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Abstract
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions

such as sleep, learning and sensorimotor gating. Although synaptic release processes are

well known for their ability to shape the interaction between neurons in microcircuits, most

computational models do not simulate the synaptic transmission process directly and hence

cannot explain how changes in synaptic parameters alter neuronal network activity. In this

paper, we present a novel neuronal network model that incorporates presynaptic release

mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to

model the spontaneous activity of neuronal networks. The model, which is based on modi-

fied leaky integrate-and-fire neurons, generates spontaneous network activity patterns,

which are similar to experimental data and robust under changes in the model's primary

gain parameters such as excitatory postsynaptic potential and connectivity ratio. Further-

more, it reliably recreates experimental findings and provides mechanistic explanations for

data obtained from microelectrode array recordings, such as network burst termination and

the effects of pharmacological and genetic manipulations. The model demonstrates how

elevated asynchronous release, but not spontaneous release, synchronizes neuronal net-

work activity and reveals that asynchronous release enhances utilization of the recycling

vesicle pool to induce the network effect. The model further predicts a positive correlation

between vesicle priming at the single-neuron level and burst frequency at the network level;

this prediction is supported by experimental findings. Thus, the model is utilized to reveal

how synaptic release processes at the neuronal level govern activity patterns and synchro-

nization at the network level.

Author Summary

The activity of neuronal networks underlies basic neural functions such as sleep, learning
and sensorimotor gating. Computational models of neuronal networks have been devel-
oped to capture the complexity of the network activity and predict how neuronal networks
generate spontaneous activity. However, most computational models do not simulate the
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intricate synaptic release process that governs the interaction between neurons and has
been shown to significantly impact neuronal network activity and animal behavior, learn-
ing and memory. Our paper demonstrates the importance of simulating the elaborate
synaptic release process to understand how neuronal networks generate spontaneous
activity and respond to manipulations of the release process. The model provides mecha-
nistic explanations and predictions for experimental pharmacological and genetic manipu-
lations. Thus, the model presents a novel computational platform to understand how
mechanistic changes in the synaptic release process modulate network oscillatory activity
that might impact basic neural functions.

Introduction
Oscillatory activity patterns in the brain have been linked to sleep, sensorimotor gating, short-
term memory storage and selective attention [1,2]. Neuronal microcircuits in the brain sponta-
neously generate oscillatory activity patterns via synaptic interaction between groups of neu-
rons [1,2]. Indeed, changes in synaptic transmission cause alterations in neuronal firing and
neuronal network activity [3–5], and synaptic dysfunction can lead to pathological epileptic
conditions [6–8]. Even though small alterations in synaptic transmission and in the firing
properties of single neurons can alter the spontaneous and evoked activity of entire neuronal
circuits [3,9], most computational models of neuronal networks do not explicitly account for
the elaborate presynaptic neurotransmission process.

Presynaptic transmission is a regulated multistep process that encompasses the loading of
neurotransmitters into synaptic vesicles, the translocation to and docking of those vesicles at
the plasma membrane (PM), and vesicle preparation for fusion through a calcium-dependent
maturation process generally referred to as "vesicle priming" [10–14]. This pool of primed vesi-
cles is the readily releasable pool (RRP), where vesicles undergo immediate fusion with the PM
upon acute elevation in intracellular calcium concentration ([Ca2+]i). Another presynaptic
pool of vesicles, the recycling pool (ReP), accommodates unprimed vesicles which can undergo
maturation and fusion during repetitive synaptic stimulation; all of the remaining vesicles in
the presynaptic terminal belong to the reserve pool (RP).

Equilibrium of the presynaptic vesicles transition between these pools depends on neuronal
activity, synaptic proteins and calcium [15–19]. In the synapses, there are three types of synap-
tic release modes that rely on the high dynamic range of [Ca2+]i and share the same vesicle
pools [20,21] (but see [22,23]). They are defined by their temporal association with the action
potential (AP): a) synchronous release, driven by a short-lived acute increase in [Ca2+]i, is
time-locked to the AP [24–26]; b) asynchronous release begins several milliseconds after an AP
and drives slower vesicle release; this rate is two orders of magnitude slower than that of syn-
chronous release. Asynchronous release is enhanced by slow clearance of residual calcium
from the presynaptic terminal, as well as by strontium application [24]; c) spontaneous release
which emerges without any association to previous neuronal activity. Although presynaptic
transmission is well understood at the single-neuron level, it is unclear how the aforedescribed
manipulation of presynaptic processes modulates the activity patterns and synchronization of
the network. Recently, a handful of studies have begun to investigate how manipulations of
non-synchronous presynaptic release, such as asynchronous or spontaneous release, modulate
neuronal network activity [3,6–8,24,25,27–30].

Understanding the determinant properties of spontaneous activity of the neuronal network
is highly complex. Therefore, neuronal network computational models are utilized to simulate
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key features of the network's spontaneous activity. A large group of simulations utilizes
computationally light leaky integrate-and-fire (LIF) neurons to model the activity of large-scale
neuronal networks [31,32]. However, these neuronal models are based on very general assump-
tions regarding neuronal synaptic transmission processes and thus do not simulate critical syn-
aptic mechanisms, such as the transition of vesicles between pools, vesicle maturation steps or
calcium-dependent presynaptic release. An important model for neuronal networks, which
combines the concept of synaptic resources and neuronal activity, is the tri-state model [33].
The original model, based on three kinetic equations, organized synaptic resources into three
states: active, recovered or inactive. Synaptic transmission in this model was determined by the
available synaptic resources (i.e. vesicles) and a constant utilization factor (i.e. calcium, accord-
ing to the calcium-based synaptic release theory). This model was later extended to include an
increase in the utilization factor as the neuron keeps firing [34–36], much like the increase in
[Ca2+]i occurring in short-term synaptic plasticity. Another extension of the model also
included asynchronous synaptic transmission by adding a super-inactive state [29,30,37,38] to
generate reverberatory activity in small networks. Nonetheless, this model does not directly
simulate the presynaptic vesicle pools, calcium-dependent vesicle priming or calcium-depen-
dent release, which are basic and crucial properties of presynaptic release [25,39–42]. Further-
more, in response to evoked stimulations, this model generates very short network oscillations
(each oscillation lasting several milliseconds), which are several orders of magnitude shorter
and more frequent than the network bursts recorded in vitro (typically several hundreds of
milliseconds of recurrent network activity) [43,44]. In general, none of these models simulate
spontaneous release, which is physiologically important [45–47], and spontaneous activity in
these models is generally achieved by artificial injection of current [48–50]. In addition, a
model that relates in detail to changes in synaptic processes, and provides a mechanistic expla-
nation and prediction for how changes in synaptic mechanisms at the neuronal level govern
the activity patterns and synchronization at the network level is lacking.

In this paper, we present a novel computational model that demonstrates how changes in
synaptic transmission modulate neuronal network activity patterns. We utilized experimental
data from in vitro neuronal networks cultured on microelectrode arrays (MEA) that spontane-
ously generate network-wide synchronized activity patterns, termed network bursts. We used
the model to learn about synaptic mechanisms that can explain changes in neuronal network
activity following manipulations of the presynaptic release processes [3,5,43,44,51]. Our model
attempts to strike a balance between detailed cellular models and simplified neuronal network
models [15,21,26,52] by extending the LIF neuronal model to simulate both the presynaptic
release process and the entire neuronal network. This allowed us to examine how manipula-
tions of specific steps in the presynaptic release mechanism affect neuronal network activity.
The model provides putative mechanistic explanations for various network activity patterns in
vitro, such as network burst termination, and allows us to predict how changes in the presynap-
tic release machinery will affect network oscillation frequency.

