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An individual’s dietary and supplement strategies can influence markedly their physical

performance. Personalized nutrition in athletic populations aims to optimize health, body

composition, and exercise performance by targeting dietary recommendations to an

individual’s genetic profile. Sport dietitians and nutritionists have long been adept at

placing additional scrutiny on the one-size-fits-all general population dietary guidelines

to accommodate various sporting populations. However, generic “one-size-fits-all”

recommendations still remain. Genetic differences are known to impact absorption,

metabolism, uptake, utilization and excretion of nutrients and food bioactives, which

ultimately affects a number of metabolic pathways. Nutrigenomics and nutrigenetics are

experimental approaches that use genomic information and genetic testing technologies

to examine the role of individual genetic differences in modifying an athlete’s response

to nutrients and other food components. Although there have been few randomized,

controlled trials examining the effects of genetic variation on performance in response to

an ergogenic aid, there is a growing foundation of research linking gene-diet interactions

on biomarkers of nutritional status, which impact exercise and sport performance. This

foundation forms the basis from which the field of sport nutrigenomics continues to

develop. We review the science of genetic modifiers of various dietary factors that impact

an athlete’s nutritional status, body composition and, ultimately athletic performance.

Keywords: nutrigenomics, nutrigenetics, personalized nutrition, athletic performance, genetic testing, sports

nutrition, caffeine, ergogenic aids

INTRODUCTION

Sport and exercise performance are significantly influenced by nutrition, yet individuals respond
differently to the same foods, nutrients and supplements consumed. This holds true for a variety
of ages, ethnicities, and level of skill, and whether the goal is optimizing physical activity for health
and fitness or for high performance sport. The importance of a personalized sports nutrition plan
was highlighted in the recent “Nutrition and Athletic Performance” Joint Position Statement by the
American College of Sports Medicine, the Academy of Nutrition and Dietetics and the Dietitians
of Canada, which states that “Nutrition plans need to be personalized to the individual athlete. . .
and take into account specificity and uniqueness of responses to various strategies” (1). These
strategies encompass overall dietary patterns, macronutrient ratios, micronutrient requirements,
eating behaviors (e.g., nutrient timing), and the judicious use of supplements and ergogenic aids.

The paradigm shift, away from the one-size-fits-all group approach and toward personalization
for the individual, is moving nutrigenomics research from basic science into practice.
While it has long been recognized that genetics play an influential role in determining
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how an athlete responds to foods and nutrients, the surge in
research into gene-diet interactions over the past decade has
provided a scientific basis for this hypothesis through various
research initiatives and the corresponding increase in published
studies. Genetic variants affect the way we absorb, metabolize,
utilize and excrete nutrients, and gene-diet interactions that
affect metabolic pathways relevant to health and performance are
now widely recognized (2). Personal genetic testing can provide
information that will guide recommendations for dietary choices
that are more effective at the individual level than current dietary
advice, which has been set by government agencies and other
health and sport organizations. Disclosure of genetic information
has also been shown to enhance motivation and behavior change
and strengthen adherence to the dietary recommendations
provided (2–6). Although athletes tend to exhibit higher levels of
motivation in general (7), nutrition professionals still encounter
significant barriers to behavior change when counseling athletes
on the adoption of beneficial sports nutrition practices (8,
9). A recent systematic review found that when genetic
information included actionable advice, individuals were more
likely to change health behaviors, including their dietary choices
and intakes (10).

The practical application of the scientific knowledge gained
from research on health and performance is to enable athletes
to utilize genetic test results for personalized nutrition in
an actionable manner. The demand for genetic testing for
personalized nutrition and associated performance outcomes
by athletes and active individuals is growing, and there is an
increased need for dietitian-nutritionists, fitness professionals,
coaches, and other sports medicine practitioners to understand
the current evidence in this developing field (11–14). The
sport environment is dynamic, progressive, innovative, and
extremely competitive. Providing athletes with individually
tailored dietary and other performance-related information

FIGURE 1 | The nutrigenomics approach to sport nutrition. An athlete is exposed to a food, beverage, nutrient or bioactive. A genetic variant such as a single

nucleotide polymorphism (SNP) associated with that exposure modifiers the individual’s requirement for or response to that exposure. Their unique response depends

on their version of the gene or “genotype.” For example, in the CYP1A2 rs726551 SNP, individuals with the AA genotype (fast metabolizers) experience a positive or

“improved” response (i.e., performance) to caffeine. Individuals with the CYP1A2 AC or CC genotype experience no effect or impaired performance, respectively, from

caffeine use (19).

based on their DNA could yield a competitive edge. The
growing body of science in nutrition and genetics is the
foundational building block by which practitioners can help
athletes reach their genetic potential through implementation
of dietary and supplement strategies that are aligned to their
genetic makeup (Figure 1). Scientific advancements along with
increased interest in genetic testing have resulted in a necessary
growth for professional support, where tools for proficient and
knowledgeable nutrition counseling based on genetics are now
more widely available. For example, the Dietitians of Canada
now offer a course on “Nutrigenomics: Genetic testing for
personalized nutrition” as part of their online Learning-on-
Demand portal.

