
ORIGINAL ARTICLE
Residual ctDNA after treatment predicts early relapse in patients with
early-stage non-small cell lung cancer
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Background: Identification of residual disease in patients with localized non-small cell lung cancer (NSCLC) following
treatment with curative intent holds promise to identify patients at risk of relapse. New methods can detect
circulating tumour DNA (ctDNA) in plasma to fractional concentrations as low as a few parts per million, and clinical
evidence is required to inform their use.
Patients and methods: We analyzed 363 serial plasma samples from 88 patients with early-stage NSCLC (48.9%/28.4%/
22.7% at stage I/II/III), predominantly adenocarcinomas (62.5%), treated with curative intent by surgery (n = 61), surgery
and adjuvant chemotherapy/radiotherapy (n ¼ 8), or chemoradiotherapy (n ¼ 19). Tumour exome sequencing identified
somatic mutations and plasma was analyzed using patient-specific RaDaR� assays with up to 48 amplicons targeting
tumour-specific variants unique to each patient.
Results: ctDNA was detected before treatment in 24%, 77% and 87% of patients with stage I, II and III disease,
respectively, and in 26% of all longitudinal samples. The median tumour fraction detected was 0.042%, with 63% of
samples <0.1% and 36% of samples <0.01%. ctDNA detection had clinical specificity >98.5% and preceded clinical
detection of recurrence of the primary tumour by a median of 212.5 days. ctDNA was detected after treatment in
18/28 (64.3%) of patients who had clinical recurrence of their primary tumour. Detection within the landmark
timepoint 2 weeks to 4 months after treatment end occurred in 17% of patients, and was associated with shorter
recurrence-free survival [hazard ratio (HR): 14.8, P <0.00001] and overall survival (HR: 5.48, P <0.0003). ctDNA was
detected 1-3 days after surgery in 25% of patients yet was not associated with disease recurrence. Detection before
treatment was associated with shorter overall survival and recurrence-free survival (HR: 2.97 and 3.14, P values 0.01
and 0.003, respectively).
Conclusions: ctDNA detection after initial treatment of patients with early-stage NSCLC using sensitive patient-specific
assays has potential to identify patients who may benefit from further therapeutic intervention.
Key words: non-small cell lung cancer (NSCLC), liquid biopsy, minimal residual disease (MRD), cell-free DNA (cfDNA),
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INTRODUCTION

Lung cancer is the leading cause of cancer mortality
worldwide, with nearly 1.8 million deaths in 2020.1

Approximately 85% of cases are non-small cell lung cancer
(NSCLC), with lung adenocarcinoma and lung squamous cell
carcinoma being the most prevalent subtypes. The majority
of patients present with stage III-IV disease, with limited
treatment options and survival rates.2 Patients with early-
stage (I-II) disease are generally offered treatment with
curative intent, surgical resection or radical radiotherapy,
while those with locally advanced disease (IIIA/B) are
treated with surgery and adjuvant chemotherapy or
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chemoradiotherapy (CRT) � immune checkpoint inhibitors
(ICIs).3 In these patients, routine surveillance after treat-
ment is carried out using serial radiological imaging to
detect macroscopic disease recurrence, with limited sensi-
tivity. Biomarkers with high specificity and sensitivity for
detection of minimal residual disease (MRD) are needed to
better identify patients at risk of relapse, and those who
could benefit most from additional adjuvant and/or main-
tenance therapy while avoiding overtreatment of patients
who have been successfully cured.

Recent research has shown that circulating tumour DNA
(ctDNA) in blood can be used as a liquid biopsy, providing a
minimally invasive diagnostic tool to assess tumour burden
in cancer patients.4-6 Fragments of DNA are released into
the circulation as cell-free DNA through apoptosis, necrosis
or active release. In cancer patients, DNA is also released
from tumour cells, and this ctDNA may represent a small
fraction of the total cell-free DNA. Initial studies analyzed
individual somatic mutations that were common to specific
cancer types, using methods such as digital PCR and
BEAMing.7,8 Subsequent studies utilized next-generation
sequencing (NGS) to monitor multiple mutations in paral-
lel.5,9-11 Sensitivity for ctDNA detection can be increased by
error suppression techniques, analysis of a larger number of
somatic variants or larger volume of blood.12-17 Using prior
tumour sequencing information to identify mutations,
highly sensitive patient-specific assays have recently been
developed to detect ctDNA down to a variant allele fraction
(VAF) of 0.003% or lower.14,15,17,18