Results

Integrating the presynaptic release mechanism into a neuronal network
model
We previously explored [3] how genetic and pharmacological manipulations of presynaptic
release change the spontaneous activity of neuronal networks cultured on MEA plates (Figs 1A
and S1). To do so, we genetically and pharmacologically manipulated different synaptic trans-
mission steps in cultured neuronal networks and examined the effects on neuronal network
activity. Pharmacological enhancement of asynchronous release was achieved by strontium
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application, which has been shown to activate calcium-dependent release mechanisms but is
cleared from the presynaptic terminal more slowly than calcium [53,54]. Genetic manipula-
tions consisted of overexpressing DOC2B, a presynaptic protein that enhances spontaneous

Fig 1. Presynaptic-driven neuronal network computational model recreates spontaneous network activity recorded with microelectrode arrays.
(A) Color-coded raster plots of spontaneous neuronal network activity recorded on microelectrode array (each dot denotes spike from an electrode, colors
code for average firing rate). (B) Profiles of neuronal network bursts demonstrating increased average firing rate with strontium application and DOC2B
expression; DOC2Bmutant (DOC2BD218,220N) reduces network burst firing rate (modified from Lavi et al. [3]). (C) Computational model comprises a network
of excitatory and inhibitory neurons. Each connection/synapse accommodates a multistep process, as detailed in E (one synapse is marked with a blue
rectangle and its synaptic components are detailed in E). (D) Synaptic release probability in the model is a function of intracellular calcium concentration
([Ca2+]i). (E) Each synapse comprises reserve (RP), recycling (ReP) and readily releasable (RRP) vesicle pools. The transition between pools is bidirectional
and is determined by the ki rate constants (k2 is Ca

2+-dependent). (F) Spontaneous activity generated by the model is very similar to the experimental
recording shown in A (each dot denotes neuronal action potential, colors code for average firing rate). ISI, inter-spike interval.

doi:10.1371/journal.pcbi.1004438.g001
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and asynchronous neurotransmitter release [55–57]. Our findings suggested that higher levels
of asynchronous release at single synapses, induced by DOC2B overexpression or by strontium
application, increase the firing rate within a network burst; on the other hand, facilitation of
spontaneous release frequency by overexpression of the DOC2BD218,220N mutant [3] led to
lower network burst firing rate (Figs 1B and S1). These findings join other studies that have
shown that manipulation of presynaptic proteins has a substantial impact on neuronal network
plasticity, information transfer and animal behavior [10,58,59]. However, it is difficult to infer
a mechanistic explanation for these findings. Therefore, we developed a computational model
that simulates how changes in different steps of synaptic transmission alter neuronal firing.

The model consisted of 800 LIF neurons, spread on a virtual MEA-like 2D surface (30%
inhibitory neurons; Fig 1C) [3]. The neurons were connected by the small-world and scale-free
topology typically associated with cortical neuronal networks [60–63] (S2 Fig), creating an
active neuronal network. A key feature of the model was that neuronal activity and synaptic
release were generated from a presynaptic compartment that simulates the multistep process of
calcium-dependent synaptic transmission. This presynaptic compartment was simulated for
each LIF neuron (Eq 1) and governed the spontaneous, evoked and asynchronous activity of
each neuron in the network. All of the chosen parameters were based on up-to-date papers
(Table 1) [63]. Our model allowed us to perform in silico experiments, manipulate specific
properties of synaptic transmission and study their impact at the network level. It gave us
access to multiple cellular parameters, such as vesicular pool capacities, vesicle replenishment
rate and [Ca2+]i, and simultaneously follow the macroscale network activity and the interaction
between neurons.

Each neuron received multiple inputs which accumulated as changes in the PM voltage
until they crossed a threshold (Eq 2) and generated an AP or decayed with a predefined time
constant (Table 1). AP generation induced a transient increase in the [Ca2+]i that accumulates
when several APs arrive concomitantly (Eq 4). This increase in calcium was then translated
into vesicle release according to a calcium-dependent synaptic release curve (Fig 1D). The
release curve (described in Eq 5) linked the free synaptic [Ca2+]i to synaptic release probability
(Pr) according to well-established release-rate curves [21,25,26]. According to most calcium-
dependent release models, upon AP generation, calcium level increases by almost two to four
orders of magnitude in the active zone, inducing an acute shift in the synaptic Pr [25,26].
Accordingly, we used the Calyx of Held calcium-dependent release-rate curve as previously
described [26] with a small modification to fit the lower Pr of cortical synapses.

To recreate the multiscale temporal dynamics of synaptic release, each synapse consisted of
three vesicle pools: RP (170 vesicles), ReP (20 vesicles) and RRP (10 vesicles) (Fig 1E); the vesi-
cle transportation between pools was bidirectional (Eqs 7 and 8). Following vesicle release, vesi-
cles underwent refilling according to different rate constants (Table 1). A variety of neuronal
preparations have demonstrated that vesicle recruitment in neurons is enhanced by elevated
[Ca2+]i [41,64,65], and this enhancement has been recognized as essential for maintaining ade-
quate release during high-frequency bursts of activity [65,66]. Therefore, we adapted the rate of
vesicle transition from the ReP to the RRP to a similar Michaelis–Menten-type equation (Fig
1E black frame; Eq 7) which has been used to describe the calcium-dependent transition rate
from the unprimed pool to the RRP in chromaffin cells [15,67]. Each vesicle fusion event con-
tributes a positive or negative voltage upon release (excitatory or inhibitory postsynaptic poten-
tial, respectively) to the PM of the postsynaptic neuron. Notably, the basal activity in the model
was maintained by spontaneous release driven from the Pr of the neuron under resting calcium
levels (Eq 5). This method kept the network active and replaced the common route of keeping
computational neuronal networks spontaneously active, i.e. injecting current into the neurons
[48–50]. Comparison of network spontaneous activity between these two methods showed that
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calcium-dependent synaptic release generates network bursts which are more similar to those
recorded from neuronal networks cultured on MEA (S3 Fig).

Recurrent network-wide bursting activity and abundant inter-burst activity can be observed
in the color-coded raster plot of neuronal network spontaneous activity generated by the
model (Fig 1F). Hence, the model recreated a pattern of synchronized activity followed by a
period of quiescence similar to that in the experimental recordings (compare Fig 1F to 1A).

Table 1. Summary of the primary parameters of the neuronal network model.

Parameter Value Description

General

MEA_Dims 100x100 MEA dimensions in arbitrary units

N 800 Number of neurons

Connectivity_ratio 5% Ratio of actual connections out of all possible connections

inhibitory_neuron_ratio 30% Ratio of inhibitory neurons

Weight_params_mu (μAij) -0.874 Synapse lognormal weight mean [96]

Weight_params_sigma (σAij) 1.026 Synapse lognormal weight standard deviation [96]

Voltage

average_EPSP 3.16 mV; average postsynaptic potential [98]

standard_voltage -70 mV; resting potential

max_voltage 50 mV; maximum voltage after action potential (AP)

hyper_polarize_voltage (Vhyp) -77 mV; voltage after hyperpolarization

AP_threshold (θ) -30 mV; threshold for AP generation

voltage_tau (τm) 52 ms; membrane voltage decay rate (measured experimentally)

refractory_period (τarp) 3 ms; refractory period after AP

Vesicle pools

standard_RRP (RRPfull) 10 Number of vesicles in readily releasable pool (RRP) [97]

standard_ReP (RePfull) 20 Number of vesicles in recycling pool (ReP) [97]

standard_RP (RPfull) 170 Number of vesicles in reserve pool (RP) [97]

single_vesicle_max_RRP_repleneshing_k (Rmax) 7.3e-4 s-1; maximum single-vesicle transfer rate from ReP to RRP [67]

ReP_repleneshing_tau (τRP!ReP) 30000 ms; ReP replenishing rate [15]