Personalized nutrition, based on an individual’s genotype, is
not a novel concept, and there are several examples of rare (e.g.,
phenylketonuria) and common (e.g., lactose intolerance) genetic
variants that require specific dietary strategies to manage (15).
Although genetic testing is well-established in the clinical setting,
there is a growth in opportunities to improve health, wellness and
sport performance in athletes through nutrition-focused genetic
testing. In the ongoing battles against dangerous supplements
(16) and unprecedented numbers of doping violations (17, 18),
the sport science community is seeking novel, yet evidence-based,
approaches for athletes to gain a competitive edge which are
safe, effective and legal. Personalized nutrition is not limited to
the identification of genetic variants. Genotype is one aspect of
personal information that can be used to individualize dietary
advice. An individual’s genetic profile as it relates to diet should
be used combination with other relevant information such as
sex, age, anthropometrics, health status, family history, and
socioeconomic status along with dietary preferences and the
presence of food intolerances or allergies. Accompanying blood
work is also useful to evaluate current nutrition status and for
ongoing monitoring.
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Personalized dietary and supplement advice derived from
genetic testing should be based on clear and defensible
interpretations of relevant research studies. Traditional genome-
wide association studies (GWAS) can be used to identify
associations between genotypes and outcomes of interest such
as blood levels of a micronutrient. However, the utility of such
markers in providing actionable information on dietary advice is
limited because it is not known what dietary intakes are required
to counter effects of the genetic variant(s). For example, although
a genetic variant that has been associated with low serum values
of a vitamin is identified, a specific recommendation for intakes
to prevent the risk of deficiency or to alleviate low levels of this
micronutrient may remain undetermined. Such studies require
the appropriate design that demonstrates how a genetic variant
modifies the response to dietary intake on the outcome trait of
interest and perhaps identify responders and non-responders.
Genetic markers related to a performance trait, such as aerobic
capacity or power, also provide little information on what factors
could be used to improve the trait of interest.

With the exception of investigations exploring genetic
variation and supplemental caffeine, which have been shown
to modify endurance exercise outcomes (19, 20), there are few
performance studies that have examined the role of genetics
and other dietary factors on athletic outcomes. A gene-diet
interaction may not be associated directly with a quantifiable
performance outcome, such as increased aerobic capacity,
speed or strength, but rather with intermediate biomarkers or
phenotypes, such as body composition or circulating vitamin
D levels, which are independent determinants of athletic
performance, injury-risk and post-training recovery (1, 21–
24). For example, it is well-known that low iron stores
impact hemoglobin production which in turn decreases the
oxygen carrying capacity of the blood, leading to a lack of
oxygen to working muscles and resulting in impaired muscle
contraction and aerobic endurance (21). As such, genetic markers
that impact iron stores in response to intake can indirectly
affect performance through the oxygen carrying capacity of
hemoglobin (25, 26).

Sport Nutrigenomics Vs. Talent
Identification and Exercise Prescription
In an effort to achieve specific sport goals, there is generally
considerable overlap in the development of complementary
training and dietary plans for athletes (27–29). However, it is
essential to underscore the distinction between the strength
of evidence supporting DNA-based advice for personalized
nutrition vs. that for fitness programming. Despite the fervent
interest and ubiquity of commercial genetic testing to assess
and improve exercise or sport performance (30–32), it should
be noted that there is a lack of evidence encompassing exercise
prescription and talent identification, such as the ability to
predict the likelihood for the next generation of Olympians
(33, 34). Similarly, at this time there is insufficient evidence to
recommended training protocols (strength or endurance) based
on genotype or polygenic scores, that target specific fitness,
weight loss or sport goals (35–38). The practical and ethical

considerations of genetic testing for sports performance have also
been described (39).

Some commercial genetic tests claim to use proprietary
algorithmic approaches to prescribe training protocols based on
evidence reported in peer-reviewed research (35). Although this
may provide some initial supportive documentation for differing
responses to training based on genotype, much larger sample
sizes and improved methodologies are required, and should be
pursued (36). The approach by which individuals are categorized
as having an “endurance” or “power” advantage by genotype or
being “responders” and “non-responders” to different training
protocols, requires transparency and standardization across the
field to avoid potential bias and to allow other researchers
to replicate a study’s methodology (37). Attempts to replicate
studies to test training outcomes based on genotype require
the use of the identical scoring systems and it appears that
essential details of methods for grading of the strength of
scientific evidence used in these scoring systems are not
reported (35).

There is a considerable amount of ongoing research

investigating individual variation in response to exercise training,
however, sport and exercise genomics is still in its early stages

and clinical or sport utility is lacking (36, 40–44). Mainstream
testing for personalized training or exercise prescription based
on genotype is not currently supported as a scientifically-sound
approach, although it is likely to be a common and viably
employed coaching tool within the next decade (35–37, 43, 44).

GENES ASSOCIATED WITH SPORT
NUTRITION

The objective of this review is to examine the scientific evidence
on specific nutrients and food bioactives whereby genetic variants
appear to modify individual responses related to athlete health
and athletic performance. Although many studies reviewed
herein have not been studied in athletes exclusively, they have
been carried out in healthy individuals. Accordingly, several
studies outlined reflect optimal health, body composition and
nutritional status, which for athletes, provides the foundation for
athletic success. Genetic variation impacting response to various
micro- and macronutrients, as well as bioactives such as caffeine,
on performance-related traits will be reviewed (Table 1).