Such improvements have enabled rapid advancement of
ctDNA as a liquid biopsy for clinical applications, where it is
now being investigated or implemented for cancer diag-
nosis, to guide treatment selection, to monitor therapeutic
response and to identify newly emerging resistance muta-
tions.4 With the development of highly-sensitive patient-
specific assays, ctDNA has been used to detect MRD in
patients with breast, colorectal, lung cancer and other solid
tumours.16,19-26 In NSCLC, Chaudhuri et al. 21 demonstrated
that residual ctDNA could be detected in 94% of stage I-III
patients treated predominantly (35/40 patients) by radio-
therapy or CRT who subsequently recurred. Post-treatment
detection of ctDNA preceded progression on imaging in
72% of patients by 5.2 months (median). Others recently
demonstrated that following CRT, patients with residual
disease had superior outcomes when treated with consoli-
dation ICIs27 while patients with undetectable ctDNA
following CRT had good outcomes irrespective of further
immunotherapy. This highlights the potential application of
ctDNA to guide clinicians to escalate or de-escalate
therapy.28,29

Here, we assess ctDNA levels in plasma from 88 patients
with stage IA to IIIB NSCLC who underwent treatment with
curative intent, by surgery (69 patients, 78.4%) and/or
radical (chemo)radiotherapy (19 patients, 21.6%). We used
patient-specific assays tracking up to 48 somatic variants
for each patient, with the aim to determine whether
ctDNA detection after treatment could predict patient
outcomes.
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METHODS

Additional details for the Methods are provided in
Supplementary Methods, available at https://doi.org/10.
1016/j.annonc.2022.02.007.

Patient cohort and samples

A total of 100 treatment-naive patients with stage IA-IIIB
NSCLC, scheduled to undergo treatment with curative
intent, were recruited to the LUng cancer CIrculating
tumour DNA (LUCID) Study (Figure 1A, Supplementary
Table S1, available at https://doi.org/10.1016/j.annonc.
2022.02.007). The study was approved by the local
research ethics committee (REC: 14/WM/1072,
ClinicalTrials.gov Identifier: NCT04153526). Patients were
recruited at Royal Papworth Hospital or Addenbrooke’s
Hospital (Cambridge, UK). All patients provided written
informed consent for participation in the study and collec-
tion of tissue and blood specimens. Cancer stages were
classified according to the 7th TNM classification system.
For 90 of these patients, formalin-fixed, paraffin-embedded
(FFPE) tumour tissue specimens were available from surgi-
cal or diagnostic primary tumour biopsies (Supplementary
Table S1, available at https://doi.org/10.1016/j.annonc.
2022.02.007), including 70/70 patients who underwent
surgery (100%) and 20/30 patients who were treated by
chemotherapy and/or radiotherapy (66.7%). For 88 of those
(Figure 1B), patient-specific assays were successfully
designed and validated (see below).

A total of 363 plasma samples were collected from these 88
patients (see CONSORT flow diagram in Supplementary
Figure S1, available at https://doi.org/10.1016/j.annonc.2022.
02.007). Plasma samples were collected before the start of
treatment, during treatment (depending on treatment
schedule) and after the end of treatment, and at up to three
regular clinical follow-up visits (scheduled at w3-monthly in-
tervals). For a subset of patients, an additional plasma sample
was collected after disease recurrence or diagnosis of a second
primary tumour. Plasma specimens were collected into 9 ml S-
Monovette® K3EDTA tubes (Sarstedt, Nümbrecht, Germany),
centrifuged at 1600 g for 10 min within 1 h of venipuncture
with further centrifugation of the supernatant at 20 000 g for
10 min. Plasma aliquots were stored at �80�C. Whole blood
specimens for germline analysis were collected into 2.6 ml
K3EDTA tubes and frozen at �80�C.

Patients were followed for a median of 3 years (range:
42 days to 5 years), and clinical outcomes recorded
(Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2022.02.007).