RP_repleneshing_tau (τ!RP) 50000 ms; RP replenishing rate

Calcium

fast_calcium_max (CAFAST) 13.6 μM; maximum calcium concentration in fast calcium [25]

slow_calcium_max (CASLOW) 1.36 μM; maximum calcium concentration in slow calcium [25]

slow_calcium_AP_influx 0.5 μM; calcium increment for each AP [99,100]

calcium_fast_efflux_tau (τCafast
) 1 ms; fast calcium efflux rate [25]

calcium_slow_efflux_tau (τCaslow
) 31 ms; slow calcium efflux rate [99]

basal_calcium 0.05 μM; basal calcium concentration

Kd 2.3 μM; dissociation constant affecting RRP refilling [67]

p_max 0.15 Maximum release probability at maximum calcium [101,102]

p_basal_perRRPpool 7.5e-4 Basal release probability at basal calcium [25]

calcium_release_A (α) 0.175 Calcium-dependent release probability curve [25]

calcium_release_B (β) 2.35 Calcium-dependent release probability curve [25]

calcium_release_C (γ) 0.78 Calcium-dependent release probability curve [25]

calcium_release_D (δ) -3.6e-3 Calcium-dependent release probability curve [25]

The table summarizes the primary parameters used to construct and run the neuronal network computational model under baseline conditions. It also

includes references to the original papers [15,25,67,96–101]. Parameter names correspond to the variable names used in the MATLAB code.

doi:10.1371/journal.pcbi.1004438.t001
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Importantly, the model recreated both network-wide bursting activity ("full" bursts; green box)
and bursting activity limited to subnetworks ("aborted" bursts; black box).

To test the stability and robustness of the network activity under various manipulations, we
explored the response of the model to changes in its primary gain parameters: excitatory post-
synaptic potential (EPSP, voltage) and connectivity ratio (the percentage of actual connections
out of all possible connections in the network; see considerations for choosing these parameters
in Methods). Quantitative analysis of the basic model activity parameters, such as global and
network burst spike rate, network burst frequency and network burst duration, was performed
under different levels of the gain parameters (S4 Fig). We found that the model is robust to
two- to threefold changes in basic gain parameters while maintaining continuous spontaneous
network activity but displaying changes in various network activity properties (S4 Fig). We
also showed that even increasing the number of neurons or the number of synapses in the
model 10-fold does not change its basic bursting activity; the neuronal network still displayed
network-wide bursts followed by periods of relative quiescence (S5 Fig). The stability of the
bursting activity of the network following changes in basic gain parameters (and changes in the
number of neurons and number of independent synapses per neuron) established the robust-
ness of the model and increased its fidelity. Indeed, most of the experimental manipulations
did not abolish the basic bursting activity in the network but rather manipulated the inter-
burst and intra-burst spiking profiles. This places the model in an excellent position to test the
impact of changes in other parameters of synaptic release on the network bursting activity.

Asynchronous release shapes network burst activity
The established model was utilized to understand two intriguing findings: elevated asynchro-
nous release, but not spontaneous release, at the single-neuron level enhances and synchronizes
network burst activity [3]; on the other hand, enhanced spontaneous release reduces synchro-
nization and network burst activity. Experimentally, asynchronous release was elevated by
either DOC2B or strontium. Strontium has been suggested to trigger vesicle fusion and neuro-
transmitter release in the same way as calcium, but is extruded from the synapse more slowly
than calcium, causing long-lasting vesicle fusion or asynchronous neurotransmitter release
[53,68]. Therefore, to mimic the effect of asynchronous release, we reduced the rate of calcium
efflux out of the synapse (Eq 4, τCafast and τCaslow), allowing more time for vesicle fusion [69]. It is
important to note that we changed the asynchronous release in both excitatory and inhibitory
neurons.

We first verified that slower calcium clearance increases the ratio of asynchronous to syn-
chronous release in the model. We followed the change in the probability for vesicle release
from single neurons up to 50 ms after an AP, under different calcium-efflux rates (Fig 2A; see
Methods). The ratio of asynchronous to synchronous release (Fig 2A right panel; 'ASync' and
'Sync', correspondingly) increased as calcium efflux was reduced [70]. Notably, the increase in
asynchronous release did not increase the total neuronal output of a single neuron but only
spread the release over a longer time.

We then examined how asynchronous release affects the activity profile in the network
burst (Fig 2B). Gradually increasing asynchronous release in the model enhanced the network
burst firing rate (Fig 2B; +100%, left panel), similar to the experimental results of increasing
strontium concentration (Fig 2B right panel). Both manipulations also decreased the time from
burst onset to its peak. Interestingly, even when we increased the number of neurons in the net-
work 10-fold (8000 instead of 800) and also when we increased the number of synapses per
neuron 10-fold (10 instead of 1), enhanced asynchronous release facilitated network burst fir-
ing rate and decreased the network burst's time to peak (S5 Fig). This supports the power of
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Fig 2. Model demonstrates how an increase in asynchronous release, and not spontaneous release, enhances neuronal network activity. (A)
Reduction of calcium clearance rate redistributes single-neuron vesicle release (left) and increases the proportion of asynchronous release to synchronous
release in the model (right). (B) Higher simulated asynchronous release increases network burst firing rate (left). Experimentally, the increase in
asynchronous release induced by strontium application is correlated with the increase in the network burst maximum firing rate (right; modified from Lavi et al
[3]). (C) Illustration of the change in the release function leading to higher spontaneous release probability at low intracellular calcium concentration ([Ca2+]I;
top panel). Higher simulated spontaneous release reduces network burst firing rate (bottom left), in agreement with the reduction in activity induced by the
expression of DOC2BD218,220N (right) in the experimental MEA recordings. (D)Opposite effects of asynchronous and spontaneous release on network
activity. In general, higher asynchronous release increases network activity whereas higher spontaneous release reduces network activity (error bars show
SEM).

doi:10.1371/journal.pcbi.1004438.g002
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the model in mimicking experimental results and suggests that asynchronous release has a pro-
found effect on neuronal network activity.

Next, we focused our analysis on the manipulation of spontaneous release and tested its
effects on the network activity. Experimentally, spontaneous release was increased by overex-
pressing a DOC2B mutant, DOC2BD218,220N, that is known to increase spontaneous release
[55]. Computationally, spontaneous release was elevated by increasing the Pr at resting calcium
(Fig 2C top panel; Eq 5). This manipulation increases the probability of vesicle release under
resting conditions, which is the basic definition of spontaneous release [25]. The increase in
spontaneous release in the model led to a significant decrease in the network burst activity,
as evidenced by the reduced network burst activity profile and the lower global spike rate in
each network burst (Fig 2C and 2D). This manipulation recreated the experimental data of
DOC2BD218,220N overexpression (Fig 2C; compare bottom left panel, model, to bottom right
panel, experiment) while reducing the number of spikes and the number of neurons in the net-
work bursts (Fig 2D). Comparison of the changes induced by both manipulations established
their opposite effects on network activity (Fig 2D); while asynchronous release was positively
correlated with network burst activity, spontaneous release was anticorrelated. This means that
specific activity properties can change in the same direction by an increase in asynchronous
release or a decrease in spontaneous release, or vice versa. These opposite effects were more
prominent in the global spiking rate and network burst spikes; however, the burst rate, for
example, displayed a more prominent difference between spontaneous and asynchronous
release upon an increase in the corresponding parameter (Fig 2D); while higher spontaneous
release reduced network burst frequency, lower spontaneous release did not change it (Fig 2D,
bottom panel). Therefore, it is important to examine the combination of various network activ-
ity parameters to determine the overall effect on the network activity.

