
Review Article
The Gastrointestinal Tumor Microenvironment: An Updated
Biological and Clinical Perspective
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Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated
cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix,
growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation,
angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and
therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.

1. Introduction

Gastrointestinal (GI) cancers represent the most prevalent
tumors worldwide and the major cause of death related to
cancer. Within this group, we can identify colon, stomach,
and liver cancers as the main concerns according to their
prevalence (fourth, sixth, and seventh most prevalent, re-
spectively). As a cause of death, stomach (second higher),
liver (third higher), and colon cancer (fifth higher) are the
main culprits [1]. Nonetheless, this group includes other
mention-worthy cancers. Although not within the ten most
prevalent, pancreatic ductal adenocarcinoma (PDAC) has
one of the worst prognoses and is expected to be one of the
major causes of death related to cancer by 2030 [2]. Ad-
ditionally, the esophagus cancer is highly prevalent in some
areas of the globe [1].

.e treatment outcomes are also completely different
amongst GI cancers. Two of the main reasons concern the
timing of diagnosis and the therapeutic approach. As an
example, colon and rectum cancers are usually diagnosed at

early stages and are treated with surgery (colon cancer [3]),
or multimodality treatment including chemoradiotherapy
and surgery (rectum cancer [4]) with high rates of success,
especially in the latter. Nonetheless, other tumors such as
PDAC are usually diagnosed at later stages, when surgery
approaches are usually no longer feasible. In these cases, the
traditional treatment is based on combined chemotherapy
[3–7], with 5 years below 5% [8].

.e development of a prominent desmoplastic reaction
by both local and distantly recruited stromal cells has been
observed in GI cancers. In addition to immune cells, bone
marrow- (BM-) derived progenitor cells are recruited to the
tumor microenvironment (TMEN) where they differentiate
into various stromal cells, such as endothelial cells, pericytes,
and fibroblasts [9]. .ese cells are crucial for both malig-
nization and cancer progression [10] and are frequently
associated with poor prognosis [11–14]. Indeed, the in-
teraction of cancer cells and the host microenvironment
plays a critical role in strengthening the metastatic pro-
ficiency. .us, a better understanding of the oncological
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drivers of these tumors, including their interaction with the
microenvironment, is of utmost importance [15, 16]. In this
review, we will focus on the role of these tumor-associated
cells in the tumorigenesis and progression of GI cancers, as
well as on their role in treatment resistance and potential
targeted therapeutic approaches.

2. BM-Derived Progenitor Cells

BM-derived cells (BMDCs) are constantly recruited to the
TMEN, where they modulate tumor growth and metastasis
through the regulation of angiogenesis, inflammation, and
immune suppression [17]. Several studies in animal models
have implicated BMDCs in the development of carcinomas
of the upper GI tract [18, 19], including gastric cancer (GC)
[20]. BMDCs were shown to home and repopulate the
gastric mucosa in response to H. pylori chronic infection,
leading to the development of metaplasia, dysplasia, and
cancer over time [20]. In another study, BMDCs were found
to be about 25% of H. pylori-induced dysplastic lesions in a
mouse model [21]. Zhang et al. showed that highly meta-
static colorectal carcinoma (CRC) cells produce elevated
serum levels of OPN, MMP9, S100A8, S100A9, SAA3, and
VEGFA. .is promoted the setup of hepatic TMENs sup-
portive of metastasis by BMDCs recruitment to this organ
[22]. Bone marrow-derived CD34+ CD31− immature mye-
loid cells were also found to cluster at the invasion front of
CRC in cis-Apc+/D716 Smad4± mutant mice. .ese im-
mature myeloid cells expressedMetalloproteinases (MMP) 9
and MMP2 and supported tumor invasion at early stages in
intestinal adenocarcinomas [23].

Bone marrow-derived mesenchymal stem cells (MSCs)
constitute a nonhematopoietic stem cell subpopulation that
can populate the TMEN and contribute to tumor growth and
progression through paracrine signaling [24]. Data from
Beckermann et al. suggested a supportive role of MSCs in
angiogenesis [25]. In this study, MSCs display increased
vascular endothelial growth factor (VEGF) mRNA expres-
sion and protein secretion. .ey were also found to migrate
towards tumor blood vessels of PDAC, in vitro and in vivo, in
response to tumor-secreted growth factors. .is is rein-
forced in vivo in an orthotopic mouse model of PDAC,
where siRNA directed towards VEGF induces loss of vessel
density control by MSCs [25].

Hypoxia can also induce the expression of growth factors
that act as chemoattractants for MSCs to the TMEN [26–29].
In fact, the expression of VEGF by MSCs was shown to
increase upon stimulation by interferon- (IFN-) c and tumor
necrosis factor- (TNF-) α cytokines through a hypoxia-in-
duced factor- (HIF-) 1α-dependent pathway. .is promoted
angiogenesis and tumor growth in mice bearing CRC [30].

Some reports also implicate MSCs in tumor progression
and metastasis. For instance, S100 Calcium Binding Protein
A4 (S100A4) secreted by MSCs isolated from patient-de-
rived hepatocellular carcinoma (HCC) tissues upregulated
the expression of miR155 in HCC cells, promoting tumor
invasion through the suppressor of cytokine signaling 1-
(SOCS1-) MMP9 axis [31]. Exosomes, extracellular vesicles
of endosomal origin, can mediate transfer of biomolecules

both locally and at distance, playing a key role in the setup of
TMENs [32, 33]. For instance, MSCs-derived exosomes
supported GC lymph node metastasis and venous invasion
by transferring miR-214, miR-221, and miR-222, regulators
of the tumor suppressor gene Phosphatase and Tensin
Homolog (PTEN), to cancer cells [34].

Bone marrow-derived MSCs also have the ability to
differentiate into several cell types in the stroma [24], in-
cluding fibroblasts [35]. Spaeth et al. showed the propensity
of MSCs to transition to a tumor-associated fibroblast-like
phenotype in ovarian, breast, and PDAC-xenografted tu-
mors. .ese fibroblast-like cells ultimately contributed to
microvascularization and the production of tumor-stimu-
lating paracrine factors [36]. MSCs also favor primary CRC
cells metastasis to the liver [37]. Orthotopic transplantation
of cancer cells mixed withMSCs (but not cancer cells on their
own) into the cecal wall resulted in macroscopic liver me-
tastasis. Interestingly, metastasized colon cancer cells
recruited more MSCs to the secondary sites where these were
found to differentiate into supporting fibroblast-like cells
[37]. Altogether, these results illustrate the role of MSCs in
the development of tumor-supporting microenvironments.

Hematopoietic stem cells (HSC) constitute a sub-
population of BM resident cells endowed with long-lived
self-renewal and multipotency that sustain the generation of
all cells of the blood and immune system. .e HSC niche is
tightly regulated by osteoclasts and vascular cells within the
BM compartment, contributing for the maintenance of a
quiescent microenvironment and controlled differentiation
[38, 39]. However, tumor-derived soluble factors are able to
systemically induce a BM microenvironment switch, from
quiescent to protumorigenic and proangiogenic, and stim-
ulate HSC mobilization into the circulation and recruitment
to the tumor [39]. .ese cells can indirectly modulate tumor
growth through their ability to differentiate into myofi-
broblasts and inflammatory cells in the tumor environment.