Tissue analysis by whole exome sequencing

DNA was extracted from FFPE tissue sections using the
QIAamp® DNA FFPE Tissue Kit (Qiagen, Hilden, Germany)
with modifications and DNA repair. Buffy coat samples were
extracted using the QIAamp DNA Blood Mini Kit or QIA-
symphony DSP Circulating DNA kit (Qiagen). Whole exome
sequencing (WES) of sheared DNA was carried out as pre-
viously described.30 Mutation calling was carried out using
https://doi.org/10.1016/j.annonc.2022.02.007 501
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Figure 1. Study overview.
(A) Study design: 100 patients with NSCLC stage I-III were recruited to the LUCID study. For 90 patients, tumour specimens were available and were analyzed by whole
exome sequencing (WES), to identify somatic single nucleotide variants for design of patient-specific assays. Assays were successfully developed (panel B) for 88
patients. A total of 363 plasma samples collected from these patients at multiple timepoints before and after treatment were analyzed using those personalized assays
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Mutect2 (MuTect2 v3.831,32), or Mutect2, VarDict v1.4.1033

and Freebayes v1.1.34

For eight of the patients who had clinical progression or a
second primary tumour diagnosed, additional tumour bi-
opsies were collected at the time of progression
(Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2022.02.007) and were similarly analyzed
by WES. Patient 277 had a clinical diagnosis of a second
primary cancer; however, sequencing of biopsies from the
first primary tumour and the suspected second primary
indicated that the suspected second primary was in fact a
recurrence of the first primary tumour. For the other seven
cases, data from WES of tumour biopsies agreed with the
clinical assessment of either recurrence of the first primary
cancer or a confirmed second primary cancer.
Plasma analysis by personalized ctDNA sequencing assays

Personalized ctDNA ‘RaDaR�’ assays were designed and
validated for 88 patients (Figure 1C). RaDaR� NGS liquid
biopsy assays are based on personalized multiplex PCR
amplification of cell-free DNA. Tumour-specific variants
identified by exome sequencing of the primary tumour and
buffy coat DNA were ranked and prioritized for inclusion
into custom panels, incorporating 48 amplicons per patient
targeting patient-specific variants (except for patient 283,
for whom 47 variants were used; Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2022.02.007).
For each patient, a single individualized panel of primers
was created covering patient-specific variants combined
with a fixed primer panel covering common population-
specific single nucleotide polymorphisms, for internal sam-
ple quality control (QC) during NGS testing. Multiplex PCR
reactions were carried out and libraries sequenced as pre-
viously described18,35,36 to validate primer pools using be-
tween 500 and 2000 amplifiable copies of tumour DNA as
well as 500 amplifiable copies of DNA extracted from buffy
coat samples from the respective patient as a QC. Results
were used to confirm the amplification of the target regions
and to confirm the presence of selected single nucleotide
variants (SNVs) in tumour DNA. Target SNVs were excluded
if signal was also observed in buffy coat DNA, to reduce the
potential impact of germline mutations, mosaicism or var-
iants arising from clonal haematopoiesis of indeterminate
potential37 (sequenced at depth >1000 for 88% of variants
and >100 for 94% of variants; depth was <100 for most
variants for patient 221 and data were missing for patient
236; Supplementary Table S2, available at https://doi.org/
10.1016/j.annonc.2022.02.007).
to detect ctDNA and estimate its fractional concentration. The prognostic value of ct
evaluate the relapse-free survival and overall survival for patient subgroups. A CONSO
org/10.1016/j.annonc.2022.02.007. (B) Patient demographics of the 88 patients enro
patient-specific ctDNA assay successfully designed.
ca., carcinoma; ctDNA, circulating tumour DNA; NSCLC, non-small cell lung cancer; T
aCancer stage was defined at the time of diagnosis according to diagnostic pathways
specimen for patients who underwent surgery. (C) Overview of the workflow invol
Personalized sequencing assays were designed based on WES data from tumour and b
to amplify regions in plasma cell-free DNA, tumour DNA and buffy coat DNA using m
and buffy coat samples were used to confirm the detection of somatic variants and t
potential (CHIP). Plasma samples were classified as ctDNA positive (detected) or ctD
analytical pipeline, and the estimated variant allele fraction (eVAF) was calculated.
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Cell-free DNA was extracted from up to 4 ml of plasma
using the QIAamp Circulating Nucleic Acid Kit (Qiagen) and
quantified by droplet digital PCR (ddPCR) (BioRad QX200) as
previously described.35