Next, we examined whether the model recreates the higher-level effects on network activity
patterns observed in the experimental results [3]. Evidently, higher asynchronous release in the
model significantly increased, while spontaneous release reduced the ratio of neurons partici-
pating in the network bursts (S6 Fig). This was measured by classifying network bursts into
"full " or "aborted" bursts [3,44]. Moreover, analysis of the normalized network burst synchro-
nization in the simulation showed that elevated asynchronous release also increases network
burst synchronization, primarily around the peak of the network burst (S6 Fig). These analyses
were in agreement with the experimental findings and showed that the model successfully rec-
reates the response to the manipulation of asynchronous and spontaneous release. Thus, using
the in silicomodel, we manipulated specific steps in the release process and linked them to spe-
cific experimental changes. Hence, the model reaffirmed a wide range of experimental analyses,
from basic firing rate to high-level network synchronization parameters. The high reliability of
the in silicomodel in reconstructing experimental findings allowed us to utilize it to explore the
neuronal mechanisms underlying the findings and uncover the model parameters and factors
that govern network activity. Specifically, the model allowed us to follow neuronal parameters,
such as changes in the various vesicle pools, which are unavailable experimentally.

Analysis of vesicular pool dynamics
We analyzed the vesicle pool dynamics and [Ca2+]i of the model neurons under baseline release
levels (Baseline) and under enhanced asynchronous release (+100%). Fig 3A demonstrates
changes in the number of RRP vesicles in 4 representative neurons throughout a single network
burst. Each neuron displayed different release patterns from the RRP but all displayed a certain
degree of vesicle depletion (Fig 3A, 3B and 3D). Analysis of the average RRP occupancy in all
neurons in all network bursts (in 10 simulations) showed that during the burst, the RRP are
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depleted by the same percentage under both baseline and enhanced asynchronous release con-
ditions (Fig 3B). Further analysis of the average RRP content showed that most neurons have
more than 4 vesicles in the RRP at the onset of the network burst and less than 2 vesicles at its
termination (out of a maximum occupancy of 10 vesicles in the RRP; Fig 3D). It can be sug-
gested that under these conditions, where more than 70% of the neurons have less than 2 vesi-
cles left in the RRP (i.e. less than 20% of the entire synaptic reservoir is available), network
bursts are terminated. This is not surprising but rather provides a clear connection between
vesicle pool depletion and burst termination and a mechanistic explanation for previous exper-
imental results [4,71].

This analysis could not explain the increase in network activity under enhanced asynchro-
nous release and therefore we continued to examine the changes in ReP dynamics, which trans-
fers vesicles to the RRP through calcium-dependent vesicle priming. The same analysis applied
to the ReP showed that asynchronous release manipulation causes enhanced consumption and
larger depletion of vesicles from this pool (Fig 3C); while only 7% of the neurons had less than
8 vesicles in the ReP at the time of network burst termination under baseline conditions, ~46%
of the neurons had less than 8 vesicles under enhanced asynchronous release at the time of
network burst termination (Fig 3E). On average, approximately 2–3 additional vesicles were
consumed from the ReP during a network burst under enhanced asynchronous release (an
increase of 10–15% in total synaptic release, on average; Fig 3D). This suggests that the ReP is
the source for the higher output following elevated asynchronous release and that asynchro-
nous release, driven by slower calcium clearance, relies on the replenishment rate of the ReP
for support of the increased network activity.

To examine this hypothesis, we determined the average cumulative neuronal output
throughout the burst (Fig 3F). On average, each neuron with a higher asynchronous release
contributed ~2 more vesicles within the first 300 ms of the burst overall. This accumulated
increase underlies the higher network activity and synchronization during the bursts; it also
supports our hypothesis that the ReP is the source vesicle pool contributing to this network
effect. The lower calcium efflux rate from the presynaptic terminal allows faster and larger
accumulation of free calcium throughout the network burst (Fig 3G). This, in turn, has two
important implications in the neuronal release dynamics throughout the burst: 1) higher cal-
cium levels lead to higher Pr; 2) higher calcium levels increase the vesicle transition rate from
ReP to RRP (much like the calcium-dependent vesicle replenishment hypothesis). Thus, the
model revealed that the higher asynchronous release temporally increases the Pr and vesicle
availability, causing enhanced neuronal network activity only during bursts. Furthermore, this
analysis pointed to the ReP as the vesicle pool that supports this increase in neuronal vesicle
release and network synchronization.

Fig 3. Asynchronous release utilizes the synaptic recycling pool (ReP) to elevate synaptic release during bursts. (A) Analysis of the number of
vesicles in 4 representative neurons shows discrete changes in the number of vesicles throughout a single network burst (dotted lines). The stepwise
increase in 2 of the neurons (marked in red and orange) represents the replenishment dynamics throughout the network burst, (black dashed line is the
average readily releasable pool [RRP] depletion from all neurons participating in the network burst). Analysis of the average RRP depletion (B) and the
average ReP consumption (C) over all neurons from all bursts in 10 simulations shows that higher asynchronous release ('+100%', blue line) leads to greater
utilization of vesicles from the ReP, while the RRP is depleted by similar levels with or without changes in asynchronous release. Cumulative proportion of the
average number of vesicles in the RRP (D) and ReP (E) across all neurons at the beginning (start, left) and end (end, right) of the network burst. Following an
increase in asynchronous release, each neuron contributes ~2 extra vesicles within the first 300 ms of the burst (F). Slower calcium efflux rate drives faster
and larger accumulation of calcium during the network burst (G).

doi:10.1371/journal.pcbi.1004438.g003
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Examining the predictive power of the model through manipulation of
vesicle priming rate
Our model presented us with an opportunity to predict the effect of manipulations, which can
be later examined experimentally. We were therefore interested in testing how changes in
priming rate at the single-neuron level affect network activity. To implement this manipula-
tion, we changed the maximum rate of vesicle transition from ReP to RRP (Fig 4A, circled red
marker; parameter 'Rmax' in Fig 1E; Eq 7 τReP!RRP). A comparison of raster plots showed that
as the priming rate increases, the activity and frequency of the bursts are enhanced, while
decreasing the priming rate reduced network activity (Fig 4B). Burst profile and activity param-
eter analyses supported these findings, suggesting that a 50% increase in priming rate would
lead to ~30% increase in the maximum firing rate within the network burst (Fig 4C and 4D)
and an increase of 4 bursts per minute in network burst frequency, i.e. the network displays a
higher rate of oscillations following this manipulation without elevating the inter-burst
activity.

Next, we overexpressed Munc13-1, a positive regulator of vesicle priming rate, in neuronal
networks plated on MEA, and found that a 2-fold increase in Munc13-1 expression levels
increases the frequency of network bursts by 60% (previously published in Lavi et al. [3]; Fig
4E). These results match the model predictions (Fig 4B, High priming) and suggest that
changes in vesicle priming rate at the neuronal level tune the burst frequency at the network
level.

Discussion
We created a novel neuronal network computational model to investigate how changes in syn-
aptic transmission translate to changes in neuronal network activity and affect the network
oscillation and synchronization patterns. The model was based on modified LIF neurons
spread on a 2DMEA-like surface, each neuron having synapses that release vesicles following a
multistep process of calcium-dependent vesicle maturation and fusion. The model reliably rec-
reated the spontaneous activity of in vitro neuronal networks cultured on MEA. Consequently,
the model provided mechanistic explanations and predictions for experimental pharmacologi-
cal and genetic manipulations, and most importantly, linked cellular properties of synaptic
release to modulations in the oscillatory activity of neuronal networks.

Combined calcium-driven and vesicular pool computational model
recreates neuronal network activity
Current computational network models do not simulate synaptic vesicle pools or calcium-
dependent processes. Many computational network models based on LIF neurons simulate
neuronal activity as the sum of voltage or current input on the PM to recreate neuronal net-
work activity. Although this voltage accumulation causes the generation of an AP in the soma,
it is the calcium influx through voltage-dependent calcium channels in the presynaptic termi-
nal that drives the actual vesicle fusion and subsequent synaptic release [72,73]. Therefore, free
intracellular calcium dynamics gates the transfer of synaptic information from one neuron to
the next, and the combination of calcium dynamics and vesicle release probability underlies
short-term plasticity in the presynaptic terminal, a key mode of operation in several central
synapses [41,74–78]. Therefore, it is highly important to integrate calcium-dependent synaptic
release, as we did in the current model, into LIF neuronal models.

