decreased
gastric synthesis of ghrelin and GOAT, yet also fail to secrete the
hormone post-prandially and do not respond to the appetite-
stimulating effects of administered AG (Martin et al., 2004;
Perreault et al., 2004; Briggs et al., 2010; Gardiner et al., 2010).
Ghrelin resistance has also been postulated to blunt VTA and
dopamine-regulated food/reward processing in obese rodents
(Lockie et al., 2015). Indeed, diet-induced obesity has been shown
to result in cerebral ghrelin resistance in rodents, which was
marked by the attenuated expression of hypothalamic GHS-R1α,
NPY and AgRP as well as the loss of Fos-immunoreactivity in
ARC neurons in response to peripheral and central injections
of AG (Briggs et al., 2010; Naznin et al., 2015). Additionally, it
was unraveled that aged and overweight rodents display impaired
translocation of plasma ghrelin across the BBB (Banks et al.,
2008).

Since leptin functions as a physiological and anorexic
counteragent to ghrelin in the hypothalamus, blocking
intraneuronal AG/GHS-R1α-signaling, some studies have
suggested that the elevated plasma pools of leptin during obesity
weaken the sensitivity toward AG (Hewson et al., 2002; Kohno
et al., 2007; Briggs et al., 2014). Thus, obesity and T2DM-
associated hyperleptinemia (Maffei et al., 1995; Considine et al.,
1996; Okumura et al., 2003; Pandey et al., 2015) may contribute
to the desensitization of AG in the hypothalamus. It must be
noted that GHS-R1α and leptin receptors strongly co-localize in
>90% of neurons in the ARC of the hypothalamus, explaining
the rapid neuronal desensitization in this region, whereas
receptor co-synthesizing neurons are rarely found elsewhere
in the CNS (Perello et al., 2012). Additionally, a high-fat diet,
in an inflammation-mediated manner, promotes hypothalamic
leptin resistance as well (El-Haschimi et al., 2000; Zhang et al.,
2008). This implies that hyperleptinemia might initially attenuate
cerebral ghrelin-signaling during obesity, yet is not sufficient to
trigger chronic ghrelin resistance.

Concerningly, it has been indicated that inflammation might
desensitize ghrelin signaling throughout the CNS. In this context,
the systemic liberation of GH was shown to be impaired in
obese mice (Briggs et al., 2010). Generally, somatotrophs manage
the systemic release of GH, which is triggered by GHS-R1α-
mediated mechanisms in the hypothalamus, the vagal afferent
nerves and the anterior pituitary, hinting that these areas might
desensitize to AG (Khatib et al., 2014). In particular, the vagal
nodose ganglion has been shown to desensitize, exhibiting the
reduced expression of GHS-R1α, diminished AMPK activation
and reduced electric current flow upon exposure to AG (Naznin
et al., 2015). Importantly, the exacerbatedmacrophage/microglial
immunoreactivity and expression of TLR4, IL-6 and TNF-
α were identified in the hypothalamus and vagal nerves
of high-fat diet subjected mice, proposing a possible link
between neuroinflammation and ghrelin resistance. In line with
this theory, caloric restriction and the associated weight loss
ameliorated these inflammatory changes, thus restoring the
sensitivity toward AG (Naznin et al., 2018). As such, metabolic
and cerebral inflammation possibly induce ghrelin resistance.
On the other hand, it is plausible that the initial, inflammation-
driven desensitization of insulin and other growth factors during

obesity, T2DM, AD and PD (Maldonado-Ruiz et al., 2017;
Holscher, 2019, 2020), which negatively affect the rate of cellular
protein translation though the loss of Akt/mTORC1-signaling
(Holscher, 2019; Liu and Sabatini, 2020), might be responsible
for the reduced cerebral expression of GHS-R1α and GOAT in
the cortex, hypothalamus and, potentially, further brain regions
(Briggs et al., 2010; Gahete et al., 2010; Naznin et al., 2015).