Multiplex PCR was carried out in replicate reactions,
generating sequencing libraries of target regions from a
total of 1356-20 000 amplifiable copies per plasma sample
as measured by ddPCR (median 8360, mean 9937, with
>2000 amplifiable copies for 99.7% of samples;
Supplementary Table S3, available at https://doi.org/10.
1016/j.annonc.2022.02.007). High-depth NGS of amplified
libraries was carried out on the NovaSeq® 6000 system
(Illumina, San Diego, CA) using PE150 sequencing, gener-
ating 2 355 500 304 total paired reads (excluding non-
mappable reads and reads with Phred score <20) and a
median of 6 030 997 reads per sample [interquartile range
(IQR) 5 519 416 to 6 660 932]. The median coverage for
each variant was 174 669 reads per sample. A median of 45
amplicons passed QC for each assay, with a minimal target
read depth of 40 000 per sample per variant.

Sequencing data fastq files were demultiplexed using
bcl2fastq; reads were then aligned38 to the GRCh38/hg38
assembly of the human genome and processed to identify
primer pairs and count mutant and reference bases. A
statistical model was used to assess the significance of the
observed counts for each variant and the information was
integrated over the entire set of personalized variants from
an individual sample to obtain evidence of ctDNA presence
(ctDNA positive) or absence (ctDNA negative) at the sample
level. The model also generated an estimated VAF (eVAF)
for each sample.
Statistical analysis

Survival analysis was based on three different stratifica-
tions: detection at baseline before treatment, at the
‘landmark’ timepoint, or at any time �2 weeks after
treatment (including at disease relapse). The ‘landmark’
timepoint is the first sample collected in the time window
between 2 weeks and 4 months following the end of
treatment. Patients with a cancer event unrelated to the
original tumour (i.e. a ‘second primary’ tumour) were
considered censored for purposes of freedom from
recurrence (FFR) and recurrence-free survival (RFS), but
not for overall survival (OS). Death was included as an
event for OS and RFS (if not preceded by a second primary
tumour), but not for FFR. Hazard ratios (HRs) and signifi-
cance were obtained using the R package ‘survival’ based
on the time from the end of treatment. KaplaneMeier and
DNA detection was assessed by comparing ctDNA data with clinical outcomes to
RT flow diagram is provided in Supplementary Figure S1, available at https://doi.
lled in the LUCID study who had available tumour tissue for sequencing and a

x, treatment.
,30 and was updated after surgery based on pathological analysis of the tumour
ved in the development of the RaDaR� sequencing assays used in this study.
uffy coat samples, targeting 48 somatic variants for each assay. These were used
ultiplex PCR and high-depth next generation sequencing. Data from tumour DNA
o exclude variants which may derive from clonal hematopoiesis of indeterminate
NA negative (not detected) based on the RaDaR� assay sequencing data and
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log rank tests were used to evaluate the predictive value of
ctDNA detection.

RESULTS

A median of 328 SNVs were identified by WES per patient
[interquartile range (IQR): 205e491]. Of these, 99.8% were
private mutations to a specific patient.30 The SNVs were
used to design for each patient a personalized RaDaR�
assay (Figure 1), built on the InVision® platform which uti-
lizes multiplex PCR and targeted NGS.18,35 RaDaR� assays
were successfully designed and validated for 88 of the 90
patients for whom tumour specimens were available (97.8%)
and in total for 88% of the 100 patients in the LUCID study,
including 69/70 (98.6%) of patients who underwent surgery
and 19/30 (63.3%) of patients who did not undergo surgery.
For 12 of the 100 patients recruited to LUCID, RaDaR� as-
says were not available: for 10 patients, tumour samples
were not available; for patient 253, tumour WES was of
insufficient quality for assay design; and for patient 287, the
RaDaR� assay failed QC (Supplementary Table S1, available
at https://doi.org/10.1016/j.annonc.2022.02.007).

Analysis of ctDNA levels before treatment

Plasma samples collected before start of treatment (‘baseline’
timepoint)were analyzed for 78 patients. ctDNAwas detected
in 51% (40/78) of pretreatment samples overall, including
24% (10/41) of patients with stage I, 77% (17/22) with stage II
and 87% (13/15) with stage III disease (Figure 2A). ctDNA was
detected before treatment in a higher proportion of patients
with lung squamous cell carcinomas (80%, 20/25) compared
with adenocarcinomas (29.8%, 14/47) (Figure 2B). Median
levels of ctDNA detected pretreatment were eVAF¼ 0.049%,
25 of 40 (62.5%) of samples with ctDNA detected had
eVAF<0.1% and 12 of 40 (30%) of samples with ctDNA
detected had eVAF <0.01% (Figure 2C).