3. Cancer-Associated Fibroblasts (CAFs)

Fibroblasts are normal components of the connective tissue.
.ese spindle-shaped cells are the main nonepithelial and
nonimmune cell elements found in the interstitial space,
embedded in physiological extracellular matrix (ECM) [40].
Resident fibroblasts of healthy tissues are considered to be in a
resting or quiescent state and are characterized by low met-
abolic and synthetic activities. In the physiological wound
healing process, resting fibroblasts become activated, gaining
contractile properties and becoming synthetically dynamic
[41, 42]. As the wound closes and evolves into a scar, apoptosis
of the activated fibroblasts (myofibroblasts) leads to a sig-
nificant decrease in their numbers [43]. .e inability of
myofibroblasts to undergo apoptosis is the driving factor in the
development of fibrotic diseases and contributes for the
maintenance of other pathological conditions, such as chronic
inflammation [42].

In oncologic settings, fibroblasts are frequent compo-
nents of the TMEN and play an important role at all stages
of cancer progression through their phenotypic plasticity
and ability to secrete a wide range of signaling molecules.
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Next, we emphasize how these cells play a key role in
generating tumor-promoting microenvironments in GI
cancers.

3.1. Role of CAF in Cancer Initiation and Growth.
Multiple studies have highlighted the important role of
CAFs in the process of cancer initiation and progression.
For example, the abundance of myofibroblasts in CRC-
associated stroma is predictive of postsurgery disease re-
currence [44]. It has also been suggested that the loss of
transforming growth factor- (TGF-) β inhibitory effect
leads to the activation of hepatocyte growth factor- (HGF-)
mediated cell-cycle regulation and stimulation of epithelial
proliferation, promoting invasive squamous cell carci-
noma of the forestomach in the Tgfbr2fspKO knockout mice
[45]. In addition, the conditional knockout of the TGF-β
type II receptor gene in mouse fibroblast-specific protein
1- (FSP1-) positive fibroblasts revealed that TGF-β sig-
naling modulates the proliferation and oncogenic potential
of epithelial cells [45].

Recently, it has also been demonstrated that CAFs-se-
creted HGF regulates liver tumor-initiating cell plasticity
through the activation of Tyrosine-Protein Kinase Met/Fos-
Related Antigen 1/Hairy and Enhancer of Split-Related
Protein 1 (c-Met/FRA1/HEY1) signaling. .e activation of
this signaling pathway was associated with fibrosis-de-
pendent development in HCC in vivo [46]. CAFs-derived
HGF was also shown to promote a stemness phenotype in
CRC cells [47]. In another study, the deletion of Liver Kinase
B1 (Lkb1) gene in stromal fibroblasts resulted in penetrant
polyposis in mice, underscoring the involvement of these
cells in the tumorigenesis of GI Peutz–Jeghers syndrome.
Further analysis revealed that Lkb1 loss induces interleukin-
(IL-) 11 expression in gastric fibroblasts and subsequent
activation of the Janus Kinase/Signal Transducer and Ac-
tivator of Transcription 3 (JAK/STAT3) pathway in tumor
epithelia, promoting GI tumorigenesis [48].

Emerging data also suggest the switch from normal
quiescent fibroblasts into an activated phenotype through
epigenetic modifications [49–51]. Helicobacter pylori in-
fection, one of the major causes of GC, was shown to induce
the secretion of Prostaglandin E2 (PGE2) by gastric epi-
thelial cells. .e stromal PGE2 silenced miR-149 through
hypermethylation, removing the suppression of its target
genes, IL6 and PGE2 receptor 2. .is led to elevated IL6
levels that stimulated the stem-like properties of GC cells
[49].

3.2. Role of CAF in EMT, Extracellular Matrix Remodeling,
andMetastasis. CAFs-mediated signaling also participates in
the acquisition and maintenance of cancer cell stemness. One
of the common concepts associated with metastasis initiation
is epithelial-to-mesenchymal transition (EMT), that is, the
process by which cells lose their epithelial characteristics (such
as cell-to-cell adhesion and planar and apical polarity) to
acquire mesenchymal features (such as motility and in-
vasiveness) [52]. Paracrine signaling through TGF-β between
CAFs and cancer cells leads to EMT-driven gain of stemness

and metastasis initiation [53, 54]. In fact, targeting CAFs with
curcumin reverted the EMT phenotypes of PDAC cells
blocking their migration and metastasis [55]. In HCC,
myofibroblasts can induce EMT in a TGF-β/platelet-derived
growth factor- (PDGF-) dependent manner [56]. Likewise, IL-
6 produced by fibroblasts can also activate JAK2/STAT3
signaling in the GC cells promoting their migration and EMT
[57]..emiRNA 320a can also affect EMT by decreasing PBX
Homebox 3 (PBX3), Extracellular Signal-Regulated Kinase 1
and 2 (ERK1/2) signaling, and N-cadherin expression, and
simultaneously increase E-cadherin. When transferred from
CAFs to HCC tumor cells via exosomes, this miRNA can
inhibit tumor proliferation, migration, invasion, and metas-
tasis. Interestingly, CAF-derived exosomes fromHCC patients
contain reduced levels of miR-320a, showing how the re-
duction of an antitumor factor in these vesicles can affect
metastasis [58]. Cancer cell-derived exosomes can also re-
program normal adjacent fibroblasts into CAFs. For example,
a recent study showed that exosomes derived from early- or
late-stage CRC cell lines induce the activation of quiescent
fibroblasts into distinct functional subtypes [59]. Specifically,
the activationmediated by late-stage cancer exosomes resulted
in a proinvasive profile, while fibroblasts activated by early-
stage cancer exosomes presented a pro-proliferative and
proangiogenic phenotype [59].

Fibroblasts can also remodel the microenvironment
and lay the tracks for cancer cell invasion through the
surrounding ECM and stromal cell layers [60–62]. For
instance, CAF-derived transgelin (TAGLN) induces MMP2
expression and promotes migration and invasion of GC
cells [63], while CAF-derived fibroblast activation protein
(FAP) remodels the ECM and promotes PDAC cell in-
vasion [64]. In HCC, CAFs secrete different cytokines that
activate the hedgehog (C-C motif chemokine 2 (CCL2) and
5 (CCL5) and TGF-β (CCL7 and C-X-C motif ligand
(CXCL) 16) pathways in HCC cells, inducing their mi-
gration and invasion in vitro and metastasis in vivo [65]. In
addition, Granulocyte-Macrophage Colony-Stimulating
Factor (GM-CSF) secreted by cancer-associated MSCs, a
subpopulation of CAFs isolated from human PDAC, in-
duced proliferation, invasion, and transendothelial mi-
gration of PDAC cells [66].

Colonization is probably the most limiting of all me-
tastasis steps and the microenvironment at the distant sites
needs to be favorable for this to happen. Paget’s seed and soil
theory back in 1889 was the first to suggest that metastasis to
a certain organ is not random but depends on interactions
with its microenvironment and that cancer cells will seed
only in fertile soils [67]. .e concept of “pre-metastatic
niche” was introduced later in 2001 by Kaplan et al., where
they showed that BM-derived cells can form clusters that
home to tumor-specific premetastatic sites [67, 68]. In line
with this theory, metastatic cancer cells are capable of
bringing their own “soil” to the metastatic site in order to
facilitate their colonization [69]. A good example is the case
of IL11 production by TGF-β-stimulated CAFs, which ac-
tivate Glycoprotein 130 (GP130)/STAT3 signaling in CRC
cells conferring them the survival advantage for efficient
organ colonization [70].
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3.3. Role of CAF in Angiogenesis. CAFs tailor tumor growth
and progression not only by influencing tumor cells but also
by indirectly affecting other stromal cells and regulating
angiogenesis, inflammation and immune modulation [10].
CAFs are capable of promoting angiogenesis by secreting
VEGF and Stromal Cell-Derived Factor 1 (SDF-1) [71, 72].
For example, in a mouse model of GC, α-Smooth Muscle
Actin- (α-SMA-) positive fibroblasts were the main pro-
ducers of VEGF. Activation of these fibroblasts was stimu-
lated by GC cells and shown to increase tube formation by
endothelial cells in vitro [73]. CAFs are also a source of IL6 in
CRC, which in turn can increase VEGF secretion by adjacent
fibroblasts and induce tumor angiogenesis in xenografted
cancer cells [74]. Pancreatic fibroblasts, also known as
pancreatic stellate cells (PSCs), express several proangiogenic
regulators such as VEGF receptors, angiopoietin-1, and Tie-2
and produce VEGF in response to hypoxia. Conditioned
medium from hypoxia-induced PSCs was able to increase
proliferation, migration, and angiogenesis of Human Um-
bilical Vein Endothelial Cells (HUVECs) both in vitro and in
vivo [75]. In a similar line, hepatic stellate cells (one of the
main players in HCC) can produce VEGF and angiopoietin-1
in hypoxic conditions and induce angiogenesis [76, 77].