Caffeine
Caffeine, found naturally occurring in several plant species
including coffee, tea, cocoa, and guarana, is widely used in sport
as a performance enhancer or ergogenic aid often in the form of
caffeinated tablets, gels or chews.

In the field of nutrigenomics, caffeine is the most widely
researched compound with several randomized controlled trials
investigating the modifying effects of genetic variation on athletic
performance (19, 20, 45). Numerous studies have investigated
the effect of supplemental caffeine on exercise performance, but
there is considerable inter-individual variability in the magnitude
of these effects (46–48), or in the lack of an effect (49, 50)
when compared to placebo. These inter-individual differences

Frontiers in Nutrition | www.frontiersin.org 3 February 2019 | Volume 6 | Article 8

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Guest et al. Sport Nutrigenomics

T
A
B
L
E
1
|
S
u
m
m
a
ry

o
f
G
e
n
e
tic

V
a
ria

n
ts

th
a
t
m
o
d
ify

th
e
a
ss
o
c
ia
tio

n
b
e
tw

e
e
n
va
rio

u
s
d
ie
ta
ry

fa
c
to
rs

a
n
d
p
e
rf
o
rm

a
n
c
e
-r
e
la
te
d
o
u
tc
o
m
e
s.

G
e
n
e
(r
s
n
u
m
b
e
r)

F
u
n
c
ti
o
n

D
ie
ta
ry

fa
c
to
r

D
ie
ta
ry

s
o
u
rc
e
s

P
e
rf
o
rm

a
n
c
e
-r
e
la
te
d
o
u
tc
o
m
e

C
Y
P
1
A
2
(r
s7

6
2
5
5
1
)

E
n
c
o
d
e
s
C
Y
P
1
A
2
liv
e
r
e
n
zy
m
e
:

m
e
ta
b
o
liz
e
s
c
a
ffe

in
e
;
id
e
n
tifi
e
s

in
d
iv
id
u
a
ls
a
s
fa
st

o
r
sl
o
w

m
e
ta
b
o
liz
e
rs

C
a
ffe

in
e

C
o
ffe

e
,
te
a
,
so

d
a
,
e
n
e
rg
y
d
rin

ks
,
c
a
ffe

in
e
su

p
p
le
m
e
n
ts

C
a
rd
io
va
sc

u
la
r
h
e
a
lth

,
e
n
d
u
ra
n
c
e
(2
1
,
2
2
,
5
7
,
5
8
)

A
D
O
R
A
2
A
(r
s5

7
5
1
8
7
6
)

R
e
g
u
la
te
s
m
yo

c
a
rd
ia
lo

xy
g
e
n
d
e
m
a
n
d
;

in
c
re
a
se

s
c
o
ro
n
a
ry

c
irc

u
la
tio

n
vi
a

va
so

d
ila
tio

n

C
a
ffe

in
e

C
o
ffe

e
,
te
a
,
so

d
a
,
e
n
e
rg
y
d
rin

ks
,
c
a
ffe

in
e
su

p
p
le
m
e
n
ts

V
ig
ila
n
c
e
w
h
e
n
fa
tig

u
e
d
,
sl
e
e
p
q
u
a
lit
y
(4
9
,
5
1
–5

3
)

B
C
M
O
1
(r
s1

1
6
4
5
4
2
8
)

C
o
n
ve
rt
s
p
ro
vi
ta
m
in
A
c
a
ro
te
n
o
id
s
to

V
ita

m
in

A

V
ita

m
in
A

B
lu
e
fin

tu
n
a
,
h
a
rd

g
o
a
t
c
h
e
e
se

,
e
g
g
s,

m
a
c
ke

re
l,
c
a
rr
o
ts
,

sw
e
e
t
p
o
ta
to

V
is
u
o
m
o
to
r
sk
ill
s
a
n
d
im

m
u
n
ity

( 9
3
,
9
5
,
9
8
–1

0
1
)

M
T
H
F
R
(r
s1

8
0
1
1
3
3
)

P
ro
d
u
c
e
s
th
e
e
n
zy
m
e

m
e
th
yl
e
n
e
te
tr
a
h
yd

ro
fo
la
te

re
d
u
c
ta
se

,

w
h
ic
h
is
in
vo

lv
e
d
in

th
e
c
o
n
ve
rs
io
n
o
f

fo
lic

a
c
id

a
n
d
fo
la
te

in
to

th
e
ir

b
io
lo
g
ic
a
lly

a
c
tiv
e
fo
rm

,
L
-m

e
th
yl
fo
la
te

F
o
la
te

E
d
a
m
a
m
e
,
c
h
ic
ke

n
liv
e
r,
le
n
til
s,

a
sp

a
ra
g
u
s,

b
la
c
k
b
e
a
n
s,

ka
le
,
a
vo

c
a
d
o

M
e
g
a
lo
b
la
st
ic
a
n
e
m
ia
a
n
d
h
yp

e
rh
o
m
o
c
ys
te
in
e
m
ia
ris
k

( 1
1
2
,
1
1
6
–1

1
8
)