Longitudinal monitoring of ctDNA to detect residual
disease and recurrence

Personalized RaDaR� assays were used to analyze serial
samples from each patient (Figure 3A), analyzing a total of
363 plasma samples (Figure 3B, Supplementary Figure S2,
available at https://doi.org/10.1016/j.annonc.2022.02.007).
Overall, ctDNA was detected by these assays in 56% of
patients (49/88), and in 26% of all samples (94/363), at a
median eVAF of 0.042% for positive samples. We evaluated
time courses of ctDNA detection (Supplementary Figure S3,
available at https://doi.org/10.1016/j.annonc.2022.02.007)
and highlight several illustrative examples (Figure 3C-F).

In 48 patients with samples collected 1-3 days after
surgery, ctDNA was detected in 12 patients (25%), with a
median eVAF of 0.0026% (26 parts per million, ppm). Only 6
of those 12 patients had later recurrence of their primary
tumour, supporting an interpretation that ctDNA may be
transiently present in the blood at low concentrations in
cases where the disease has been entirely resected.

We focused analysis on 230 plasma samples collected
from 77 patients during observation, defined here as all
504 https://doi.org/10.1016/j.annonc.2022.02.007
timepoints �2 weeks after the end of treatment. ctDNA
was detected during observation in 40 samples from 20
patients (26% of the 77 patients). A total of 38 of the 40
samples were from 18 patients who had recurrence of their
first primary tumour. A total of 2 of the 40 samples were
from the set of 152 samples collected during observation
from 49 patients who did not have recurrence of their first
primary tumour during observation (Supplementary
Figure S1 and Supplementary Table S1, available at
https://doi.org/10.1016/j.annonc.2022.02.007). Consid-
ering these two samples, where there was no confirmed
recurrence of the primary tumour, as possible false posi-
tives, the positive predictive value (PPV) of ctDNA detection
during observation for recurrence of the first primary
tumour was 95% (38/40 positive samples), and the speci-
ficity was 98.7% (150/152 samples).

Across the cohort, 28 patients who had samples collected
during observation experienced clinical recurrence of their
first primary tumour. ctDNA was detected in 18 of these 28
patients (64.3%) (Supplementary Figure S1, available at
https://doi.org/10.1016/j.annonc.2022.02.007) at eVAFs
ranging from 0.0011% (11 ppm) to >10% (Supplementary
Figure S3, available at https://doi.org/10.1016/j.annonc.
2022.02.007).

For 12 patients, ctDNA was detected in samples collected
during observation before recurrence, and in those cases
the median lead time between ctDNA detection and clinical
recurrence was 212.5 days (Supplementary Table S1, avail-
able at https://doi.org/10.1016/j.annonc.2022.02.007). Of
the 20 patients who had clinical recurrence >200 days after
end of treatment, ctDNA was detected before recurrence in
8 cases (40%), and in those cases the median lead time for
ctDNA detection was 402.5 days. In the remaining 12 cases,
the median time from the last (ctDNA negative) sample to
recurrence was 192 days.

Additional observations are described in Supplementary
Information, available at https://doi.org/10.1016/j.annonc.
2022.02.007.

ctDNA detection �2 weeks after treatment is predictive of
clinical disease relapse

We compared the detection of ctDNA to clinical outcomes
including OS (counting as events death from any cause), RFS
(counting as events either recurrence of the first primary
tumour, or death if not preceded by a second primary
tumour) and FFR (counting as events only recurrence of the
first primary tumour) (Figure 4).

Of 59 patients who had a plasma sample collected at a
landmark timepoint, defined as the first sample collected in a
time-frame between 2 weeks and 4 months from the end of
treatment, 10 (17%) had ctDNA detected, and all 10 had
recurrence of their first primary tumour (Supplementary
Figure S1, available at https://doi.org/10.1016/j.annonc.
2022.02.007), resulting in 100% specificity and PPV for
recurrence.Thesepatients hada shorterOSandRFS compared
with patients for whom ctDNA was not detected at landmark,
with an HR of 5.48 and 14.8, respectively (P value 0.00029 and
1.4e-8; Figure 4A and B), a negative predictive value (NPV) of
Volume 33 - Issue 5 - 2022
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75.5% (37 of 49) for recurrence and 65.3% (32 of 49) for
recurrence or death (Supplementary Figure S4A and B, avail-
able at https://doi.org/10.1016/j.annonc.2022.02.007).