4. Endothelial and Perivascular Cells

4.1. Role of Endothelial and Perivascular Cells in Tumor
Growth. .e angiogenic switch is a hallmark of cancer that
allows for tumor growth by providing nutrients and oxygen
and removing cellular wastes [10]. .e establishment of new
blood vessels is a crucial step for tumor progression, but the
endothelial and perivascular cells that constitute these blood
vessels are not just mere bystanders in the game. Endothelial
cells (ECs) can promote a cancer stem cell phenotype in
human CRC in vitro and in cocultured CRC cells ex vivo
[78]. Lu et al. showed that CRC stemness is induced through
paracrine activation ofNotch signaling, whereby membrane-
bound Jagged-1 on ECs is cleaved by ADAM metal-
loproteinase domain 17 (ADAM17), releasing a truncated
soluble fragment that binds Notch on CRC cells. Impor-
tantly, both primary and chemotherapy-naı̈ve liver meta-
static CRC liver showed CD133+ epithelial cells located in
the proximity to perivascular regions, further supporting an
ECs-mediated role in the CRC stem cell phenotype in
clinical specimens [78]. A subsequent study found that ECs
contributed to chemoresistance in CRC cells via serine/
threonine-protein kinase- (AKT-)mediated induction of
Nanog Homeobox Retrogene P8 (NANOGP8) [79]. Like-
wise, in an in vitro model of Hepatitis B Virus- (HBV-)
induced HCC, increased levels of TGF-β in the conditioned
medium of HUVECs boosted the expression of mesen-
chymal markers, including CD133, and promoted an ag-
gressive phenotype in stimulated Hepatitis B-X Protein-
(HBx-) infected hepatoma cells [80]. Immunization of mice
with glutaraldehyde-fixed HUVECs resulted in reduced
expression of angiogenesis-related antigens (VEGF-2 and
vascular endothelial- (VE-) cadherin), suppression of an-
giogenesis, and smaller esophageal squamous carcinoma
(ESC) tumors [81]. .is has prompted the evaluation of

HUVEC vaccines promoting tumor autoimmune response
targeting angiogenesis in pilot trials involving patients with
metastatic CRC [82].

Lymphatic endothelial cells (LECs) are also important
players in the growth of GI cancers. Expression of Growth
Differentiation Factor 11 (GDF11) was increased in CRC
patients and positively correlated with tumor grade. GDF11
released in LEC-derived exosomes was also identified as a
key modulator of CRC growth in vitro and in vivo [83].
Moreover, increased proliferation and invasive ability of
ESC cells in vitro has been demonstrated upon stimulation
with conditioned medium from ESC-related lymphatic
microvessel endothelial cells. .is interaction leads to the
upregulation of MMP9 expression and downregulation of
Tissue Inhibitor of Metalloproteinases 2 (TIMP-2) expres-
sion in poorly differentiated ESC cells and promotes both
lymphangiogenesis and growth of these cells in vivo [84].
Lymphatic endothelial cells also have an immunoregulatory
function in GC by inhibiting the production of IL2, IL10,
and IFN-c cytokines in CD4+ T cells. Coculturing GC cells
with both LECs and CD4+ T cells resulted in the upregu-
lation of Programmed Death-Ligand 1 (PD-L1) and Indo-
leamine 2,3-Dioxygenase (IDO) mRNA expression. .is
suggests a possible mechanism of cancer immune tolerance
and metastatic spread through the lymphatic vessels in GC
[85].

Additionally, the development of diffuse-type GC de-
pends on the inflammation mediated by CXCL12+ ECs and
C-X-C motif receptor (CXCR) 4+ gastric innate lymphoid
cells (ILCs) that form the perivascular gastric stem cell niche.
Endothelial CXCL12 plays a central role recruiting Wnt
Family Member 5A- (Wnt5a-) producing CXCR4+ ILCs to
the stomach, which in turn activates Ras Homolog Family
Member A (RhoA), inhibits anoikis in the E-cadherin-de-
pleted cells and promotes diffuse-type GC growth [86].

4.2. Endothelial and Perivascular Cells Role in Tumor
Metastasis. Blood vessels are also a gateway for distant
metastasis. .e lack of vascular maturation in newborn
vessels facilitates cancer cell penetration and promotes
distant metastasis. Immunohistochemical analysis of tissue
samples from CRC patients revealed a significant correlation
between lower microvessel pericyte coverage with increased
hematogenous metastasis and poorer survival [87].

.e importance of these vascular networks is under-
scored by the fact that cancer cells undergoing EMTare able
to assume the identity and role of pericytes to stabilize the
tumor vasculature and improve the vascular support for
tumor growth [88]. Shenoy et al. found that the majority of
cancer cells undergoing EMT were located preferentially in
the perivascular space and were closely associated with ECs
and in line with the blood vessels in tumor xenografts. It was
further demonstrated that these cells expressed pericyte
markers and interacted with ECs, stretching alongside
Human Microvascular Endothelial Cells (HMVECs) and
exhibiting tight adhesion to EC tubes in a coculture assay in
vitro [88]. .is phenomenon, known as vasculogenic
mimicry (VM), whereby cancer cells form de novo vascular
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networks without the involvement of ECs, represents an
alternative paradigm of tumor perfusion in HCC and GC
[89–91].

Exosomes are also key mediators in this setting, as they
mediate vascular permeability and angiogenesis. Zeng
et al. found that CRC-derived exosomal miR-25-3p can be
transferred to ECs, where it targets and silences Krüppel-
Like Factor 2 (KLF2) and 4 (KLF4). In vivo, exosomal miR-
25-3p elicited vascular leakiness and promoted CRC
metastasis [92]. Exosome-mediated remodeling of the
lymphatic network in sentinel lymph nodes was also
shown to promote CRC metastasis. .e uptake of CT26-
derived exosomes by macrophages induced the release of
VEGF-C, mediated by exosomal Interferon Regulatory
Factor 2 (IRF-2), and promoted lymphangiogenesis in
sentinel lymph nodes, which facilitated the development of
CRC metastasis [93]. Upregulated secretion of CXCL1 by
LECs can also promote migration, invasion, and adhesion
of GC cells through the activation of integrin β1- (Focal
Adhesion Kinase) FAK-AKT signaling. Activation of the
latter induced the expression of MMP2 and MMP9 and
increased lymph node metastasis in an animal model of
GC [94].