H
F
E
(r
s1

8
0
0
5
6
2
a
n
d

rs
1
7
9
9
9
4
5
)

R
e
g
u
la
te
s
in
te
st
in
a
li
ro
n
u
p
ta
ke

Ir
o
n

B
e
e
f,
c
h
ic
ke

n
,
fis
h
,
o
rg
a
n
m
e
a
ts

(h
e
m
e
iro

n
);
a
lm

o
n
d
s,

p
a
rs
le
y,
sp

in
a
c
h
(n
o
n
-h
e
m
e
iro

n
)

H
e
re
d
ita

ry
h
e
m
o
c
h
ro
m
a
to
si
s
( 1
3
0
–1

3
2
)

T
M
P
R
S
S
6
(r
s4

8
2
0
2
6
8
),

T
F
R
2
(r
s7

3
8
5
8
0
4
),
T
F

(r
s3

8
1
1
6
4
7
)

R
e
g
u
la
te

th
e
p
e
p
tid

e
h
o
rm

o
n
e
,

h
e
p
c
id
in
,
w
h
ic
h
c
o
n
tr
o
ls
iro

n

a
b
so

rp
tio

n

Ir
o
n

B
e
e
f,
c
h
ic
ke

n
,
fis
h
,
o
rg
a
n
m
e
a
ts

(h
e
m
e
iro

n
);
a
lm

o
n
d
s,

p
a
rs
le
y,
sp

in
a
c
h
(n
o
n
-h
e
m
e
iro

n
)

Ir
o
n
-d
e
fic
ie
n
c
y
a
n
e
m
ia
ris
k
(2
4
,
2
7
,
1
2
0
,
1
2
3
–1

2
5
)

F
U
T
2
(r
s6

0
2
6
6
2
)

In
vo

lv
e
d
in

vi
ta
m
in
B
1
2
c
e
ll
tr
a
n
sp

o
rt

a
n
d
a
b
so

rp
tio

n

V
ita

m
in
B
1
2

C
la
m
s,

o
ys
te
rs
,
h
e
rr
in
g
,
n
u
tr
iti
o
n
a
ly
e
a
st
,
b
e
e
f,
sa

lm
o
n

M
e
g
a
lo
b
la
st
ic
a
n
e
m
ia
a
n
d
h
yp

e
rh
o
m
o
c
ys
te
in
e
m
ia
( 1
4
2
)

G
S
T
T
1
(In
s/
D
e
l)

P
la
ys

a
ro
le
in

vi
ta
m
in
C
u
til
iz
a
tio

n
vi
a

g
lu
ta
th
io
n
e
S
-t
ra
n
sf
e
ra
se

e
n
zy
m
e
s

V
ita

m
in
C

R
e
d
p
e
p
p
e
rs
,
st
ra
w
b
e
rr
ie
s,

p
in
e
a
p
p
le
,
o
ra
n
g
e
s,

b
ro
c
c
o
li

C
irc

u
la
tin

g
a
sc

o
rb
ic
a
c
id

le
ve
ls

M
iti
g
a
te

e
xe

rc
is
e
-i
n
d
u
c
e
d
R
O
S
p
ro
d
u
c
tio

n
( 1
5
3
,
1
5
5
)

G
C
(r
s2

2
8
2
6
7
9
)
a
n
d

C
Y
P
2
R
1
(r
s1

0
7
4
1
6
5
7
)

G
C
e
n
c
o
d
e
s
vi
ta
m
in
D
-b
in
d
in
g
p
ro
te
in
,

in
vo

lv
e
d
in

b
in
d
in
g
a
n
d
tr
a
n
sp

o
rt
in
g

vi
ta
m
in
D
to

tis
su

e
s;

C
Y
P
2
R
1
e
n
c
o
d
e
s

th
e
e
n
zy
m
e
vi
ta
m
in
D
2
5
-h
yd

ro
xy
la
se

in
vo

lv
e
d
in

vi
ta
m
in
D
a
c
tiv
a
tio

n

V
ita

m
in
D

S
a
lm

o
n
,
w
h
ite

fis
h
,
ra
in
b
o
w

tr
o
u
t,
h
a
lib
u
t,
m
ilk

C
irc

u
la
tin

g
2
5
(O
H
)D

le
ve
ls
im

p
a
c
tin

g
im

m
u
n
ity
,
b
o
n
e

h
e
a
lth

,
in
fla
m
m
a
tio

n
,
st
re
n
g
th

tr
a
in
in
g
a
n
d
re
c
o
ve
ry

( 1
,
1
6
2
,
1
6
4
,
1
6
6
,
1
6
8
)

G
C
(r
s7

0
4
1
a
n
d
rs
4
5
8
8
)

G
C
e
n
c
o
d
e
s
vi
ta
m
in
D
-b
in
d
in
g
p
ro
te
in
,

in
vo

lv
e
d
in

b
in
d
in
g
a
n
d
tr
a
n
sp

o
rt
in
g

vi
ta
m
in
D
to

tis
su

e
s;