Patients for whom ctDNA was detected pretreatment
also had shorter OS and RFS compared with patients for
whom ctDNA was not detected at baseline; however, the
HRs and P values were much lower (HR: 2.97 and 3.14, P
values 0.01 and 0.003, respectively; Figure 4C and D,
Supplementary Figure S4C, available at https://doi.org/10.
1016/j.annonc.2022.02.007). A stronger difference in RFS
was observed when comparing patients in whom ctDNA
Volume 33 - Issue 5 - 2022
was detected versus not detected at any timepoint during
observation after treatment (HR: 9.81, P value 7e-10;
Figure 4E) while maintaining high specificity (18/20, 90%;
Supplementary Figure S4D, available at https://doi.org/10.
1016/j.annonc.2022.02.007).

In the subset of patients with ctDNA detected pretreat-
ment, both sensitivity and specificity were high for detec-
tion of ctDNA after treatment (Figure 4F, Supplementary
Figure S5, available at https://doi.org/10.1016/j.annonc.
2022.02.007). Only 2 of the 16 patients for whom ctDNA
was detected pretreatment, but not detected during
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observation, had a clinical recurrence of their first primary
tumour (Figure 4F), corresponding to NPV ¼ 87.5% (14/16).
Of 15 patients who had clinical recurrence of their first
primary tumour, ctDNA was detected during observation in
13 (sensitivity ¼ 86.7%), and 13/14 patients with ctDNA
detected during observation experienced clinical recurrence
(PPV ¼ 92.9%). This resulted in a significant HR for
506 https://doi.org/10.1016/j.annonc.2022.02.007
recurrence and RFS for ctDNA detection during observation
(HR: 18.2, P value 0.00022; Figure 4F) and at landmark
(Supplementary Figure S5, available at https://doi.org/10.
1016/j.annonc.2022.02.007). For patients with ctDNA not
detected at baseline, ctDNA was detected at landmark in 1/
29 patients and during observation in 4/37 patients
(Supplementary Table S1, available at https://doi.org/10.
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1016/j.annonc.2022.02.007). For additional detail see Sup-
plementary Information, available at https://doi.org/10.
1016/j.annonc.2022.02.007.

DISCUSSION

Analysis of ctDNA before and after treatment with curative
intent of patients with early-stage NSCLC (Figure 1)
demonstrated that detection of ctDNA using sensitive
personalized assays can inform patient prognosis and help
guide patient treatment (Figure 4). Several illustrative cases
demonstrate possible scenarios (Figure 3). ctDNA was
detected before treatment in half of the patients (Figure 2),
and those had a high risk of earlier recurrence or death (HR:
3.1 and 3.0). More informative was analysis of ctDNA after
treatment. ctDNA detection in a landmark window, the first
sample collected �2 weeks and <4 months after treat-
ment, was associated with a 5.5-fold higher risk of death
and 14.8-fold higher risk of recurrence of the primary
tumour. Patients for whom ctDNA was detected before
treatment, but not after treatment, had excellent outcomes
with recurrence in only 2/16 patients (Figure 4), suggesting
the potential for de-escalation of adjuvant treatment. This
adds to accumulating evidence for the potential utility of
ctDNA testing to risk-stratify patients to identify which pa-
tients may benefit most from adjuvant therapy or be at high
risk of disease recurrence.

Recent results support this approach in multiple cancer
types.23,26 In early-stage NSCLC treated by surgery and/or
radiotherapy, several recent studies used high-sensitivity
methods to test associations between ctDNA detection
and patient outcomes after treatment with curative
intent21,39,40 (see Supplementary Information, available at
https://doi.org/10.1016/j.annonc.2022.02.007). Here we
applied high-sensitivity personalized assays to study a
population with earlier stage disease, of whom 70% un-
derwent surgical treatment, and observed lead times of
w200 days from ctDNA detection to disease recurrence.

