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ABSTRACT
Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of
multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals
and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-
encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity
analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to
the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity
to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and
maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to
carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This
transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct
repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-
Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-
encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary
effects of gene transfer and the selective forces driving antibiotic resistance.
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Introduction

Bacteria can become resistant to antibiotics through
chromosomal mutations and/or by the acquisition
of resistance genes carried on mobile genetic
elements, including plasmids and integrative and con-
jugative elements [1]. Plasmids are autonomous self-
replicating elements of which some are capable to
drive horizontal transfer (HGT) of antibiotic resist-
ance genes by conjugation [2–5]. The mobility of a
plasmid depends on the set of genes that it carries,
and these extrachromosomal elements may be conju-
gative, mobilisable or non-transmissible [2,3]. Conju-
gative plasmids carry all the machinery necessary for
self-transfer: i) a relaxase, a key protein in conju-
gation; ii) an origin of transfer (oriT); iii) a set of
genes encoding for the type-IV secretion system

(T4SS); and iv) a gene encoding a type-IV coupling
protein (T4CP) [2,3]. Mobilisable plasmids lack the
complete set of genes encoding the T4SS and may
use the conjugative apparatus of a helper plasmid pre-
sent in the cell to be successfully transferred. Conjuga-
tive plasmids tend to be low copy number and large,
whereas mobilisable plasmids are frequently high
copy number and smaller (<30 kb) [2,3]. The term
megaplasmids [6] has been used for very large repli-
cons (>350 kb) which, in contrast to chromids [7],
do not carry essential core genes. Megaplasmids fre-
quently have mosaic structures, carrying genetic mod-
ules that originate from different ancestral sources [8].
The formation of mosaic plasmids may be influenced
by several factors, such as the abundance of conjuga-
tive plasmids and transposons, selection pressures,
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incompatibility groups and the host’s tolerance of
foreign DNA. According to the plasmid hypothesis,
megaplasmids are the evolutionary precursors of
chromids, due to the amelioration of genomic signa-
tures to those of the host’s chromosome and the
acquisition of essential genes [7].

To date, fourteen incompatibility groups (IncP-1 to
IncP-14) have been characterised amongst Pseudomo-
nas plasmids [9,10]. Narrow host range plasmids com-
prise IncP types -2, -5, -7, -10, -12 and -13 and cannot
be transferred into Escherichia coli. In contrast, other
groups display a broad host range, as they are also
included in the typing scheme for Enterobacteriaceae
plasmids: IncP-1 (IncP), IncP-4 (IncQ) and IncP-6
(IncG) [9,10]. Unlike Enterobacteriaceae plasmids, no
replicon-based PCR typing of other Pseudomonas plas-
mids has been created yet. Even though a few reports
have characterised large plasmids among pseudomo-
nads [11–13], the role of these elements in the spread
of antibiotic resistance in this genus remains poorly
understood.

Plasmids may harbour accessory module(s) that
provide adaptive advantage(s) for their host, such as
virulence-encoding factors and antibiotic resistance
genes [9,14–16]. These elements frequently harbour
carbapenemase-encoding genes, which confer resist-
ance to β-lactams, including carbapenems, frequently
last resort antibiotics for infections caused by multi-
drug resistant bacteria [9,17]. Sequencing of plasmids
is thus paramount to the success of accurate epide-
miological tracking strategies in the hospital setting
and routine surveillance, helping to identify trans-
mission routes and to prevent future outbreaks
[18–23]. The advent of WGS has enabled the in silico
analysis of a wide array of plasmids, most of them
from assembly of short-read sequencing data
[11,24–27]. However, fully resolving plasmids with
short-read sequencing technologies remains challen-
ging due to the presence of numerous long repeated
regions [28], and currently the most accurate
approach to assemble these plasmids is to use a
combination of short-read and long-read methods
[18–23,29,30].