V
ita

m
in

D
is

re
q
u
ire

d
fo
r
c
a
lc
iu
m

a
b
so

rp
tio

n

C
a
lc
iu
m

Y
o
g
u
rt
,
m
ilk
,
c
h
e
e
se

,
fir
m

to
fu
,
c
a
n
n
e
d
sa

lm
o
n
(w
ith

b
o
n
e
s)
,
e
d
a
m
a
m
e

B
o
n
e
/s
tr
e
ss

fr
a
c
tu
re

ris
k

M
u
sc

le
c
o
n
tr
a
c
tio

n
,
n
e
rv
e
c
o
n
d
u
c
tio

n
,
b
lo
o
d
c
lo
tt
in
g

(1
6
2
,
1
6
4
,
1
6
6
,
1
6
8
)

P
E
M
T
(r
s1

2
3
2
5
8
1
7
)

In
vo

lv
e
d
in

e
n
d
o
g
e
n
o
u
s
c
h
o
lin
e

sy
n
th
e
si
s
vi
a
th
e
h
e
p
a
tic

p
h
o
sp

h
a
tid

yl
e
th
a
n
o
la
m
in
e

N
-m

e
th
yl
tr
a
n
sf
e
ra
se

p
a
th
w
a
y

C
h
o
lin
e

E
g
g
s,

b
e
e
f,
p
o
u
ltr
y,
fis
h
,
sh

rim
p
,
b
ro
c
c
o
li,
sa

lm
o
n

M
u
sc

le
o
r
liv
e
r
d
a
m
a
g
e
,
re
d
u
c
e
d
n
e
u
ro
tr
a
n
sm

itt
e
rs

(1
7
4
,
1
7
5
,
1
8
5
,
1
8
6
)

M
T
H
F
D
1
(r
s2

2
3
6
2
2
5
)

E
n
c
o
d
e
s
p
ro
te
in
in
vo

lv
e
d
in

tr
ifu
n
c
tio

n
a
le
n
zy
m
e
a
c
tiv
iti
e
s
re
la
te
d
to

m
e
ta
b
o
lic

h
a
n
d
lin
g
o
f
c
h
o
lin
e
a
n
d

fo
la
te

F
o
la
te
/C

h
o
lin
e

F
o
la
te
:
E
d
a
m
a
m
e
,
c
h
ic
ke

n
liv
e
r,
le
n
til
s,

a
sp

a
ra
g
u
s,

b
lc
k

b
e
a
n
s,

ka
le
,
a
vo

c
a
d
o

C
h
o
lin
e
:
E
g
g
s,

b
e
e
f,
p
o
u
ltr
y,
fis
h
,
sh

rim
p
,
b
ro
c
c
o
li,
sa

lm
o
n

M
u
sc

le
o
r
liv
e
r
d
a
m
a
g
e
,
re
d
u
c
e
d
n
e
u
ro
tr
a
n
sm

itt
e
rs

( 1
8
5
,
1
8
6
)

F
T
O

(r
s1

5
5
8
9
0
2
/r
s9

9
3
9
6
0
9
)

P
re
c
is
e
fu
n
c
tio

n
u
n
d
e
te
rm

in
e
d
;
p
la
ys

a

ro
le
in

m
e
ta
b
o
lis
m

a
n
d
h
a
s
b
e
e
n

c
o
n
si
st
e
n
tly

lin
ke

d
to

w
e
ig
h
t,
B
M
Ia

n
d

b
o
d
y
c
o
m
p
o
si
tio

n

P
ro
te
in
/S
FA

:P
U
FA

P
ro
te
in
:
c
h
ic
ke

n
,
b
e
e
f,
to
fu
,
sa

lm
o
n
,
c
o
tt
a
g
e
c
h
e
e
se

,

le
n
til
s,

m
ilk
,
G
re
e
k
yo

g
u
rt

S
FA

:
c
h
e
e
se

,
b
u
tt
e
r,
re
d
m
e
a
t,
b
a
ke

d
g
o
o
d
s

P
U
FA

:
fla
xs
e
e
d
o
il,
g
ra
p
e
se

e
d
o
il,
su

n
flo

w
e
r
o
il

O
p
tim

iz
in
g
b
o
d
y
c
o
m
p
o
si
tio

n
(1
9
0
,
1
9
1
)

T
C
F
7
L
2
(r
s7

9
0
3
1
4
6
)

In
vo

lv
e
d
in

e
xp

re
ss
io
n
o
f
b
o
d
y
fa
t

F
a
t

N
u
ts
/s
e
e
d
s,

b
u
tt
e
r,
o
ils
,
c
h
e
e
se

,
re
d
m
e
a
t,
h
ig
h
-f
a
t
d
a
iry

O
p
tim

iz
in
g
b
o
d
y
c
o
m
p
o
si
tio

n
( 1
9
2
,
1
9
3
)

P
P
A
R

γ
2
(r
s1

8
0
1
2
8
2
)

R
e
g
u
la
te
s
a
d
ip
o
c
yt
e
d
iff
e
re
n
tia

tio
n

M
U
FA

M
a
c
a
d
a
m
ia
n
u
ts
,
a
lm

o
n
d
b
u
tt
e
r,
p
e
a
n
u
t
b
u
tt
e
r,
o
liv
e
o
il,

c
a
n
o
la
o
il,
se

sa
m
e
o
il

O
p
tim

iz
in
g
b
o
d
y
c
o
m
p
o
si
tio

n
(1
9
4
)

Frontiers in Nutrition | www.frontiersin.org 4 February 2019 | Volume 6 | Article 8

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Guest et al. Sport Nutrigenomics

appear to be partly due, to variation in genes such as CYP1A2
and possibly ADORA2, which are associated with caffeine
metabolism, sensitivity and response (51).