Although the well-established tri-state model [33] did incorporate synaptic transmission
into LIF neurons, that model and its succeeding extensions [29,30,34,36–38] did not simulate
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synaptic vesicle pools, calcium-dependent vesicle priming or vesicle release. The evoked activ-
ity simulated in those models generated very short network oscillations (several milliseconds),
significantly shorter than the network bursts observed in vitro in dissociated neuronal cultures
by single-neuron current-clamp recordings and neuronal network MEA recordings (typically
hundreds of milliseconds). Furthermore, to maintain spontaneous network activity, current or

Fig 4. Vesicle priming rate governs the rate of network bursts. (A) Priming rate manipulation was simulated by changing the maximum vesicle transition
rate from the recycling pool (ReP) to the readily releasable pool (RRP) (red transparent circle). (B) Color-coded raster plots demonstrate that lower priming
rate decreases ('Low'; left panel) and higher priming rate increases ('High'; right panel) network burst frequency and overall network activity (each dot
denotes a neuronal action potential, colors code for average firing rate). (C) Analysis of network burst profiles shows that lower priming rate reduces firing
rate throughout network bursts (top panel), while higher priming rate increases firing rate throughout network bursts (bottom panel). (D) Analysis of network
burst activity parameters shows that while higher priming rate increases the frequency of network bursts and the overall spike rate, it does not change the
duration of the network bursts; this suggests the involvement of other presynaptic release processes in regulating the duration of network bursts. (E)
Spontaneous activity recorded from a neuronal network cultured on MEA before (left) and after (right) twofold expression of Munc13-1 (each dot denotes
spike from an electrode, colors code for average firing rate). In agreement with the high priming demonstrated in A, Munc13-1 expression clearly increased
the frequency of network bursts. ISI, inter-spike interval.

doi:10.1371/journal.pcbi.1004438.g004
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voltage are artificially injected from an external source [48–50]. The lack of biological mecha-
nisms in the neuronal model makes it harder to infer physiologically relevant consequences
and predictions.

The uniqueness of our model lies in its direct simulation of key components of the presyn-
aptic release process, thereby revealing how changes in the release process, such as changes in
release probability (Eq 5), vesicle pool size (Eqs 7 and 8), and calcium dependency (Eqs 4–7),
affect neuronal network activity. This direct simulation allows us to model synchronous,
asynchronous and spontaneous release as derivatives of the same calcium-dependent release
mechanism with different ranges of [Ca2+]i [25,26,41]. The model also incorporates calcium-
dependent vesicle priming (Eq 6), which is usually not modeled in neuronal network models.
Since our model directly simulates the presynaptic vesicle pools and calcium-dependent prim-
ing based on measured rate constants, the derivation of putative physiologically relevant mech-
anistic explanations from its predictions is more intuitive.

The model generates network bursts that are similar to those observed in MEA recordings
(S3 Fig) in duration and firing rate, thereby enabling an investigation of mechanisms for burst
termination under spontaneous neuronal activity, and linking them to the dynamics of vesicle
pool depletion [79]. Note that we are not claiming that it is impossible to create network bursts
without incorporation of the presynaptic release mechanism, but rather that through the struc-
ture of our model, we were able to relate the network bursts to their underlying realistic and
biologically plausible presynaptic mechanisms.

Our simulation allowed us to perform long-term in silico experiments (which we limited to
several hours), while the model clearly exhibited stability and robustness to changes in the pri-
mary gain parameters that control network activity—i.e., EPSP and connectivity ratio. In agree-
ment with our experimental results, most of the manipulations performed in the model did not
abolish the basic network bursting activity but rather manipulated the inter-burst and intra-
burst spiking distributions. The fact that the basic bursting activity of the model was not dimin-
ished after these manipulations establishes the model's robustness and its provision of a stable
platform to uncover the role of asynchronous and spontaneous release in neuronal network
oscillatory activity.

Asynchronous release utilizes ReP vesicles to increase neuronal output
and synchronize network bursting activity
A recent intriguing experimental finding demonstrated that asynchronous release, but not
spontaneous release, enhances network activity and network burst synchronization [3]. The
model allowed us to test how changes in asynchronous release and spontaneous release affect
network activity at the neuronal level. Supported by experimental results, the model showed
that higher spontaneous release leads to lower firing rate, lower neuronal participation in net-
work bursts and lower frequency of bursts. Higher spontaneous release reduced synchroniza-
tion of the network activity by the superfluous release of vesicles throughout; this excess
activity reduced the availability of releasable vesicles from the RRP during network bursts,
which resulted in lower intra-network burst activity and synchronization.

The model also allowed testing whether the anticipated change following strontium applica-
tion—enhanced asynchronous release—is translated into enhanced activity during the bursts,
and investigating the vesicular source for this effect. The model-simulated increase in asyn-
chronous release elevated the overall activity of the network and various network burst param-
eters, including synchronization and neuron participation. This was in agreement with the
experimental results obtained following gradual application of strontium. These results are
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supported by previous evidence regarding the link between asynchronous release and reverber-
atory activity [54].

Previous studies have shown that rapid recovery of the RRP supports asynchronous release
at the neuronal level [71], and have suggested that network bursting activity depends on the
vesicle depletion rate from the RRP [4,80]. Here we suggest that during ongoing network activ-
ity, the neurons in the network are not fully depleted at the termination of the network burst.
Rather, examination of the RRP and ReP of all neurons in the network showed that under base-
line conditions, it is sufficient that 70% of the neurons have less than 2 vesicles in the RRP (that
is, less than 20% of the overall vesicles available for immediate release in the RRP) to terminate
the network burst. Analysis of the average depletion rate of the ReP and RRP (over all bursts
and all neurons in 10 simulation sets) following higher asynchronous release in the model sug-
gested that the main resources for the enhanced network activity come from the ReP. This was
concluded from the fact that higher asynchronous release did not increase the total number of
vesicles released from the RRP but it did increase consumption of the ReP. Interestingly, we
found excellent agreement between the degree of consumption of the ReP and enhancement of
release at the neuronal level: asynchronous release enhanced depletion from the ReP by ~2 ves-
icles and respectively, this higher asynchronous release increased the total amount of vesicles
released from each neuron by approximately 2 extra vesicles, on average. These 2 extra vesicles,
on average, per neuron (representing 10% of the maximum ReP occupancy) accumulated and
induced large-scale enhancement of neuronal firing during the bursts. This means that as pre-
viously suggested [9], a relatively small change in presynaptic release results in profound
changes in the network activity.

As synaptic release in the model depends on the intracellular level of free calcium, we fol-
lowed the change in [Ca2+]i during the network bursts; we found that following the asynchro-
nous release manipulation, the calcium concentration reaches higher levels throughout the
bursts. These calcium levels increased the effective Pr and vesicle replenishment rate in each
neuron in the network (due to calcium-dependent vesicle priming). These finding are in agree-
ment with previous studies showing that sustained synaptic release requires the contribution of
vesicles from the ReP [42]. Together, these analyses explain how additional vesicles are quickly
primed from the ReP into the RRP (due to faster priming rate) and are readily released (due to
higher Pr), leading to faster vesicle replenishment and an overall higher neuronal output only
during the burst, when calcium levels are high.