Here, we combined Nanopore and Illumina sequen-
cing to fully assemble a carbapenemase-encoding
megaplasmid carried by a clinical isolate belonging
to the recently proposed Pseudomonas shirazica
species [31].

Material and methods

Bacterial isolate

Isolate FFUP_PS_41 was obtained in 2008 from endo-
tracheal tube secretions of a patient with pneumonia
admitted to the Neonatal/Pediatric Intensive Care
unit of Centro Hospitalar do Porto – Hospital de

Santo António, in Porto, Portugal, as part of regular
surveillance of carbapenemase-producers among clini-
cal isolates.

FFUP_PS_41 was initially identified at the hospital as
Pseudomonas putida by VITEK-2 (bioMérieux), a
routine phenotypic based method for bacterial identifi-
cation. In this study we re-classified the strain by pair-
wise average nucleotide identity based on BLAST+
(ANIb) using PyANI v0.2.7 (https://github.com/
widdowquinn/pyani) [32,33]. Antimicrobial suscepti-
bility testing was conducted by standard disc diffusion
and broth microdilution (for colistin) methods, accord-
ing to EUCAST guidelines (http://www.eucast.org/).

Whole-plasmid sequencing and bioinformatics

Genomic DNA from FFUP_PS_41 was extracted using
a QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Sequen-
cing libraries were prepared using Illumina Nextera
and the 1D ligation library approach from Oxford
Nanopore Technology (ONT) where we used a Covaris
gTube to fragment the gDNA around 10 kbp. Libraries
were sequenced on the Illumina HiSeq 2500 sequencer
or the MinION sequencer from ONT equipped with a
flowcell of chemistry type R9.4, respectively.

Illumina reads were verified for quality using
FastQC and Trimmomatic [34,35] yielding 5.9 M
paired-end reads of 125 bp in length totalling 1.4 B
bases (245x est. coverage), while the MinION reads
were processed with ONT’s albacore v2.3.0 followed
by demultiplexing using porechop v0.2.3, yieding
62.6 k reads totalling 504 M bases (84x est. coverage).
Both datasets were then combined using the Unicycler
assembly pipeline [36] with a finishing step of Pilon
v1.22. The assemblies were visually inspected using
the assembly graph tool Bandage v0.8.1 [37]. Annota-
tion of the megaplasmid was performed with Prokka
v1.13 using default parameters [38]. To improve anno-
tation, we downloaded additional files of trusted pro-
teins from NCBI RefSeq plasmids (ftp://ftp.ncbi.nih.
gov/refseq/release/plasmid/), the NCBI Bacterial Anti-
microbial Resistance Reference Gene Database (ftp://
ftp.ncbi.nlm.nih.gov/pathogen/Antimicrobial_resistan
ce/) and the Antibacterial Biocide- and Metal-Resist-
ance Genes database (Bac-Met, http://bacmet.biome
dicine.gu.se/index.html, all accessed on the 01/10/18).
EggNOG mapper v4.5.1 and NCBI’s Conserved
Domain Database CDSEARCH/cdd v3.16 were used
for functional annotation and conserved domain
search of protein sequences, respectively [39–41].
Inference of orthologous groups (OGs) was achieved
with OrthoFinder v2.2.6 [42]. The coding sequence
(CDS) annotations of the megaplasmid were visualised
with Circos v0.69–6 [43]. We used ISfinder [44] to look
for insertion sequences (IS). Antimicrobial resistance
genes and associated mobile elements were annotated
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using GalileoTM AMR (https://galileoamr.arcbio.com/
mara/, Arc Bio, Cambridge, MA) [45]. Plasmid copy
number was estimated based on coverage of the Illu-
mina dataset. GenSkew (http://genskew.csb.univie.ac.
at/) was used to compute and plot nucleotide skew
data to predict the origin of replication.