Over 95% of caffeine is metabolized by the CYP1A2 enzyme,
which is encoded by the CYP1A2 gene (52). The−163A>C
(rs762551) single nucleotide polymorphism (SNP) has been
shown to alter CYP1A2 enzyme activity (53–55), and has been
used to identify individuals as “fast” or “slow” metabolizers
of caffeine. Individuals who are considered slow metabolizers,
that is with the AC or CC genotype, have an elevated
risk of myocardial infarction (56), hypertension and elevated
blood pressure (57, 58), and pre-diabetes (59), with increasing
caffeinated coffee consumption, whereas those with the AA
genotype (fast metabolizers) do not appear to carry these risks.

The largest caffeine and exercise study to date (19), examined
the effects of caffeine and CYP1A2 genotype, on 10-km cycling
time trial performance in competitive male athletes after
ingestion of caffeine at 0mg, 2mg (low dose) or 4mg (moderate
dose) per kg body mass. There was a 3% improvement in
cycling time in the moderate dose in all subjects, which is
consistent with previous cycling time trial studies using similar
doses (46, 60). However, there was a significant caffeine-gene
interaction where improvements in performance were seen at
both caffeine doses, but only in those with the AA genotype
who are “fast metabolizers” of caffeine. In that group, a 6.8%
improvement in cycling time was observed at 4 mg/kg, which
is >2–4% mean improvement seen in several other cycling time
trial studies, using similar doses (46, 60–65). Among those with
the CC genotype, 4 mg/kg caffeine impaired performance by
13.7%, and in those with the AC genotype there was no effect
of either caffeine dose (19). The findings are consistent with a
previous study (20), which observed a caffeine-gene interaction
and improved time trial cycling performance with caffeine only
in those with the AA genotype.

Some previous endurance-type studies either did not observe
any impact of the CYP1A2 gene on caffeine-exercise studies
(66, 67), or reported benefits only in slow metabolizers (45).
There are several reasons that may explain discrepancies in
study outcomes including smaller sample sizes (<20 subjects)
that cause very low numbers and/or no subjects with the CC
genotype (45, 67, 68), and shorter distance or different type
(power vs. endurance) of performance test (45), compared to
those that reported improved endurance after caffeine ingestion
in those with the AA genotype of CYP1A2 (19, 20). The effects
of genotype on performance appear to be most prominent
during exercise of longer duration or an accumulation of fatigue
(aerobic or muscular endurance) (69, 70). Fast metabolizers may
quickly metabolize caffeine and achieve the benefits of caffeine
metabolites as exercise progresses, or override the short duration
of negative impacts (the initial stages of exercise), whereas the
adverse effects of restricted blood flow and/or other impacts of
adenosine blockage in slow metabolizers are likely to remain
for a longer duration (71, 72). Indeed, in a study of basketball
performance in elite players, caffeine improved repeated jumps
(muscular endurance; an accumulation of fatigue), but only in
those with the AA genotype, however, there was no genotype
effect in the other two performance components of the basketball

simulation (73). Similarly, a cross-over design of 30 resistance-
trained men found that caffeine ingestion resulted in a higher
number of repetitions in repeated sets of three different exercises,
and for total repetitions in all resistance exercises combined,
which resulted in a greater volume of work compared to placebo
conditions, but only in those with the CYP1A2AA genotype (74).
Taken together, the weight of the evidence supports the role of
CYP1A2 in modifying the effects of caffeine ingestion on aerobic
or muscular endurance-type exercise.

The ADORA2A gene is another potential genetic modifier
of the effects of caffeine on performance. The adenosine A2A

receptor, encoded by the ADORA2A gene, has been shown to
regulate myocardial oxygen demand and increase coronary
circulation by vasodilation (71, 72). The A2A receptor is
also expressed in the brain, where it regulates glutamate and
dopamine release, with associated effects on insomnia and
pain (75, 76). The antagonism of adenosine receptors by
caffeine could differ by ADORA2A genotype, resulting in altered
dopamine signaling (51). Dopamine has been associated with
motivation and effort in exercising individuals, and this may be
a mechanism by which differences in response to caffeine are
manifested (77–79).

One small pilot study has examined the effect of ADORA2A
genotype (rs5751876) on the ergogenic effects of caffeine under
exercise conditions (80). Twelve female subjects underwent a
double-blinded, crossover trial comprising two 10-min cycling
time trials following caffeine ingestion or placebo. Caffeine
benefitted all six subjects with the TT genotype but only one
of the six C allele carriers. Further studies are needed to
confirm these preliminary findings and include a larger sample
to distinguish any effects between the different C allele carriers
(i.e., CT vs. CC genotypes).