What might the effects of higher asynchronous release be on neuronal microcircuits in the
brain? Measurements from rat cortical acute slices and from human cortical slices have shown
that cortical fast-spiking inhibitory neurons exhibit asynchronous release as part of their spon-
taneous activity. Furthermore, the involvement of excess asynchronous release in inhibitory
fast-spiking neurons has been linked to epileptic activity in human patients with intractable
epilepsy and in the rat pilocarpine model of status epilepsy [7]. This shows that asynchronous
release is a fundamental property of synaptic transmission in the brain and not merely induced
by drug application [7]. Recent evidence from rats suggests that the excitation-to-inhibition
ratio in the adult brain is regulated by reduced GABAergic asynchronous release, which is sup-
ported by the more efficient clearance of residual calcium [6]. This might cause alterations in
brain network activity in a mechanism that we simulated for in vitro networks. This evidence
joins a previous computational model which showed that the higher levels of asynchronous
GABAergic release in the cortex of juvenile animals are counterbalanced by postsynaptic
shunting inhibition to regulate synaptic transmission in the developing brain [29]. Interest-
ingly, lack of synchronous release but enhanced asynchronous release following synaptotag-
min-1 knockout in the hippocampal CA1 region did not impede acquisition of contextual fear
memories, but did impair their precision. This suggests that the hippocampal CA1 region can
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rely on spike bursts to transfer information downstream [58]. These and other recent studies
[3,5,8,81–83] demonstrate the importance of understanding in detail how changes in various
types of synaptic release at the single-neuron level regulate the activity of the neuronal network
in brain function and dysfunction, and further stress the importance of integrating the presyn-
aptic release mechanism into neuronal network computational models.

Vesicle priming rate at the neuronal level tunes network burst frequency
at the network level
As suggested above, asynchronous release utilizes ReP vesicles to increase network activity.
This indicates the important role of vesicle priming rate, as this process regulates the rate of
vesicle transfer from the ReP to the RRP. Since the model can be utilized to recreate experimen-
tal data and examine parameters that are inaccessible experimentally, we manipulated the max-
imum vesicle priming rate (‘Rmax’ in Eq 7).

Manipulation of vesicle priming revealed a positive correlation between priming rate at the
neuronal level and burst frequency at the network level. This model prediction was supported
by the viral overexpression of Munc13-1, a presynaptic protein that positively regulates vesicle
priming, in neuronal networks cultured on MEA [3]. Munc13-1's higher expression levels—
twofold higher than baseline—are physiologically plausible, suggesting that tuning the priming
rate might have a great impact on the activity of neuronal networks in general. To infer a direct
connection between vesicle priming rate and network burst frequency, an additional experi-
mental manipulation is required that will specifically and acutely reduce the vesicle priming
rate; however, the present analysis already demonstrates the model's power in predicting how
changes at the neuronal level are transformed to changes at the network level, and suggests
manipulation of the frequency of network bursts by changes in the presynaptic release process.
The implications of these manipulations for spontaneous neural activity in the neocortex of the
behaving animal remain to be tested, together with their implications for learning and memory,
as well as pathological disorders.

Shaping network oscillations by presynaptic release mechanisms
Our model shows how in vitro network oscillations, in the form of network bursts, can be gen-
erated and maintained based on calcium-dependent presynaptic release mechanisms, without
external stimulation or injection of current. Furthermore, the model recreates some of the
complex experimental data obtained from MEA recordings. A growing body of literature is
connecting network bursts in vitro to the "up" and "down" states displayed by neocortex brain
oscillations in vivo [84–88]. Modulation of the oscillation between "up" and "down" states dur-
ing spontaneous activity in vivo has been observed during slow-wave sleep, selective attention
and short-term memory tasks [89–92]. Therefore, elucidating the principles of spontaneous
network activity and its manipulation in culture might contribute to understanding high-order
functions in the behaving animal [5,27,88,93]. Interestingly, the oscillatory nature of "up" and
"down" states can be explained by a modulation of presynaptic release, and it has been sug-
gested that while non-synchronous synaptic release might maintain the "up" state [92,94], syn-
aptic depression can be used to terminate it and return the activity to the "down" state [95].
Thus, although our model is based on in vitro experimental data, it opens new avenues to
examining how presynaptic release mechanisms modulate microcircuit oscillations and subse-
quently affect higher neural functions such as slow-wave sleep, learning and attention, or are
involved in pathologic neurological disorders.
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Methods

Setting up the model parameters
Network structure. The entire model was simulated in MATLAB (The Mathworks, Inc.).

The code is available in the supplementary material (S1 Software). The network contained 800
modified LIF neurons located on a virtual 2D surface (30% of them were inhibitory neurons).
To achieve the small-world scale-free network topology, each neuron was assigned a number
of connections (degree) from a power-law distribution (generalized Pareto distribution) and
connected to its nearest neighbors with a binomial probability density function based on the
neurons' pair-wise Euclidean distance; this created a preferential local connection with low
probability for long-distance connections. We used a connectivity ratio of 5% (average ~45
connections per neuron). Key parameters of the model were based on the literature and previ-
ously published papers [15,25,67,96–101]. The simulation stored all AP times.

Neuronal model. Each neuron in the model had a LIF membrane potential which evolved
according to the equation:

tm
dV
dt

¼ �V þ Vsyn ð1Þ

where τm denotes the membrane voltage decay rate of a neuron, V is the neuronal membrane
potential and Vsyn represents the synaptic input a neuron receives from other neurons.

The membrane potential V was calculated relative to a given neuron's resting level. The syn-
aptic input voltage was modeled as the sum of postsynaptic voltages from all other neurons
which have a connection to the given neuron i:

VsynðiÞ ¼
X

j

Aij � xijðtÞ � q ð2Þ

Based on previous studies [36], we used Aij to describe the synaptic strength between neuron
j (presynaptic neuron) and neuron i (postsynaptic neuron). The sign of Aij represents the type
of synapse between the connected neurons: when Aij> 0, the neurons are connected via an
excitatory synapse, when Aij < 0, the neurons are connected via an inhibitory synapse. The
number of vesicles released at time t from the presynaptic neuron j to the postsynaptic neuron
i was represented by xij(t), and the contribution of each EPSP was denoted by q and was equal
to 3.16 mV: as we used a Pr of ~0.15 [101,102] and the number of vesicles in the RRP was esti-
mated to be ~10 [97], we estimated that ~1.5 vesicles are released per AP per synapse. We sim-
ulated up to 10 synapses per neuron, meaning that 15 vesicles contributed to a single EPSP.
Based on experimental measurement from pairs of neurons, we used an average EPSP voltage
of 4.74 mV [49,98,103] and therefore each vesicle contributed ~0.31 mV (4.7/15 = 0.316 mV).
For simplicity, we modeled one synapse for each neuron and thus we pooled all 10 synapses
into 1 synapse and used the value of 3.16 mV for each EPSP. Based on previous studies, the
synaptic weight was taken from the log-normal distribution [96]:

Aij � lnN ðmAij; sAijÞ; Aij < Amax ð3Þ

where μAij = -0.7835, σAij = 1.0264 and Amax = 10.
At each simulation step (1 ms), the synaptic output of each neuron was determined by vesi-

cle availability and effective Pr (which was determined from the calcium-dependent release
curve [26] and adjusted for cortical neurons, as described below). Whenever the depolarization
hit a fixed threshold θ (i.e. Vi(t)� θ), the neuron emitted a spike and became refractory for a

Shaping Network Activity by Presynaptic Mechanisms

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004438 September 15, 2015 17 / 27



period τarp, and its voltage was reset to a hyperpolarized voltage Vhyp (see parameters in
Table 1).

Intracellular calcium pools. The free [Ca2+]i for each neuron ([Ca2+]tot) was represented
by the sum of two calcium pools to simulate bi-exponential calcium efflux [53]. It is important
to note that we only simulated the concentration of free calcium, i.e. the calcium that is directly
available for synaptic release, and we did not account for changes in somatic calcium concen-
tration.