Plasmid transfer and S1/ICeuI-PFGE

Plasmid transfer by conjugation assays was attempted
as previously described [46], using a spontaneous
rifampicin-resistant mutant of P. aeruginosa PAO1 as
recipient strain. Transconjugant selection was per-
formed using Mueller–Hinton agar containing rifam-
picin (100 mg/L) and imipenem (2 mg/L).

S1 and I-CeuI-PFGE was performed as previously
described [47] to confirm the presence of extrachromo-
somal elements.

Accession number

The sequence of plasmid pJBCL41 was deposited in
GenBank accession number MK496050.

Results

Antimicrobial susceptibility and taxonomy
testing

Clinical isolate FFUP_PS_41 has a multidrug resistance
(MDR) phenotype, showing resistance to imipenem,
meropenem, ceftazidime, cefepime, aztreonam, pipera-
cilin + tazobactam, gentamicin, tobramycin, amikacin,
ciprofloxacin but remains susceptible to colistin
(MIC = 1 mg/L). FFUP_PS_41 was initially identified
as P. putida by VITEK-2. However, it displays an
ANIb value of 99.1% (above the 95% cut-off for species
identification [32]) when compared with the P.
shirazica type strain genome [31], suggesting that it
belongs to this species related to the P. putida phyloge-
netic group.

Comparative megaplasmidomics between
pJBCL41 and related Pseudomonas plasmids

Using a hybrid assembly approach, we were able to fully
resolve a single extrachromosomal element carried by
Pseudomonas sp. FFUP_PS_41 (Figure S1). This mosaic
megaplasmid (named pJBCL41) is 498,516 bp long and
a total of 608 predicted CDS were annotated (Figure 1).
It has an average GC content of 56.0%, which is lower
than that observed for the chromosome (62.6%) and
the mean content for strains identified as P. putida
(62.0%, according to information retrieved on the 08/
03/2019 on https://www.ezbiocloud.net/taxon?tn=Pseu
domonas%20putida).

NCBI’s conserved domains database (CDD) calls
42.1% (256) of the predicted CDS for pJBCL41
(Table S1), indicating that most genes encode proteins
of unknown function. The backbone of this megaplas-
mid harbours genes predicted to be responsible for
plasmid replication and heavy metal resistance and car-
ries two predicted type-II toxin-antitoxin (TA) systems
and genes encoding for partition systems (Figure 1)
[48]. Several genes encoding transport and metabolic
processes, as well as transposable elements and CDS
associated with transcription, regulatory, chemotaxis
signal transduction and mobility functions could be
identified (Table S2). These traits are frequently overre-
presented on large plasmids (Figure 2) [6,49]. Also,
pJBCL41 harbours several genes coding for the syn-
thesis of DNA precursors, which may promote replica-
tion and transcription processes to help alleviate the
burden that this acquired element may impose on the
host cell.

pJBCL41 has low nucleotide sequence identity with
Pseudomonas megaplasmids deposited in public data-
bases (Table 1 and Figure S2). OrthoFinder assigned
59.4% of proteins encoded by pJBCL41 and the most
closely-related plasmid, pQBR103 from Pseudomonas
fluorescens [50], to 335 OGs (Table S3). pQBR103
was found in Pseudomonas populations colonising
the leaf and root surfaces of sugar beet plants growing
atWytham, United Kingdom and carries no antimicro-
bial resistance genes [50]. Curiously, a blastp analysis
between the proteins encoded by these megaplasmids
revealed that the average amino acid sequence identity
is 72.8% among sequences producing significant
alignments.