Sleep is recognized as an essential component of physiological
and psychological recovery from, and preparation for, high-
intensity training in athletes (81, 82). The ADORA2A rs5751876
genotype has also been implicated, by both objective and
subjective measures, in various parameters of sleep quality
after caffeine ingestion in several studies (83–86). Adenosine
promotes sleep by binding to its receptors in the brain, mainly
A1 and A2A receptors, and caffeine reverses these effects by
blocking the adenosine receptor, which promotes wakefulness
(83). This action, as well as the potency of caffeine to restore
performance (cognitive or physical) in ecological situations,
such as highway-driving during the night (87), support the
notion that the adenosine neuromodulator/receptor system
plays a major role in sleep–wake regulation. This action of
caffeine may also serve athletes well under conditions of
jetlag, and irregular or early training or competition schedules.
Psychomotor speed relies on the ability to respond, rapidly
and reliably, to randomly occurring stimuli which is a critical
component of most sports (88). Genetic variation in ADORA2A
has been shown to be a relevant determinant of psychomotor
vigilance in the rested and sleep-deprived state and modulates
individual responses to caffeine after sleep deprivation (85).
In support of this notion, individuals who had the TT
genotype for ADORA2A rs5751876 consistently had faster
response times (in seconds) than C allele carriers after ingesting
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400mg caffeine during a sustained vigilant attention task after
sleep loss (85).

Consistent with the “adenosine hypothesis” of sleep where
the accumulation of adenosine in the brain promotes sleep,
caffeine prolongs the time to fall asleep, decreases the deep stages
of non-rapid-eye movement (nonREM) sleep, reduces sleep
efficiency, and alters the waking and sleep electroencephalogram
(EEG) frequencies, which reliably reflect the need for sleep (89–
91). Although additional research in this area is warranted,
genetic variation appears to contribute to subjective and objective
responses to caffeine on sleep. Carriers of the ADORA2A
(rs5751876) C allele have greater sensitivity toward caffeine-
induced sleep disturbance compared to those with the TT
genotype (84). Taken together, it appears that individuals with the
TT genotype for the rs5751876 SNP in the ADORA2A gene may
have better performance outcomes, faster response times and less
sleep disturbance following caffeine ingestion.

Vitamin A
No studies have examined the role of genetic modifiers of
vitamin A status directly on athletic performance, however,
there are several important functions of this micronutrient that
are associated with optimal health, immunity and performance
in athletes.

Vitamin A is a fat-soluble vitamin, which plays a key role
in both vision (92) and immunity (93) in its biologically
active forms (retinal and retinoic acid). Vitamin A has diverse
immune modulatory roles; hence, vitamin A deficiency has been
associated with both immune dysfunctions in the gut, and several
systemic immune disorders (93). Vitamin A is also a powerful
antioxidant, protecting eyes from ocular diseases and helping to
maintain vision (92).

High-performance athletes appear to have superior visual
abilities based on their capacity to access distinct visual skills,
such as contrast sensitivity, dynamic acuity, stereoacuity, and
ocular judgment, needed to accomplish interceptive actions
(e.g., hand-eye coordination) and resolve fine spatial detail,
which is required by many sports (94, 95). In addition,
slow visuomotor reaction time (VMRT) has been associated
with musculoskeletal injury risk in sporting situations where
there are greater challenges to visual stimulus detection and
motor response execution (96). These visuomotor skills are key
contributors to enhanced sport performance, and accordingly,
require exceptional eye health.

Deficiencies of certain micronutrients such as vitamin A
decrease immune defense against invading pathogens and can
cause the athlete to be more susceptible to infection. Low
energy availability (dieting), poor food choices, jetlag, physical
and psychological stress, and exposure to pollution and foreign
pathogens in air, food and water while traveling can result in a
deterioration in immune function and increased susceptibility
to illness (97). Athletes following high volume, high intensity
training and competition schedules are also known to have more
frequent upper respiratory tract infections (URTI) compared to
both sedentary and moderately exercising populations (97).

Upon absorption, provitamin A carotenoids are readily
converted to vitamin A by the BCMO1 enzyme expressed in

enterocytes of the intestinal mucosa (98). β-Carotene is the
most abundant provitamin A carotenoid in the diet and the
conversion of beta-carotene to retinal or retinoic acid is necessary
for vitamin A to exert its biological functions. The rs11645428
variant in the BCMO1 gene affects circulating plasma carotenoid
levels by impacting the conversion of dietary provitamin A
carotenoids to active forms of vitamin A in the small intestine
(99). Individuals with the GG genotype are inefficient at this
conversion, and may be at higher risk for vitamin A deficiency
(100). These individuals are considered low responders to dietary
β-carotene so consuming enough dietary pre-formed vitamin A
(or supplements for vegans), can help to ensure that circulating
levels of active vitamin A are adequate to support vision,
immunity and normal growth and development.