When cancer cells enter the systemic circulation, they get
exposed to the harsh circulating conditions. Together with
the absence of cell/ECM interaction, apoptosis signaling is
triggered and cancer cells undergo rapid anoikis [95]. A
recent study in head and neck carcinoma showed that cancer
cells bound to Bcl-2 overexpressing ECs (EC-Bcl-2) via
E-selectin presented significantly higher anoikis resistance.
Additionally, mice coinjected with squamous cell carcinoma
cells and EC-Bcl-2 displayed significantly higher lung me-
tastasis [96]..e described chaperoning role of ECs could, in
principle, also occur in GI cancers, as increased levels of
circulating ECs have also been observed in patients with
colon, gastric, and esophagus cancers [97].

5. Tumor-Infiltrated Immune Cells

Infiltrating immune cells from lymphocytic and myeloid
origin are also constituents of the TMEN [10]. Lymphocytes
are composed by three main lineages that originate from a
common precursor identified in the BM: natural killer (NK)
cells, T cells, and B cells. T cells are subject to a final lineage
decision in the thymus to form mature CD4 (helper) and
CD8 (cytotoxic) Tcells [98]. NK and CD8 Tcells can rapidly
degranulate and secrete IFN-c following antigen receptor
triggering, which is particularly important in antitumor
responses [99]. T regulatory Cells (TRegs) can contribute to
homeostasis by inducing immunotolerance and control of
autoimmunity. .ese cells are derived from the thymus,
express CD4, CD25, and Forkhead Box P3 (FOXP3, murine
Foxp3) and are capable of inhibiting immune responses
mediated by CD4+CD25− and CD8+ T cells [100–102].

Myeloid cells comprise polymorphonuclear cells or
granulocytes, dendritic cells (DCs), monocytes, and macro-
phages (extravasated blood monocytes) [103, 104]. Macro-
phages can display a broad spectrum of activation and
polarization states [105, 106]. However, in more general and

simplistic models, they are frequently classified as M1, that
takes part in type I T helper (.1) cell responses when
stimulated by IFN-c and is characterized by release of radical
oxygen species (ROS), nitric oxide (NO), and proinflammatory
cytokines such as TNF-α and IL12; M2, involved in type II T
helper (.2) cell responses and identified by expression of
arginase and release of anti-inflammatory cytokines such as
IL10 when stimulated by IL4 and IL13 [107].

Myeloid-derived suppressor cells (MDSC) comprise
another population of myeloid progenitor and immature
myeloid cells endowed with the ability to inhibit T-cell
responses [108–110]. DCs were also reported as activators of
specific T cells during inflammatory responses and play a
central role in protection against infection and malignancy
[111, 112]. DCs can also display multiple profiles. Monocyte-
derived DCs can perform marked tumor antigen uptake.
cDC1s can activate CD8+ T cells, while cDC2s can repro-
gram protumoral macrophages when injected in mouse
models. Importantly, the analysis of tumor biopsies from
colorectal cancer patients revealed the presence of all the
three abovementioned subsets of tumor-associated DCs
[113]. For these reasons, myeloid cells play a pivotal role in
the regulation of immune cell responses.

Tumor inflammation has a paradoxical role in pro-
moting tumor growth and progression [10]. Some reports
show the association between unresolved infection, chronic
inflammation, and tumor initiation. Examples are the re-
lationships between infection by Helicobater pylori and GC,
chronic pancreatitis and PDAC, and ulcerative colitis and
CRC [114–117]. In this section, we describe how immune
cells contribute to TMENs in GI cancers.

5.1. Immune Surveillance Evasion. Although increased in-
filtration of tumors by immune cells has long been thought
to be a consequence of failed attempts to eliminate cancer
cells, recent studies show that cancer cells can frequently
evade immune responses [10]. An important mechanism of
immune evasion involves PD-L1/Programmed Death-1
(PD-1) that has been linked to T-cell apoptosis [118]. For
example, HCC-derived IL-10 can increase expression of PD-
L1 by Kupffer cells, which in turn can decrease the antitumor
function and proliferation of CD8+PD-1+ cells [119]. In the
same line, PD-L1+ monocytes infiltrates can suppress an-
titumor T-cell responses and contribute to tumor growth in
vivo [120]. In both cases, PD-L1 correlated with poor sur-
vival in HCC patients and could be targeted by anti-PD-L1
antibodies [119, 120]. CXCL12 produced by FAP+CAFs has
been linked to immune evasion in PDAC, and targeting this
cytokine can synergize with anti-PD-L1 immunotherapy in
PDAC [121, 122].

In two complementary studies, Wang et al. and Korty-
lewski et al. demonstrated how the constitutive activation of
Stat-3 in cancer and hematopoietic-derived tumor in-
filtrating cells could inhibit the maturation of DCs, leading to
a defective antitumor immune response. In fact, Stat-3 in-
hibition enhanced the antitumor function of T and NK cells,
DCs, and innate immunity against tumors [123, 124]. Fur-
thermore, in a small cohort of patients and healthy control
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subjects, Yanagimoto et al. have shown that the numbers and
function of DCs were reduced in PDAC patients [125].

PDAC and CRC cells can also evade immune response
by expressing an apoptosis-mediating surface antigen FAS
(Fas) receptor, which enables these cells to resist Fas-me-
diated apoptosis and, at the same time, to increase the ex-
pression of Fas ligand (FasL), which mediated the killing of
T cells in coculture assays [126–128]. .e upregulation of
FasL was also demonstrated in GC together with down-
regulation of caspase-3 as an immune escape mechanism
[129, 130]. Another strategy by which PDAC cells could
escape immune response was through the upregulation of
IDO [131], a tryptophan-degrading enzyme that induces an
anergic state in T cells through tryptophan starvation [132].
In addition, the presence of .2 lymphocytes also correlates
with reduced PDAC patient survival. .ymic Stromal
Lymphopoietin (TSLP), which induces.2 polarization, was
found to be secreted by CAFs after stimulation by TNF-α
and IL1β [133].

Immunosuppressive cells such as MDSC and TRegs are
elevated in patients with PDAC, esophageal, and GC when
compared with controls, being considered an independent
prognostic factor for survival in all these three cancers [134].
In fact, by studying a small cohort of patients, Porembka
et al. have demonstrated that human PDAC show an in-
creased infiltrate of MDSC when compared with normal
pancreatic tissue. Moreover, depletion of these cells in an
animal model of PDAC resulted in delayed tumor growth
[135]. MDSCs were also increased in HCC patients and
could induce the formation of TReg populations, suggesting
this as one of the mechanisms responsible for immuno-
suppression in HCC [136]. Increased populations of TRegs
were also found in the blood of patients with gastric and
esophageal cancers [137]. In addition, TGF-β1 produced by
GC cells was shown to induce TReg development from
CD4+CD25−T cells, and high levels of this factor correlated
with elevated TReg numbers in GC patients [138]. In-
terestingly, Mizukami et al. suggested that the localization
pattern rather than the numbers of TRegs might have a
higher impact in survival of GC patients. .ey found that a
diffuse pattern of TRegs accounts for poorer survival than
peritumoral localization of these cells [139]. TRegs of HCC
patients were also capable of impairing the function of CD8+
T cells by decreasing their proliferation, activation, de-
granulation, and production of enzymes such as granzymes
A and B and perforin when stimulated. Not surprisingly,
TRegs were associated with higher mortality in these pa-
tients [140]. Both CRC- and HCC-associated fibroblasts
were also shown to impair NK-cell antitumor cytotoxicity by
releasing molecules such as PGE2 [141, 142].