Large plasmids identified among the Pseudomonas
genus usually belong to the IncP-2 incompatibility
group [10,11,27]. However, the IncP-2-type stability/
replication/conjugal transfer system is absent from
pJBCL41 as previously observed for other megaplas-
mids carried by different Pseudomonas species
[51,52]. Two replication initiation genes could be
identified here. One replicase gene is located at pos-
itions 458,679–457,813 on the plasmid (locus_tag:
pJBCL41_00568), in close proximity to the predicted
origin of replication (Figure S3). pJBCL41 is estimated
to be present as a single copy, from read coverage vs.
the chromosome. Like many megaplasmids, pJBCL41
appears to possess a full set of genes for self-trans-
mission [2,3]. We identified a cluster of genes encoding
an F-type T4SS, encompassing i) a gene encoding a
TraD homolog (locus_tag: pJBCL41_00295), an AAA
+ ATPase of the pfamVirD4 type, known as the
T4CP and which is a key protein in conjugation; ii) a
gene encoding a TraI (locus_tag: pJBCL41_00297)
relaxase homolog, which together with accessory pro-
teins is responsible for cleaving the plasmid in a site-
specific manner to initiate DNA transfer and iii) a set
of genes (traEFGKNV homologues, positions
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Figure 1. Circular representation of genomic features of pJBCL41. The innermost circle is a histogram of the GC skew, the next a
graph of GC content. The next circle displays selected regions of interest (yellow) and IS and transposons or related elements (grey).
The next two circles represent the coding regions on the negative and positive strands coloured by their functional annotation
(when available). The outermost circle displays regions with high levels of identity to pQBR103 (GenBank accession no.
NC_009444.1). Red dots highlight genes encoding antibiotic resistance.

Figure 2. Functional characterization of pJBCL41 and related megaplasmids. COG stands for Cluster of Orthologous Groups.
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182,497–203,751) coding for a mating pair formation
system responsible for pilus assembly and retraction
(Figure 1) [2,3,53].

We were unable to transfer the pJBCL41 in vitro to a
spontaneous rifampicin-resistant mutant of
P. aeruginosa PAO1, under tested conditions. S1/I-
CeuI-PFGE confirmed the presence of a ∼500 kb extra-
chromosomal element.

pJBCL41 carries a complex 50 kb multidrug
resistance region

pJBCL41 carries genes typically found on IncP-2 plas-
mids encoding resistance to tellurite, which could allow
co-selection and enrichment of bacteria with MDR
plasmids [54]. It also harbours a class 1 integron with
the |aacA7|blaVIM-2|aacA4| cassette array (named
In103 by INTEGRALL [55]) (Figure 3): aacA7 confers
resistance to aminoglycosides (amikacin, netilmicin
and tobramycin) and blaVIM-2 encodes resistance to
β-lactams (including carbapenems). The blaVIM-2

gene is by far the most frequently described carbapene-
mase-encoding gene, both geographically and phylo-
genetically (across Pseudomonas spp.) [56,57]. The
aacA4 gene cassette has a C residue at nucleotide pos-
ition 329 corresponding to a serine residue associated
with gentamicin resistance [58]. The same cassette
array has been observed previously among isolates
from Portuguese hospitals [25]. The integron is of the
In4 type, with a complete 5′-CS bounded by the
25 bp inverted repeat IRi, 2,239 bp of the 3′-CS and
IS6100 flanked by two fragments of the IRt end of
Tn402 [9,59]. As the region between IRi and IRt
lacks tni transposition genes, this constitutes a
Tn402-like transposon that would be defective in self-
transposition.