½Ca2þ�tot ¼ ½Ca2þ�fast þ ½Ca2þ�slow þ ½Ca2þ�rest; ½Ca2þ�rest ¼ 50nM

d½Ca2þ�slow
dt

¼ � ½Ca2þ�slow
tCaslow

þ CASLOW � dðt � tAPÞ

d½Ca2þ�fast
dt

¼ � ½Ca2þ�fast
tCafast

þ ðCAFAST � ½Ca2þ�fastÞ � dðt � tAPÞ

ð4Þ

The slow calcium concentration was calculated relative to a basal calcium level for a given
neuron. The fast calcium pool rose to 13.6 μM (CAFAST) and decayed very quickly, and the
slow calcium pool rose to 1.36 μM (CASLOW) and decayed more slowly (τCafast = 1ms, τCaslow =
31ms). The calcium level could drop to a minimum baseline calcium level, [Ca2+]rest, set at 50
nM. As previously suggested [25], the ratio of calcium concentrations between the pools was
approximately 1 to 10. Manipulations of calcium clearance in the paper were performed by
changing both the fast and slow time constants by the same ratio. Each AP induced a stepwise
increase of 500 nM calcium in the neuron (accumulated in the slow calcium pool), conse-
quently increasing the release probability.

Calcium-dependent release probability. The calcium-dependent release probability func-
tion was based on the enclosed sigmoid function that depends on the total [Ca2+]i (parameters
detailed in Table 1):

Prð½Ca2þ�totÞ ¼
a

1þ e�b�log10 ½Ca2þ�totþg
þ d ð5Þ

Note: parameter 'α' in this expression corresponds to 'calcium_release_A' in Table 1.
This Calyx of Held calcium-dependent release-rate curve [26] was fitted with a sigmoid

function [104] and the maximum Pr was reduced to 0.15 to fit the lower Pr of cortical synapses
[101,102].

Vesicle pool dynamics. The probability of vesicle release was determined at each simula-
tion step from binomial trials for each neuron. Vesicles could only be released from the RRP by
the following equation:

Xi : Xi � BðbRRPic; Prð½Ca2þ�totiÞÞ ð6Þ

where Xi comes from a binomial distribution (denoted B), RRPi is the number of vesicles in the
RRP of neuron i and [Ca2+]toti is the total free calcium concentration of neuron i. At each step,
the RRP was replenished from the ReP by the calcium-dependent vesicle priming process
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described by:

dRRPi

dt
¼ RePi

tReP!RRPð½Ca2þ�totiÞ
� RRPi

tRRP!ReP

� Xi

tReP!RRPð½Ca2þ�totiÞ ¼ 1 Rmax�½Ca2þ�toti
½Ca2þ�toti þ Kd

,

tRRP!ReP ¼ tReP!RRPð½Ca2þ�totiÞ�
RRPfull

RePfull

ð7Þ

The amount of vesicles transferring between the ReP and the RRP was based on the Michae-
lis–Menten function [15,67] and was determined by the overall calcium level for each neuron.
Accordingly, the RP was replenished at a constant rate and replenishment of the ReP from the
RP and RRP was calculated according to predefined rate constants (Table 1):

dRePi

dt
¼ RRPi

tRRP!ReP

� RePi

tReP!RRPð½Ca2þ�totiÞ
þ RPi

tRP!ReP

� RePi

tReP!RP

dRPi

dt
¼ RPfull � RPi

t!RP

þ RePi

tReP!RP

� RPi

tRP!ReP

tReP!RP ¼ tRP!ReP�
RePfull

RPfull

ð8Þ

where RePi and RPi denote the number of vesicles in the ReP and RP of neuron i, respectively.
Upon vesicle release, the voltage of the postsynaptic neuron changed according to the EPSP
voltage (and the number of fused vesicles), the type of synapse (inhibitory neurons contribute
negative voltage) and the synaptic weight.

Analyses and visualization
Data analysis and visualization. Color-coded raster plots were generated by calculating

the average firing frequency for each spike (calculated from the average interval of the spike
from the following and preceding ones). Analyses of network burst activity, such as burst
detection, burst statistics, burst profile analysis, burst synchronization and "full"/"aborted"
burst classification were based on a previous study [3]. Briefly, potential network burst peaks
were identified when the firing rate of the active neurons in the network crossed a predefined
threshold (usually 5% of the maximum firing rate; active neurons display an average firing rate
of>0.02 s-1). Next, burst initiation and termination times were identified by defining the maxi-
mum allowed inter-spike interval in the burst (usually 100 ms). The time of the first and last
spikes in the burst defined the burst initiation and terminations times, respectively.

Network connectivity analysis. Shortest path analysis was based on the Floyd–Warshall
algorithm [105,106]. Clustering coefficient analysis was based on the ratio between the number
of triangles and the number of paths of length 2 in the network [107]. The normalized cluster-
ing coefficient was the ratio between the clustering coefficient in the chosen network configura-
tion and the clustering coefficient in an equivalent Erdös–Rényi (E–R) random network with
the same number of neurons and connections. Analysis of small-world index was the ratio
between the normalized clustering coefficient and the normalized shortest path [107]; a small-
world index> 1 indicated a small-world connectivity in the network; higher values denoted a
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higher degree of small-worldness [107]. Analysis of the connectivity parameters can be found
in the supplementary material.

Single-neuron parameter analysis. Single neuron parameters, such as vesicle pool
dynamics and [Ca2+]i ([Ca

2+]toti), were analyzed for all neurons in a subset of simulations (10
simulations). The analysis focused on the network burst periods by averaging the pool size of
all neurons for each simulation step. Next, all network bursts were aligned by their initiation
time (the time of the first spike in the burst) and the average pool size throughout the burst was
calculated. Analysis of [Ca2+]toti was performed in the same manner.

Burst classification and synchronization analysis. Classification of bursts into "full and
"aborted" was based on the number of neurons participating in the network burst [44]. Bursts
in which more than 50% of the electrodes participated were defined as "full" bursts, and other
bursts were defined as "aborted". Network burst synchronization analysis [3] was calculated
from the average pairwise Pearson correlation for all active electrodes or neurons that were
active in the network bursts throughout the experimental recording or the model simulation,
respectively. To account for inter-culture variability, synchronization was standardized by fir-
ing rate and normalized to baseline conditions; ‘baseline’ was the condition before the genetic
or pharmacological manipulation in the experimental data and before the change in the param-
eters’ values in the model.

Primary gain parameters chosen for robustness analysis. We chose two important gain
parameters to examine the stability and robustness of the model. EPSP was chosen as a primary
gain parameter because the neuron model was based on a LIF mechanism and could only gen-
erate AP upon summation of the inputs arriving in a limited time window. This is very similar
to accumulation of EPSP voltage during spatial or temporal summation. This means that if a
neuron receives low voltage at each input (quantal voltage) or receives a low frequency of
inputs, it will not integrate the inputs into APs, which in turn will not support the propagation
of synaptic transmission throughout the network. The connectivity of the network was chosen
as a primary gain parameter because a low connectivity ratio translates to fewer connections
for each neuron, and each neuron subsequently receives a lower frequency of synaptic input. It
is also important to note that excess synaptic input (by either very high frequency or very high
voltage) can also suppress the network bursting activity, as it might lead neurons to spike con-
stantly and deplete synaptic resources.

Neuronal culturing on MEA. All experimental procedures were approved by the Chan-
cellor’s Animal Research Committee at Tel Aviv University (approval #L12-066), in accor-
dance with the regulations and guidelines. Cortical neuronal network preparation and MEA
plating were perform as described in a previous work [3]. Briefly, cortical neuronal cultures
were prepared from newborn P1 mice. Cortical tissue was separated from the hippocampus
and was then mechanically dissociated and the cells were plated in Neurobasal-A supple-
mented with B-27, GlutaMAX-I, antibiotics (penicillin–streptomycin; Invitrogen, Carlsbad,
CA, USA) and 5% fetal calf serum to support glial cell growth on the day of culture preparation.
On the following day and twice a week thereafter, the medium was exchanged with growth
medium, which was essentially the plating medium without the serum. MEA plates were cul-
tured with one million cells in a 100-μl drop applied to the middle of the plate (final cell density
was estimated at 2500 to 3000 cell/mm2). Cultures were kept in an atmosphere of 5% CO2 and
95% air at 37°C and were recorded 2 weeks after plating (no significant difference in culture
age), before and after overexpression of the following proteins: DOC2B separated by an inter-
nal ribosome entry sequence (IRES) from GFP (DOC2B; 15 cultures), DOC2BD218,220N sepa-
rated by an IRES from GFP (DOC2BD218,220N; 9 cultures) and Munc13-1 conjugated to GFP
(Munc13-1; 10 cultures). Strontium experiments were performed on naive cultures to which
2 mM strontium (Sigma) and 4 mM EGTA (Sigma) were applied to replace the existing Ca2+
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ions in the external solution as previously described [108]. To enable long-term (hours) record-
ings before and after virus application, custom-made incubation chambers consisting of a glass
cylinder and a plastic ring were glued to MEA plates with Sylgard 184 (Dow Corning, Midland,
MI, USA). The MEA plates used in this study consisted of 60 Ti/Au/TiN+iR electrodes of
30 μm diameter and 500 μm spacing and were pretreated with polyethyleneimine (1:5000,
Sigma-Aldrich) to promote neuron adhesion.