The main limitation of our study was that the design
included routine sampling only for 9 months after the end of
treatment, and samples were collected beyond this in only a
subset of patients at the time of recurrence. For patients
who recurred later than w18 months after end of treat-
ment, samples were generally not collected for >200 days
before their clinical progression. Nonetheless, the RaDaR�
assays employed in this study showed the ability to detect
ctDNA in plasma of patients with no overt or radiological
evidence of disease, to fractional concentrations as low as
0.0011% (11 ppm) in patients who went on to experience
recurrence of their tumour. The detection of ctDNA at such
low concentrations resulted in a long lead time, preceding
clinical identification of recurrence by 200 days or more, and
this lead time was even longer in the subset of patients
whose recurrence occurred later than 200 days.

The clinical specificity of the assay was high: of 152
samples collected after treatment from 49 patients who did
not have a recurrence of their primary tumour, ctDNA was
detected in only 2 samples from 2 patients. For those two
patients, the last follow-up was at 251 days and 313 days
508 https://doi.org/10.1016/j.annonc.2022.02.007
after ctDNA detection, and later recurrence cannot be ruled
out. Counting these as false positives, the clinical specificity
achieved was 98.7% at the sample level, and the PPV for
recurrence was 95% (38/40 samples positive for ctDNA
were associated with recurrence). This high clinical speci-
ficity was observed despite a high analytical sensitivity:
more than one-third of the samples with ctDNA detected
had eVAFs <100 ppm (<0.01%), a higher proportion than
observed in previous studies, highlighting the high sensi-
tivity needed to detect ctDNA in patients with low disease
burden to provide a longer lead time before clinical iden-
tification of recurrence. Using an assay with high specificity
supports the ability to carry out repeat surveillance testing
for detection of MRD, which increases the chance of
detecting ctDNA positive cases who may otherwise be
missed by testing at a single post-treatment MRD time-
point. Of 22 patients who recurred and had samples avail-
able at the landmark timepoint, 10 were positive for ctDNA
(sensitivity ¼ 45.4%), compared with 18 of 28 patients who
recurred (64.3%) for whom ctDNA was detected at land-
mark or later.

Analysis of samples collected before initiation of treat-
ment was predictive and can help increase the NPV of
ctDNA detection during long-term observation. In patients
for whom ctDNA was detected before treatment, ctDNA
was also detected during long-term observation for 13 of 15
cases who had clinical recurrence of their primary tumour.
Of 16 patients for whom ctDNA was detected pretreatment
but not detected during observation, only 2 had a clinical
recurrence of their first primary tumour, resulting in high
sensitivity, PPV and NPV. Only few patients with ctDNA not
detected pretreatment experienced clinical recurrence.
Analysis of pretreatment samples alone, however, was not
as predictive as analysis during observation or analysis of a
single sample collected at a landmark timepoint after end of
treatment (lower HR and P value; Figure 4).

A key consideration for deploying such assays is the
requirement to analyze tumour tissue samples to obtain a
panel of mutations for the design of personalized assays.
Tumour samples for sequencing were available in our study
for all patients who underwent surgery, but for only 20 of 30
patients who did not undergo surgery, and we were able to
design assays for 88 of 100 patients. Reliance on a tumour
specimen increases the complexity of the process and it may
not be available for all patients; however, if this results in
improved analytical sensitivity and therefore improved clin-
ical performance, this needs to be weighed and balanced.

We provide evidence to show that when ctDNA is
detected, relapse is likely, and patients may benefit from
additional treatment or participation in a clinical trial. When
ctDNA is not detected, there is still a considerable chance of
relapse and the current data do not provide sufficient evi-
dence to change the standard of care when adjuvant
treatment is otherwise indicated. Larger studies and pro-
spective clinical trials are needed to determine the balance
of benefit/harm in further treatment of patients following
initial treatment with curative intent, when ctDNA is not
detected even using highly sensitive assays. Our data
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suggest that a high negative predictive power could be
achieved by analysis of multiple samples both before and
after treatment using highly sensitive ctDNA assays. Our
results also support that analysis for residual disease may
be best delayed beyond the first few days, as we detected
ctDNA 1-3 days after surgery in 25% of patients, but half of
those patients did not have clinical relapse (with median
follow-up of 543.5 days).

In summary, our study adds to the accumulating evidence
that supports the utility of ctDNA testing for detection of
residual disease and recurrence. This may be used as a
sensitive tool for identifying patients at high risk of relapse
who may benefit from additional adjuvant therapy or may
be eligible for enrolment into clinical trials. In the future,
ctDNA testing may allow identification of patients at lower
risk of relapse, for whom it may be possible to consider less
intensive or shorter treatment courses.
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