This defective Tn402-like transposon is flanked by
5-bp direct repeats (DR) (5´-CTGCT-3´) (Figure 3),
suggesting integration by transposition close to the pre-
dicted resolution (res) site of a Tn3-family transposon.
About 300 bp at the IRL end of the transposon are
related (∼86% identical) to TnAs1 (ISfinder), followed
by a region containing a gene which may encode a
methyl-accepting chemotaxis protein. From the pre-
dicted recombination crossover point in the res site
the sequence matches TnPa40 (ISfinder). This “hybrid”
transposon is not flanked by characteristic 5 bp DR but
the 5 bp adjacent to IRL (5´-AGGTA-3´) are repeated
50,273 bp away, immediately adjacent to the 38 bp
repeat of a 1,100 bp transposon fragment ∼97% identi-
cal to part of both Tn1721 (GenBank accession no.
X61367.1, [60]) and TnAs1 (Figure 3). This transposon
is truncated by 261 bp region that apparently corre-
sponds to a Tn3-Derived Inverted-Repeat Miniature
Element (designated TIME-261.1 here). TIMEs are
non-autonomous mobile elements commonly found
in Pseudomonas spp. [61].Ta
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Most of the region between these transposon
elements consists of a 16,782 bp segment flanked by
directly oriented copies of ISPst3 (IS21 family). This
region, except for insertion of ISPa82 (IS66 family)
and an adjacent deletion in pJBCL41, matches several
Pseudomonas chromosomes (e.g. P. aeruginosa PA7
in Figure S4) and different parts of it are found in plas-
mids in Pseudomonas, Acinetobacter and Enterobacter-
iaceae, sometimes also flanked by IS. The sequence
between TnPa40 and the left-hand ISPst3 in pJBCL41
is a duplication of part of the 16,782 bp region, with
ISPa1635 (IS4 family) inserted, flanked by character-
istic 8 bp DR, instead of ISPa82 and ends with a partial
ISPa1635. The right-hand ISPst3 truncates a transpo-
son related to TnAs2 [62], which is separated from
TIME-261.1 by a 9,075 bp region that also matches
Pseudomonas chromosomes and includes a putative
aminoglycoside phosphotransferase gene.

Blast searches with the complete 50 kb region ident-
ified a 59 kb region in the chromosome of
P. aeruginosa AR_0440 (GenBank accession no.
CP029148.1) that has similar ends, but lacks an inte-
gron, with an additional Tn5393 insertion and a differ-
ent region in place of the ISPst3-bounded segment
(Figure S4). This 59 kb region is flanked by 5 bp DR
(5´-AATGA-3´) and an uninterrupted version of the
flanking sequence matches other Pseudomonas
chromosomes.

A Tn5503-like transposon encoding a type-II TA
system and two metal dependent phosphohydrolases
is also inserted in pJBCL41 [63] and is flanked by 5-
bp DR (5´-ACTCT-3´), indicating that this element
transposed independently of the 50 kb region
(Figure 3). It has only 10 nucleotide differences from

the original Tn5503 on plasmid Rms149, the archetype
of Pseudomonas plasmid incompatibility group IncP-6
[63], and additional copies of short repeats in a GC-
rich region within a gene encoding an ATP-utilizing
enzyme. An additional ISPst3, five ISPpu7 (IS21 family)
and one ISPa41 (IS5 family) - all flanked by DR of
characteristic length, are also inserted in the pJBCL41
backbone (Figures 1 and 3).

Discussion

In this study, we took advantage of a hybrid assembly
approach to fully resolve and characterise a carbapene-
mase-encoding megaplasmid and to compare it with
related Pseudomonas megaplasmids. The lower GC
content of pJBCL41 compared with the FFUP_PS_41
chromosome and strains belonging to the P. putida
phylogenetic group may be related to a more relaxed
selection acting on these secondary replicons, as the
maintenance of GC-rich genomes is energetically
more demanding [64,65]. Ongoing studies will help
to characterise the biology and genomic signatures
related to this newly characterised P. shirazica species
(Botelho et al, unpublished data). Even though we
were unable to transfer pJBCL41 by conjugation to a
P. aeruginosa strain under the conditions used, we
hypothesise that it may be transferrable to other strains
belonging to the P. putida phylogenetic group. Strains
belonging to this group display a GC content lower
than those of P. aeruginosa, and differences in GC con-
tent are a known biological barrier for HGT [66].