5.2. Immune Cells Role in EMT, Invasion. and Metastasis.
In addition to immune surveillance evasion, infiltrated
immune cells also promote invasive phenotypes in cancer
cells through EMT. For example, PDAC cells increase the
conversion of blood monocytes into monocytic MDSC,
which in turn act to promote EMT features in these cancer
cells [143]. Using in vitro coculture studies, Liu et al. have

shown that the promotion of the M2 phenotype in mac-
rophages induces the expression of mesenchymal markers in
PDAC cell lines in vitro and that this effect was dependent on
Toll-Like Receptor 4 (TLR4) and IL10 levels [144]. M2
macrophages were also capable of inducing GC invasiveness
via activation of the β-catenin pathway [145].

Kim et al. suggested that myofibroblasts can induce the
differentiation of myeloid cells into S100A8/9-expressing
MDSC and M2 macrophages in CRC by secreting IL-6 and
IL-8 [146]. In a mouse model of esophageal cancer, re-
cruitment of MDSC was correlated with IL-6 levels and
tumor invasiveness, IL-6 being shown to induce the MDSCs.
In fact, IL-6 and MDSC levels predicted prognosis in pa-
tients with esophageal cancer [147]. In addition, CAFs and
M2 macrophage markers predict clinical outcome in CRC,
their expression being inversely correlated with survival
[148]. Similarly, CAFs isolated from PDAC patients pro-
moted M2 macrophage polarization that in turn promoted
the proliferation of PDAC cells in vitro and tumor growth
and invasion in vivo [149]. Polarized CD163+ (M2) mac-
rophages were also correlated with increased angiogenesis,
CXCL12 expression, and tumor progression in GC [150].

.e recruitment of immune cells to secondary metastatic
sites, and their role in promoting a receptive soil for met-
astatic growth, has also been the focus of some recent
studies. For example, PDAC-derived exosomes containing
macrophage migration inhibitory factor- (MIF-) induced
TGF-β1 production by Kupffer cells, which induced α-SMA
and fibronectin expression by hepatic stellate cells. .is
supported the influx of BM-derived monocytes, which
constituted a liver TMEN supportive of PDAC metastasis
[151]. In fact, PDAC liver metastasis depends on the early
recruitment of granulin-secreting inflammatory monocytes
to this organ. Granulin secretion by metastasis-associated
macrophages activates resident hepatic stellate cells into
myofibroblasts, which in turn secrete periostin, resulting in a
fibrotic microenvironment that sustains metastatic tumor
growth [152]. Seubert et al. also demonstrated an increased
liver susceptibility towards metastasis through SDF-1-me-
diated recruitment of neutrophils to the liver. In this study,
systemic TIMP-1, which was previously thought to suppress
tumor metastasis, was instead driving the increased levels of
hepatic neutrophil chemoattractant SDF-1 [153].

6. Stromal Signatures as Prognostic Tools

Based on the significance of stromal cells in tumor growth and
progression,much effort has been done on the identification of
stromal signatures of cancer prognosis. For example,
tumor lymphocyte infiltrates (TIL), such as CD4+/CD8+ Tand
NK+ cells, have been generally associated with a good prog-
nosis. On the other hand, infiltration by TRegs, MDSC, M2
macrophages, and CAFs has been seen as a sign of disease
progression and poor prognosis, as listed in Table 1.

However, conflicting evidence has shown that increased
infiltration of gastric and gastroesophageal tumors by CD8+
Tcells was actually associated with a worse prognosis. In fact,
patients with high CD8 infiltration also presented PD-L1
expression, which was linked to immune resistance [160].
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On the other hand, microsatellite unstable GC patients with
high CD163+ (M2) macrophages, FOXP3+, and CD8+ TILs
where those with the highest survival advantage [182]. In
CRC, as opposite to other cancer types, FOXP3+ TRegs were
associated with good prognosis [170, 171]. .ese are ex-
amples on how immune cell signatures are context-de-
pendent and how the complexity of cell interactions and
soluble factors released in the TMEN can tip the balance in
opposite directions.

Given the diversity of switch mechanisms driving CAFs
activation, one can expect to have CAFs with different
activated phenotypes in the tumor stroma. Another
question is whether all CAFs are in an activated state.
Fibroblast plasticity and intratumoral heterogeneity results
in an array of CAF signatures associated with different
tumor types [184]. Several proteins have been used as
markers for the identification of CAFs. Some of the most
commonly used biomarkers include PDGFRα/β, α-SMA,
and FAP. In addition, FSP1 has been suggested as a marker
of fibroblasts in a quiescent state [185, 186]. Other proteins,
such as vimentin, desmin, discoidin domain receptor 2
(DDR2), and podoplanin, have also been used in the
identification of CAFs [185]. However, it is important to
highlight that these proteins are also expressed by other cell

types, and the lack of consistent and specific fibroblast
molecular markers has been an important limiting factor so
far [185]. Opposing actions of CAFs expressing the same
protein marker can also be observed in a context-de-
pendent way in TMENs. For example, while in CRC-as-
sociated CAFs, podoplanin was correlated with less
aggressive tumors and a favorable prognosis [187, 188], its
expression by CAFs in lung, breast, esophageal, and PDAC
has been associated with an unfavorable prognosis [189–
192]. In addition, PDAC patients with fewer myofibroblasts
in the tumors had reduced survival, possibly by suppression
of the immune surveillance due to increased levels of TRegs
[193]. .erefore, one should be cautious when identifying
CAFs and extrapolating their role in different tumors based
on the analysis of the aforementioned biomarkers. It is
increasingly evident that CAFs of tumors from different
etiologies present different molecular biomarkers or
combination of biomarkers [194].

.e full spectrum of this phenotypic diversity and their
functional implications in tumor growth, progression, or even
therapy resistance mechanisms are yet to be fully understood.
However, defining specific tumor-associated immune and
CAF signatures might become a valuable prognostic tool and
drive the advancement of new therapeutic strategies.

Table 1: Clinical significance of stromal cells in GI cancers.

Stromal cell Type of cancer Levels Clinical outcome References
CAFs GC High Metastasis [154, 155]
PD-L1 PDAC Expression Poor prognosis [156]
PD-L1 GC Expression Poor prognosis [157–159]
PD-L1 and CD8+ T cells GC/gastroesophageal High Lower survival [160]
PD-L1 and PDL2 Esophageal Expression Poor prognosis [122, 161]

M2 macrophages PDAC High Lymphatic metastasis/poor
prognosis [162]

CD204+ (M2) macrophages Esophageal High Poor DFS [163]
M2 macrophage and %TRegs PDAC High Lower survival [155]
CAFs and M2 macrophages CRC Expression Reduced survival [148]
MDSC PDAC High Progression [164]
MDSC GC/PDAC/esophageal Low Survival [134]
.2 PDAC Presence Reduced survival [149]
TRegs PDAC High Progression/poor prognosis [165–168]
TCD3low/TReghigh CRC Low/high Lower survival [169]
TRegs CRC High Good prognosis [170, 171, 172]
TRegs HCC High Progression [140, 173]
TRegslow/CD8+ TILhigh HCC Low/high High DFS [140, 173]
TRegshigh/CD8+ TILlow GC Ratio high Lower survival [174]
TRegs GC and esophageal High Poor survival [175]
DC and circulating myeloid DC PDAC High Survival [176]
CD4+/CD8+ TILs PDAC High Good prognosis after surgery [177]
CD4+/CD8+ TILs Esophageal High Good prognosis [178]
CD8+/CD45RO+ TILs CRC High Good prognosis [178, 179]

CD4+/CD8+/CD45RO+ TILs GC Low Lymph node metastasis/lower
survival [180]

CD8+ and FoxP3+ TILs GC (microsatellite
unstable) High Good prognosis [181]

M2 macrophages +CD8+ and FoxP3+

TILs
GC (microsatellite

unstable) High Survival [182]

M2 macrophages GC High Poor survival and tumor progression [145, 150]
NK+ cells GC High Good prognosis [183]
DFS: disease-free survival.
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7. Impact of Stroma in Resistance to Therapies

During cancer progression, tumors become more hetero-
geneous due to a generation of genetically distinct tumor-
cell subpopulations and to modifications in TMEN com-
ponents. In this section, we will describe how tumor het-
erogeneity, combined with the high plasticity of tumor-
associated cells, can influence resistance to therapies in GI
cancers.