Interestingly, a recent study demonstrated that klotho-
deficient mice, which are in vivo models of accelerated aging,
were unresponsive to the anorexigenic and life-extending effects
of AG, indicating an age-associated development of ghrelin
resistance. On the other hand, the ghrelin signaling potentiator
rikkunshito, a herbal extract, was capable of enhancing the
physiological function and rodent life-span (Fujitsuka et al.,
2016). The decreased sensitivity toward AG could be related to
an age-induced decline in the transcriptional levels of GHS-R1α,
as reported for the anterior pituitary in 24-month-old Lou C/Jall
rats, the vagal nerve in aged Fischer-344 rats and the brainstem
in rats and dwarf rats (Katayama et al., 2000; Kappeler et al.,
2004;Wu et al., 2009a). It was also verified that the age-associated
decrease in the vagal expression of GHS-R1α potentiates LPS-
triggered inflammation (Wu et al., 2009b). Considering the vast
neuroprotective properties of AG, it is likely that the insufficient
availability of ghrelin and the reduced ghrelin sensitivity in the
CNS, such as the temporal lobe (Gahete et al., 2010), contribute
to age-related cognitive decline.

CONCLUSION

AG is a multi-talented hormone that has demonstrated great
therapeutic potential. Synoptically, AG is neuroprotective,
anti-oxidative, enhances the mitochondrial function, prevents
mitochondrial hyperfission, induces autophagy and, possibly,
mitophagy to dispose of amyloids and defective, ROS-generating
mitochondria, suppresses systemic inflammatory responses and,
possibly, the inflammasome, defies inflammation- and Aβ-
triggered insulin resistance and the associated bioenergetic
impairments, heightens the production of dopamine, promotes
hippocampal neurogenesis and strengthens cognition in a direct
and indirect manner in AD and PD. Notably, deacetylation half-
life times (t1/2) of 4 h or 6.4 h, respectively, have been reported
for AG in human plasma and∼27min in rat serum, whereas the
degradation t1/2 of total circulatory ghrelin has been estimated
to be as short as ∼9-11min (De Vriese et al., 2004; Liu et al.,
2008; Tong et al., 2013). Fortunately, synthetic ghrelin analogs
offer prolonged stability, significant plasma release for up to 24 h,
oral bioavailability and the ability to co-bind CD36, whichmay be
useful to diminish Aβ-driven microglial inflammation (Bulgarelli
et al., 2009; Muller et al., 2015; Berlanga-Acosta et al., 2017). To
further enhance efficacy, the combination of ghrelin agonists with
other growth factors, such as EGF (Barco et al., 2011, del Barco
et al., 2011, del Barco-Herrera et al., 2013; Subiros et al., 2016),
GH (Wu et al., 2009b; Zhou et al., 2017), insulin (Granado et al.,
2011) and GLP-1 (Duarte et al., 2018), or DAG, to prevent AG-
encouraged glucose intolerance and hypoinsulinemia (Gauna
et al., 2004; Kiewiet et al., 2009), may be profitable. On the
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other hand, due to the possible development of ghrelin resistance
in AD and reports of gastrointestinal complications in some
PD patients, clinical studies are warranted to monitor the long-
term effectiveness of AG. Considering the many intertwined
pathologic processes in AD and PD, the varying clinical profile as
well as the many historical failures of monotherapies, especially
for Aβ-based therapies in AD, multi-targeted therapies, such as
the application of the powerful hormone AG and related growth
factors, deserve higher recognition. “Perhaps there is a field
of treasures right there, waiting to be discovered” (Gault and
Holscher, 2018).

CONTRIBUTION TO THE FIELD

Over the last decades, strategies to reduce the cerebral load of
harmful monomeric, oligomeric, or insoluble amyloid deposits,
such as Amyloid Beta, have repeatedly failed to produce any
cognitive or motor improvements in patients of Alzheimer’s
(AD) and Parkinson’s disease (PD). The many failures of these
amyloid monotherapies indicate that novel therapeutic strategies
are necessary. In addition, the multi-factorial pathology of AD
and PD, ranging far beyond amyloid toxicity, suggests that
targeting multiple pathologic factors might be more a more
promising strategy to achieve clinical success. Interestingly,
ghrelin, a peptide hormone that is released during fasting, has

been shown to activate an impressive range of neuroprotective
pathways that have the potential to ameliorate the majority of
these pathologic alterations in AD and PD. Therefore, the review
compiles the existing evidence, integrates information from other
disease models to illustrate less discussed pathologic matters in
AD and PD, outlines the neuroprotective functions of ghrelin and
describes the underlying molecular mechanisms in great detail.
Additionally, the manuscript evaluates the often disregarded
clinical challenges, adverse effects and limitations of a possible
pharmacological intervention with ghrelin analogs in AD and
PD patients. Given the manifold promising and neuroprotective
effects of ghrelin in the brain, but also to monitor the possible
loss of effectiveness and the frequency and severity of undesirable
side-effects, long-term clinical studies in AD and PD patients
are warranted.
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