Since secondary replicons are under strong pressure
to undergo genomic reshuffling [64], the observed low
nucleotide sequence identity between pJBCL41 and

Figure 3. Map of resistance genes and mobile genetic elements inserted in the backbone of pJBLC41. Gene cassettes are shown as
blue boxes labelled with the cassette name and are oriented in the 5’-CS to 3’-CS direction. IS are shown as block arrows labelled
with the IS name/number, with the pointed end corresponding to IRR. TIME-261.1 and fragments of Tn3-family transpospons are
shown as beige boxes with 38 bp IR represented by flags. The fragment annotated as “TnAs1-like” is ∼97% identical to a region in
common between Tn1721 (GenBank accession no. X61367.1) and TnAs1 in ISfinder. The fragment annotated as “TnAs2-like” is
∼94% identical to TnAs2 in ISfinder. The integron is inserted in a proposed hybrid transposon, apparently created by res-mediated
recombination between a tnp region matching TnPa40 and another tranpsoson, labelled “Tn”, that is ∼86% identical to TnAs1 over
the ∼300 bp at the IRL end only. DR are shown as a pair of “lollipops” of the same colour flanking an IS or a pair of IRs (but note that
the same colour may be used to indictate more than one pair of DR), with sequences indicated for DR of transposons. Mobile
elements are shown to scale and numbers below dashed red lines indicate the lengths of intervening regions in bp. This figure
was constructed from diagrams generated using GalileoTM AMR.
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large Pseudomonas plasmids deposited in public data-
bases might be expected. Even though pJBCL41 and
pQBR103 are similar in size and functionalities, there
is a high level of divergence between genes encoding
related proteins. Indeed, it is rare to identify megaplas-
mids with a similar nucleotide sequence in strains
belonging to different species within the same genus
[6,52]. These results suggest that pJBCL41 and
pQBR103 may share a common ancestor, but indepen-
dent evolutionary trajectories have led to significant
diversification among related genes.

The presence of different replicons suggests that
pJBCL41 may have resulted from co-integration of dis-
tinct plasmid modules. The replication module defines
plasmid copy number and plasmid survival in different
hosts. Low copy-number plasmids are more frequently
lost, due to random assortment at cell division [2,3]
and extra stability modules, such as TA and partition
systems, may be required to ensure that large plasmids
such as pJBCL41 are maintained [48,67].

The DR flanking the 50 kb region in pJBCL41 and
the related 59 kb region in the P. aeruginosa
AR_0440 chromosome could reflect insertion of each
region by transposition, possibly mediated by the intact
transposase and resolvase of TnPa40. However, the
size, complexity and differences between the internal
parts of these related regions may be more consistent
with initial insertion of a simple transposon followed
by further insertions, deletions and rearrangements.
A similar situation is seen in plasmid pCTX-M360,
which carries a complete Tn2 flanked by the 5 bp
DR, and the highly-related pCTX-M3, in which the
ends of Tn2 are present in the same position but the
central part of the transposon has undergone extensive
rearrangements [68]. The identification of all or part of
the 16,782 bp segment found within the 50 kb region in
pJBCL41 in other locations also suggests that some of
the genes it carries may encode advantageous func-
tions, but this needs further analysis. Identification of
other sequences related to parts of these 50 and 59 kb
region segments may also shed light on how they
have arisen and evolved.

In summary, we show that a hybrid Nanopore/Illu-
mina approach is useful for producing contiguous
assemblies and allowed full resolution of a carbapene-
mase-encoding Pseudomonas megaplasmid. The pres-
ence of this large plasmid may provide a selective
advantage to the host cell. However, given their size
and gene content, acquisition of these secondary repli-
cons may pose a significant cost [69–71]. The high level
of gene variation when compared to publicly available
megaplasmids suggests that these secondary replicons
frequently undergo gene loss and gain though HGT.
The reduced purifying selection and the high preva-
lence of transposable elements frequently observed on
megaplasmids may help to explain why these elements
readily acquire foreign DNA [6,64,72]. In fact, mosaic

plasmids such as pJBCL41 and the majority of mega-
plasmids have a high proportion of mobile genetic
elements [73]. The identification of novel megaplas-
mids may shed light on the evolutionary effects of
gene transfer and the selective forces driving antibiotic
resistance.
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