7.1. Desmoplasia and Tumor Resistance. A desmoplastic re-
action, characterized by the formation of a dense fibrosis and
increased remodeling and deposition of ECM components, is
closely associated to a poor outcome in PDAC and CRC
patients [195, 196]. One of the main components of the ECM
is hyaluronic acid (HA), which is a high molecular mass
polysaccharide. PDAC can express HA into stroma and in
peritumoral connective tissue and thus impair vascularity and
the delivery of chemotherapeutic drugs into tumors. In fact,
gemcitabine-resistant PDAC from patients with resectable
tumors showed upregulation in gene pathways related to
stroma-ECM receptor interaction, focal adhesion, cell com-
munications, gap junction, and cell adhesion molecules [197].
Enzymatic degradation of HA results in reduction of in-
terstitial flow pressure, reexpands the microvasculature in
PDAC [198], and increases the delivery of doxorubicin and
gemcitabine in a mouse model of PDAC [199].

.e Sonic hedgehog (Shh) pathway also promotes
desmoplasia in PDAC, and its inhibition improves delivery
of chemotherapy [200]. However, genetic inhibition of the
Shh pathway results in more aggressive tumors in a PDAC
model [201] and accelerates progression of KRAS-driven
PDAC. Inhibiting VEGF receptor (VEGFR) in Shh-deficient
mice increased survival and impaired tumor progression
[202], suggesting that combinatory approaches could be
more effective to overcome tumor resistance.

CAF heterogeneity might be responsible, at least in part,
for the protumorigenic and antitumorigenic effects in cancer
resistance. For example, PDAC presents a subpopulation
with high expression of α-SMA adjacent to neoplastic cells,
and another with low expression of α-SMA that locates
distantly and secretes inflammatory mediators as IL-6 [203].
Intriguingly, depletion of CAFs based on their α-SMA ex-
pression can induce immunodepression and accelerate
pancreas cancer progression [193], leading to resistance to
chemotherapies. .ese pieces of evidence indicate that new
therapeutic approaches should consider these different
subpopulations when looking for effective antitumor ther-
apies directed to CAF.

Chemotherapy can also affect stromal cells, which in
turn can promote cancer resistance. A hypoxic TMEN can
lead to a metabolic shift based on aerobic glycolysis and
lactate production by tumor cells, leading to a low extra-
cellular pH, which is a common feature found in solid tu-
mors. Moreover, chemotherapy-treated CAFs change the
expression of metabolic enzymes, leading to increased
aerobic glycolysis and autophagy and increased energy
production [204]. A recent study showed that drugs

targeting mutated K-Ras force cancer cells to get energy
thought autophagy in PDAC [205].

Low expression of caveolin-1 in stroma is a marker of
autophagy, which occurs via oxidative stress followed by an
increase in HIF-1α and NF-kappa B expression [206]. High
level of HIF-1α in CAFs is related to an elevated lactate efflux
and lower extracellular pH [207]. .is acid microenviron-
ment drives EMT, protecting PDAC cells from gemcitabine-
induced cell death in a mechanism that involves expression
of drug transporters [208]. Moreover, gemcitabine upre-
gulates CXCR4 expression in PDAC cells and promotes their
invasiveness through a reactive oxygen species-dependent
mechanism [209].

7.2. Soluble Factors and Exosomes Roles in Tumor Resistance.
Stromal cells produce soluble factors that play a key role in
chemoresistance (Table 2). For example, expression of TGF-
β1 by CAFs is frequently present in patients treated with
chemoradiotherapy, its inhibition being linked to enhanced
chemosensitivity of ESC cells [214]. CAFs can also release
IL6, which activates the JAK-1/STAT3 signaling pathway
and contributes to chemoresistance of GC cells to 5-fluo-
rouracil (5-FU) [217]. IL-6 secreted by CAFs also plays a role
in chemoresistance of ESC cells by upregulating CXCR7. In
fact, ESC patients with high expression of CXCR7 and IL-6
presented worse overall survival upon receiving cisplatin
after surgery [214].

Tumor-associated macrophages (TAM) release IL6,
which activates the IL-6 receptor (IL6R)/STAT3 pathway in
CRC cells. STAT3 inhibits the tumor suppressor miR-204-
5p, leading to chemoresistance to 5-FU and to oxaliplatin
[218]. .is suggests that IL6 receptor inhibition in combi-
nation with chemotherapy could serve as a suitable strategy
to improve chemotherapeutic efficacy through inhibition of
the communication between stromal and GC cells [217].
Another example involves cisplatin resistance in GC cells by
TAM-derived exosomes containing miR-21 [216]. Exosomal
transfer of miR-21 led to downregulation of PTEN and
activation of AKT, which resulted in less apoptosis and
increased survival in GC cells treated with cisplatin [216].

Moreover, crosstalk between TAM and tumor infiltrating
cells through STAT3 can improve chemotherapeutic efficacy
by repressing antitumoral CD8+ T-lymphocyte activity [219].

Treatment failure can also result, at least in part, from the
increase in exosome release by stromal cells. For instance,
gemcitabine treatment increases fibroblast-derived exo-
somes containing Snail and miR146a, a Snail target, which
induce resistance to chemotherapies in PDAC [210] and
promote metastasis and chemotherapy resistance by en-
hancing cell stemness and EMT in CRC cells [220]. Upon
exposure to oxaliplatin, CAFs may release exosomes con-
taining long noncoding RNA (lncRNA) H19 to cancer cells,
which has competing endogenous RNA potential for miR-
141, a tumor suppressor miRNA that targets β-catenin and
suppresses the Wnt/β-catenin pathway. In this way, lncRNA
H19 promotes stemness of cancer stem cells and oxaliplatin
resistance of CRC [211]. Similarly, exosomes secreted by
gemcitabine-treated CAFs promote proliferation and
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gemcitabine resistance of PDAC cells by increasing Snail
expression [210]. Pancreas-derived mesenchymal stromal
cells treated with paclitaxel release exosomes containing
paclitaxel which inhibit proliferation of PDAC [221].
Moreover, the intracellular and extracellular expression
levels of miR-145 and -34a in CRC cells were associated with
5-FU resistance [212]. .e resistance was in part due to the
enhanced secretion of these antioncomirs in exosomes
produced by resistant CRC cells after 5-FU exposure. .is
led to decreased intracellular levels of the antioncomirs and
sustaining proliferation [212]. 5-FU and oxaliplatin treat-
ment can also induce CAFs to release soluble factors that are
taken up by CRC cells, promoting drug resistance through
AKT, P38, and survivin translocation [215]. In addition,
Snail-expressing fibroblasts can secrete CCL1 and contribute
to 5-FU and paclitaxel chemoresistance in CRC [222].
Similarly, increased Snail expression in PDAC cells is cor-
related with gemcitabine resistance [223].

8. Therapies Targeting Stromal
Microenvironment

8.1. Extracellular Matrix Components. In 2003, the first
clinical trial of a humanized monoclonal antibody directed
to human FAP, sibrotuzumab, was found clinically safe in
patients with advanced solid cancers [224]. However, it
showed limited clinical response in a phase II trial in patients
with CRC [225]. Inspite of promising preclinical findings,
therapy strategies targeting CAFs have repeatedly faced
obstacles. As we pointed out above, depletion of α-SMA-
expressing CAFs can accelerate pancreas cancer progression
[193]. .us, depleting CAFs based on their expression of
FAP or α-SMA might not be effective, since other stromal
cell types can also express these markers.