Supporting Information
S1 Fig. DOC2B expression increases the firing rate and number of neurons participating in
network bursts. (A) Color-coded raster plots displaying 1 min of spontaneous activity before
(left) and 6 h after (right) overexpression of DOC2B. For every electrode (in each row), each
spike is colored by the average inter-spike interval (1/ISI; electrodes are ordered by activity
level, most active electrodes at the top). (B) Following DOC2B overexpression, the spiking fre-
quency recorded by the electrodes within the network burst increases and more electrodes par-
ticipate in the network bursts (2 s of spontaneous activity enlarged from the respective plot in
A marked by black arrow; modified from Lavi et al. [3]).
(DOCX)

S2 Fig. Network connectivity analysis confirms small-world scale-free connectivity. (A)
Quantitative analysis of the network connectivity was utilized to examine how the chosen con-
nectivity balances between small-world (left panel) and scale-free (right panel) connectivity prop-
erties. (B) As expected, the increase in connectivity ratio is perfectly correlated with the increase
in the average connectivity degree, i.e. the average number of connections each neuron creates
(top left panel; R = 1, Pearson correlation). Normalized clustering coefficient analysis (bottom
right panel) shows that the baseline connectivity (5%) has a significantly higher clustering coeffi-
cient compared to a random network, indicating that the network topology answers the basic
requirements for small-world and scale-free networks [109–111]. Small-world index [107] quan-
titatively measures the small-worldness of the network topology (top right panel). Under baseline
conditions, the network topology is between small-world and scale-free topology (small-world
index> 1). Average shortest path analysis (bottom left panel) supports this analysis by indicating
that the average shortest path was longer than the path expected from a scale-free connectivity
but shorter than the path expected from a small-world connectivity.
(DOCX)

S3 Fig. Calcium-dependent neuronal release mechanisms generate spontaneous network
activity, which is more similar to experimental data. (A) Raster plot displaying simulated
spontaneous network activity (top panel) maintained by neuronal calcium-dependent release
mechanisms (lower panel displays a representative network burst marked by arrow in the
upper panel). (B) Raster plot displaying simulated spontaneous network activity maintained by
current injection to neurons but without calcium-dependent release mechanisms (lower panel
displays a representative network burst marked by arrow in the upper panel). (C) Comparison
of in silico network activity parameters to experimental data shows that the neuronal models
based on calcium-dependent release (‘Ca-dependent release’) generate network bursts which
are more similar to network bursts recorded from neuronal network cultured on microelec-
trode arrays (‘MEA’) in comparison to neuronal models which receive only current injection.
Time-to-peak, time from burst initiation to peak firing rate; Neuron participation, percentage
of neurons which are active in network bursts. �P< 0.05, ���P< 0.001, one-way ANOVA;
error bars show SEM.
(DOCX)
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S4 Fig. Simulated neuronal network activity is stable under manipulation of EPSP and con-
nectivity ratio. (A) Raster plot of a typical simulation run of neuronal network activity: each
30-min period simulates the neuronal network activity under different conditions. Percentage
denotes change from baseline EPSP. (B) Increase in EPSP is significantly and positively corre-
lated with overall firing rate in the network (spikes/sec), the number of spikes in each burst
(Burst spikes), the frequency of network bursts (Burst/min) and the duration of the network
bursts (P< 0.001 under regression analysis). The activity of the simulated neuronal network is
also stable under manipulation of its connectivity ratio (the percentage of actual connections in
the network out of all possible connections in the network). (C) Raster plots of spontaneous
activity of 3 networks with various connectivity ratios (2.5%, 5% and 10%; 5% is the baseline
connectivity ratio used in all simulations). (D) Connectivity ratio is positively correlated with
burst neurons, spikes, duration and frequency (P< 0.001 under exponential regression analy-
sis). Note that while the EPSP changes induce linear changes, the connectivity ratio induces
exponential changes in the network activity parameters.
(DOCX)

S5 Fig. Primary effects of asynchronous release on network activity are maintained follow-
ing substantial changes to network structure. (A) Raster plot of spontaneous activity of a
simulated neuronal network with a 10-fold increase in the number of neurons (8000 neurons,
top panel; lower panel displays a representative network burst marked by arrow in the upper
panel). (B) Raster plot of spontaneous activity of a simulated neuronal network with a 10-fold
increase in the number of synapses per neuron (10 independent synapses per neuron, top
panel; lower panel displays a representative network burst marked by arrow in the upper
panel). Under a 10-fold increase in the number of neurons (C) or 10-fold increase in the num-
ber of synapses per neuron (D), the enhanced asynchronous release still increases peak net-
work burst firing rate and reduces the network burst time to peak.
(DOCX)

S6 Fig. Enhanced asynchronous release increases network synchronization and percentage
of "full" bursts. (A)Higher asynchronous release following DOC2B overexpression and stron-
tium application significantly increases the ratio of "full" bursts, while higher spontaneous
release following DOC2BD218,220N decreases this ratio compared to GFP control cultures (top
panel; �P< 0.05, ��P< 0.01, under one-way ANOVA; error bars show SEM; modified from
Lavi et al. [3]). In the model, analysis of the "full" vs. "aborted" bursts follows the experimental
results (bottom panel; ���P< 0.001 under one-way ANOVA; error bars show SEM); higher
spontaneous release in the model significantly decreases the ratio of "full" bursts while the
increase in asynchronous release in the model increases the same ratio. (B) Network burst syn-
chronization analysis shows that enhanced asynchronous release, induced by DOC2B overex-
pression or strontium application, significantly increases network burst synchronization, while
higher spontaneous release frequency following DOC2BD218,220N overexpression significantly
reduces network burst synchronization (top panel; each line represents the average change
from baseline conditions in pairwise Pearson correlation for all active electrodes in the network
burst; 15 DOC2B recordings, 6 strontium recordings, 9 DOC2BD218,220N recordings; �P< 0.05,
��P< 0.01, ���P< 0.001, ANOVA for repeated measurements; error bars show SEM; modified
from Lavi et al. [3]). In agreement with the experimental findings, analysis of network burst
synchronization in the model shows that while spontaneous release significantly reduces net-
work burst peak synchronization, asynchronous release significantly increases peak network
burst synchronization (bottom panel; �P< 0.05, ��P< 0.01, ���P< 0.001, ANOVA for
repeated measurements; error bars show SEM). The increase in the model is most significant
during the peaks of the bursts and seems to be shorter than the experimental effect, perhaps
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due to the reduced variability in the model's burst duration.
(DOCX)

S1 Software. The zip archive contains the complete computational model. A readme file,
included in the archive, briefly describes the general flow of the simulation. The demo scripts
included in the archive reproduce the effects of asynchronous release on neuronal network
activity as demonstrated in Fig 2. The code is written in Matlab and requires the Matlab pro-
gramming environment (version 7.3, The Mathworks Inc.).
(ZIP)
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