Regarding ECM remodeling, Lysyl Oxidase-like 2
(LOXL2) is upregulated in tumor-associated stroma of PDAC,
ESC, and HCC [226, 227]. Simtuzumab, an antibody that
inhibits LOXL2, blocks the desmoplastic reaction in CRCs in
vitro [226]. However, phase II clinical trials of simtuzumab in
combination with gemcitabine or FOLFIRI (folinic acid, 5-FU,
irinotecan) did not improve the clinical outcome in PDAC or
in CRC patients, respectively [228, 229].

Different approaches that inhibit desmoplasia in solid
cancers can inhibit tumor growth and improve vascular

perfusion and drug delivery. Losartan (an angiotensin I in-
hibitor) is an antihypertensive drug that reduces collagen and
hyaluronan production by CAF through downregulation of
the fibrotic signals TGF-β1, Cellular CommunicationNetwork
Factor 2 (CCN2), and Protein Effector of Transcription 1 (ET-
1) [230]. In fact, epidemiological studies demonstrated that
gastroesophageal cancer patients presented a moderately re-
duced cancer-specific mortality amongst users of angiotensin
receptor blockers [231]. Based on preclinical studies, a phase II
study targeting TGF-β1 by using losartan in combination to
FOLFIRINOX (folinic acid, 5-FU, irinotecan, oxaliplatin) in
locally advanced PDAC is ongoing with an estimative to be
concluded by 2025 (Table 3). Another approach is to inhibit
Shh signaling, which drives stromal desmoplasia, by activating
the ligand for smoothened (SMO) in CAFs [237]. .e SMO
inhibitor (IPI-926) reduced the abundance of myofibroblasts
in the stroma in PDAC and increased tumor vasculature as
well as intratumoral gemcitabine uptake. However, a phase Ib/
II clinical trial using IPI-926 in combination with gemcitabine
in metastatic PDAC did not show benefits in clinical outcome.
Indeed, some patients receiving IPI-926 had a shorter median
survival time compared with the placebo group [200].

.e tumor stroma can also play an important role in
restraining tumor growth, mainly due to the heterogeneous
population of fibroblast present in PDAC. Preclinical studies
identified a CAF subpopulation expressing high amounts of
α-SMA close to tumor cells and CAF subpopulations
expressing low α-SMA and secreting IL-6 which could be
responsible for the aggressiveness of PDAC [193, 201]. A
phase Ib study using enzymatic ablation of hyaluronan by
PEGPH20, a PEGylated recombinant hyaluronidase, in
combination with gemcitabine showed a potential thera-
peutic benefit, especially in patients with high expression of
HA [232]. In fact, a phase II clinical trial using PEGPH20 in
association with gemcitabine and nab-paclitaxel showed
improvement in the progression-free survival of PDAC
patients [233] and it is now being evaluated in a phase III
trial (Table 3). However, PEGPH20 in association with a
modified FOLFIRINOX regimen presented high toxicity
when compared with FOLFIRINOX alone [238].

Other strategies to inhibit FAP in PDAC showed
promising results in preclinical studies [121, 239, 240]. For
example, anti-FAP CAR T cells can deplete FAP+ cells in
PDAC and decrease tumor growth through promotion of

Table 2: Resistance to therapies targeting stromal components.

Drugs Tumor type Stromal-derived mediator
Doxorubicin and gemcitabine PDAC Hyaluronan [199]
Gemcitabine PDAC Sonic hedgehog [200]
Gemcitabine PDAC Alpha-SMA [193]
Gemcitabine PDAC HIF-alpha [208]
Gemcitabine PDAC CXCR4 [209]
Gemcitabine PDAC Snail [210]
Oxaliplatin CRC LncRNA19 [211]
5-FU CRC miR145, miR34-a [212]
Bevacizumab CRC VEGF [213]
Cisplatin ESC IL6R [214]
5-FU and oxaliplatin GC AKT, p38, and survivin [215]
Cisplatin GC miR-21 [216]
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antitumor immunity [241]. Recently, a preclinical trial using
a DNA vaccine against FAP synergized with anticancer
immune therapy targeting Prostate Membrane Antigen
(PMSA) in tumor-bearing mice model for prostate cancer
[242]. .is result suggests that therapies which target both
stroma components and tumor cells might be effective for
tumors expressing high amounts of FAP, such as CRC and
PDAC.

8.2. Immune System. PD-1 is expressed on a large pro-
portion of TILs from many different cancer types, while its
ligand, PD-L1, is mainly expressed in antigen-presenting
cells and tumor cells [243]. Since tumors can escape the T
cell immune response by expressing these molecules, the
blockade of this pathway has emerged as a promising an-
ticancer strategy. .is approach also showed good results as
second and third line of chemotherapy in gastro-esophageal
cancer [244, 245]. A clinical study evaluating nivolumab (an
antibody against PD-1) monotherapy in heavily pretreated
patients with advanced gastric or gastro-esophageal junc-
tion cancer showed an increased 12-month overall survival
rate compared to the placebo group [244]. In another trial,
both objective and complete responses were observed in
patients with gastro-esophageal cancer treated with pem-
brolizumab (an antibody against PD-1) monotherapy,

irrespective of PD-L1 tumor expression. Nonetheless,
pembrolizumab conferred longer response duration in
those patients with PD-L1–positive tumors [245].

CTL4-A (cytotoxic T-lymphocyte antigen 4) signaling
diminishes immune response against tumor cells and the use
of antibodies against CTL4-A was effective in treating tu-
mors as melanomas [246]. However, clinical trials in PDAC
using monotherapies with CTLA-4 or PD-1 inhibitors
presented low response rates [247, 248], with the exception
of the PDAC patient subpopulation with microsatelite in-
stability [249]. Although the response rates from these
studies remain discouraging, they could be improved by
combinatory therapies. A phase II study with Nivolumab in
association with Ipilimumab (an antibody against CTLA-4)
in patients presenting upper GI cancers is ongoing (see
Table 3). .e first trials using nivolumab and pem-
brolizumab in HCC were encouraging [250, 251]. However,
pembrolizumab as second line of treatment did not meet its
coprimary endpoints of overall survival and progression-free
survival [252]. A phase III trial with nivolumab in first line
treatment is currently underway. Unfortunately, when a
better selection of patients based on molecular character-
istics from the tumor or on its etiology was performed, the
data was inconclusive [250, 251]. Another study showed that
a therapy targeting FAP+ cells that express CXCL12 syn-
ergized with anti-PD-L1 immunotherapy in PDAC [121],

Table 3: Drugs targeting stroma components in clinical trials.

Drug and association Tumor
type Molecular and cellular target Mechanism Study

phase
ClinicalTrial.gov

identifier

Sibrotuzumab CRC,
PDAC FAP (CAF) Desmoplasia [224] II NCT02198274

Simtuzumab+ FOLFIRI CRC,
PDAC LOXL2 Desmoplasia [229] II NCT01479465

Simtuzumab+ gemcitabine CRC,
PDAC LOXL2 Desmoplasia [229] II NCT01472198

Losartan + F-NOX PDAC TGF-beta1 Fibrosis [230] II NCT03563248∗
IPI-926 + gemcitabine PDAC SMO Hedgehog pathway inhibition II NCT01130142
PEGPH20+ gemcitabine + nab-
paclitaxel PDAC Hyaluronan Desmoplasia [232, 233] III NCT02715804∗

PEGPH20+ FOLFIRINOX PDAC Hyaluronan Desmoplasia [232, 233] I NCT01959139∗

Pembrolizumab +AMG820 CRC,
PDAC

PD-1 (T cells) CSF1R
(macrophage) T-cell apoptosis II NCT02713529∗

Durvalumab +monalizumab CRC PD-1 (T cells) CD94/NGK2a T-cell apoptosis I NCT02671435∗

AMG820 CRC,
PDAC CSF1R (macrophage) M2 polarization [234] I NCT01444404

5F9 + cetuximab CRC CD47 (macrophage) Restores macrophage
phagocytosis II NCT02953782∗

Pembrolizumab + cisplatin + 5-
fluorouracil

GC,
GEJ PD-1 (T cells) T-cell apoptosis III NCT02494583∗

Pembrolizumab + paclitaxel GC,
GEJ PD-1 (T cells) T-cell apoptosis III NCT02370498∗

Ruxolitinib + capecitabine PDAC Janus 1 and Janus 2 (pancreatic
stellate cells)

JAK-STAT3 pathway inhibition
[235] III NCT02117479#

NCT02119663#

Nivolumab+ ipilimumab Upper
GI PD-1 (T cells) CTLA-4 (T cells) Block T-cell inhibitory signals

and activation of T cells II NCT02923934∗

Bevacizumab+ cisplatin GC VEGF-A (endothelial cells) Angiogenesis [236] III NCT00548548

Ramucirumab Upper
GI

Inhibits receptor tyrosine
kinase (endothelial cells) Angiogenesis II NCT02241720

GEJ: gastroesophageal junction. ∗ongoing; #terminated.
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and inhibition of its receptor, CXCR4, in sorafenib-treated
HCC facilitates anti-PDL-1 immunotherapy [253]. In ad-
dition, CXCR4 inhibition increased PD-1 therapy response
by inducing mobilization of CD8+ T cells in PDAC [254].
Together, these studies demonstrate important systemic
components that might play a role in the clinical outcome
and explain, in part, the heterogeneous therapeutic response
normally found in these clinical trials.

Natural Killer Cells Antigen 94 (CD94/NGK2a) is the
main HLA-E receptor whichmediates an inhibitory effect on
CD8+ CTL and NK cells, promoting immune evasion in
CRC [255]. In fact, increased levels of NGK2a-CD94+ TILs
correlate with poor survival in CRC patients [256]. Although
metastatic microsatellite-stable CRC patients do not respond
to therapies that involve PD-1/PD-L1 blockade [257], a first
phase I clinical trial studying an antibody against PD-1
(durvalumab) in combination with an antibody targeting
CD94/NGK2a (monalizumab) is ongoing.

Immunotherapy checkpoints have been suggested as a
good strategy to impair cancer progression [258], and
strategies targeting both the innate and the adaptive immune
systems show promising results in CCR [259]. CCL2, which
is highly expressed in PDAC, is a chemoattractant for Tcells,
monocytes, and natural killer cells. CCL2 binds to its re-
ceptor, C-C Chemokine Receptor (CCR) 2, which is
expressed in monocytes and controls its differentiation into
TAMs [260]. CCR2 inhibition in combination with FOL-
FIRINOX in PDAC has been tried in phase I clinical trial,
and the results showed that it was safe and well tolerated
[261].

Another mention worthy molecule is CD47, an integrin-
associated transmembrane protein. .is integrin is over-
expressed in solid cancers (e.g. CRC) and is correlated to a
poor clinical outcome [262]. Both TAMs and DCs can
express the CD47 receptor, signal regulatory protein alpha
(SIRPα). .e binding of CD47 to SIRPα inhibits phagocy-
tosis of cancer these cells, enabling the tumor to evade
immune destruction by first responder cells, such as mac-
rophages [263]. .us, restoring phagocytosis activity by
antigen-presenting cells can enhance antigen priming of
T cells. A phase I clinical trial recently described the use of
the monoclonal antibody against CD47 Hu5F9-G4 in CRC
and PDAC [264]. A Phase II study to evaluate Hu5F9-G4 in
combination with cetuximab is ongoing in CRC [265].

As previously mentioned, the M2 macrophages are
frequently found in TMEN. Since the intratumoral presence
of Macrophage Colony-Stimulating Factor Receptor (CSFR)
1+ macrophages correlates with the clinical aggressiveness of
pancreatic neuroendocrine tumors [266], targeting CSFR1
signaling in TAMs represents an attractive strategy to
eliminate these cells and block M2 polarization. A clinical
trial using a monoclonal antibody against CSFR1, AMG 820,
showed safety and tolerability in patients with advanced
solid tumors, including CRC and PDAC [234]. However,
since the study did not present significant tumor responses,
it was terminated before enrollment into the dose-expansion
phase. Preclinical studies have also examined the effects of
CSFR1 inhibitors in combination with T-cell target therapies
to improve efficacy in PDAC [267]. In fact, a clinical trial

using pembrolizumab in combination with AMG 820 is
ongoing in PDAC and in CRC, with an estimated date of
completion in 2020 (Table 3).

8.3. Angiogenesis. Approaches focused on anti-angiogenesis
cancer therapies have been studied in several clinical trials.
In GC the results of trials with anti-VEGF were disap-
pointing on the first line treatments (either with bev-
acizumab or with ramucirumab) [236, 268]. Interestingly,
the use of ramucirumab (anti-VEGF2) in association with
paclitaxel or in monotherapy showed a significant im-
provement on the overall survival of gastro-esophageal
adenocarcinoma patients and has been approved in this
setting [268, 269].

In HCC, the use of tyrosine kinases with antiangiogenic
effects were the basis of systemic treatment. Since the first
approved drug, sorafenib, several clinical studies showed
improvement in clinical outcomes with regorafenib,
ramucirumab or cabozantinib, expanding the repertoire of
drugs that can be used in this particular disease
[220, 270–272].

In CRC, the use of bevacizumab in association FOLFIRI
(Folinic Acid, 5-FU, Irinotecan) or FOLFOX (Folinic Acid,
5-FU, oxaliplatin) showed a significant increase in overall
survival, being nowadays the standard of care for patients in
the metastatic stage of this disease [273]. Nonetheless, the
use of bevacizumab as part of the adjuvant chemotherapy
treatment in CRC patients was detrimental for survival
[274]. Other drugs that change the tumoral angiogenesis,
such as the VEGF 1 and 2 inhibitors ziv-aflibercept and
ramucirumab, have shown an improvement in overall
survival in patients with CRC when in combination with
chemotherapy in second line setting after failure of a pre-
vious line of chemotherapy [275, 276].

9. Conclusions and Perspectives

Tumor masses are not cancer cells-centered entities that
drive malignant progression. Instead, tumor development
depends on the complex and intricate tapestry of cell-cell
interactions where nontransformed cells of the TMEN play
key role in cancer biology. We here summarized how
stromal cells can impact tumor growth and progression as
well as resistance to antitumor treatment. In fact, we show
that most of these cells are important oncogenic drivers,
frequently associated with poor prognosis. .erefore, the
development of new therapeutic approaches directed to
components of the TMEN still has a great unexplored po-
tential. .e main challenge on TMEN-directed approaches
resides on the complexity of the interactions within the
microenvironment, where the same cell type can have op-
posite effects in tumor growth and progression depending
on its cell-to-cell interaction. .is is not surprising con-
sidering the pleotropic diversity of all the stromal cells
described here. .erefore, ideal targeted therapy is unlikely
to be solely affecting a single cell type. Instead, the best
therapeutic approaches should be those that are capable of
tipping the whole balance in favor of tumor inhibition.
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