Anemia-Related Micronutrients: Iron,
Folate, and Vitamin B12
There is an abundance of research demonstrating the adverse
effects of low iron storage and anemia on athletic performance
(23, 101–103). The estimated prevalence of anemias and low
levels of iron, folate, and vitamin B12 appear to be higher
in elite-level athletes than in the general population, and
these deficiencies can have significant negative impacts on
performance (22, 23, 104–107). The most common symptoms
of this disorder are fatigue, weakness and, in extreme cases,
shortness of breath or palpitations (103).

The importance of iron to athletes is established through
its biological role in supporting the function of proteins
and enzymes essential for maintaining physical and cognitive
performance (108). Iron is incorporated into hemoglobin and
myoglobin, proteins responsible for the transport and storage
of oxygen. Iron-deficiency anemia is the most common type of
anemia among athletes, who have higher iron requirements due
to increased erythropoietic drive through higher intensities and
volumes of training. The female athlete is at particular risk of
iron deficiency due to menstruation and generally, a lower total
energy or food intake compared to males (107, 109). Along with
dietary intake, footstrike hemolysis, gastrointestinal bleeding,
exercise-induced inflammation, non-steroidal autoinflammatory
drug (NSAID) use and environmental factors such as hypoxia
(altitude), may influence iron metabolism in athletes of both
sexes (23). Macrocytic anemias, which occur when erythrocytes
are larger than normal, are generally classified into megaloblastic
or nonmegaloblastic anemia. Megaloblastic anemia is caused
by deficiency or impaired utilization of vitamin B12 and/or
folate, whereas non-megaloblastic macrocytic anemia is caused
by various diseases, and will not be discussed here (110). Other
factors that are associated with anemia risk include genetic
variation, which can alter micronutrient metabolism, transport
or absorption, and can be used to identify individuals at risk of
inadequate levels of vitamin B12, folate and iron stores.

Performance improvements are usually seen with the
treatment of anemia (23, 103, 104), which is related to
improvements in symptoms such as general feelings of fatigue
and weakness, difficulty exercising, and in more severe cases,
dyspnea and palpitations (103). Hyperhomocysteinemia, which
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can result from low folate and/or vitamin B12 intake, may
also increase the risk of skeletal muscle malfunction, including
muscle weakness and muscle regeneration, and will be discussed
further below (111).

Folate
Methylene tetrahydrofolate reductase (MTHFR) is the rate-
limiting enzyme in the methyl cycle, and is encoded by the
MTHFR gene (112). The C677T (rs1801133) polymorphism in
the MTHFR gene has been associated with low serum and red
blood cell folate as well as elevated plasma homocysteine levels,
which is an independent risk factor for cardiovascular disease
(CVD) (113, 114). Several studies in athletic and non-athletic
populations have shown that individuals with the CT or TT
genotype are at an increased risk of low circulating folate levels
when their diet is low in folate (115–118).

Although there are no studies examining performance
outcomes related to MTHFR genotypes or dietary folate intake,
hyperhomocysteinemia has been shown to be associated with
diminished muscle function (111). Several studies conducted
in older adults have found a significant association between
elevated plasma homocysteine concentrations and declined
physical function (119–122), which may be mediated by a
reduction in strength (120). Compared to those with the
rs1801133 CC genotype, individuals with TT genotype and
possibly the CT genotype may be at a greater risk for
hyperhomocysteinemia, although this may not be causative for
lower physical performance (111, 119, 120). However, soccer
players and sedentary individuals with the CC genotype have
been shown to have more favorable body composition and
performance measures such as aerobic and anaerobic threshold
rates, compared to carriers of the T allele (118).

Iron Overload
Genetic variation associated with serum iron levels involves
several genes such as HFE, TMPRSS6, TFR2, and TF (25,
117, 123–128). The HFE gene is involved in the regulation
of intestinal iron uptake (129), and variations in this gene,
which are not very common, have been shown to increase
the risk for hemochromatosis or iron overload (124, 130).
Excess iron may be toxic to tissues and cells because highly
reactive “free” iron reacts with reactive oxygen species (ROS)
such as superoxide and hydrogen peroxides, or lipid peroxides
to produce free radicals (131). In turn, these free radicals
can cause cell and tissue damage (including muscle) and,
ultimately, lead to cell death (132). Elevated biomarkers of
iron such as ferritin and transferrin are more common in
those who are genetically predisposed to iron overload based
on the HFE gene variant (22, 124). Interestingly, athletes with
the rare HFE (rs1800562) AA genotype, which is associated
with an increased risk for hemochromatosis, may be at a
genetic advantage to excel in sport if iron levels are at
the high end of the normal range, but not excessive to
cause tissue damage. Notably, several studies have found that
certain variants of the HFE gene that increase risk of iron
overload are more common in elite-level athletes compared to

the general population, suggesting this may be beneficial for
performance (133–135).

Two SNPs in the HFE gene (rs1800562 and rs1799945)
can be used to predict risk of hereditary hemochromatosis.
Based on the combination of variants from these two SNPs,
individuals can be categorized as having a high, medium, or
low risk for iron overload (124, 128). While genetic risk for
iron overload may have a favorable impact on performance, it is
necessary for athletes with a medium or high risk to avoid iron
supplementation as this could lead to adverse health outcomes
(124) and diminished performance.

Low Iron Status
Three main SNPs: TMPRSS6 (rs4820268), TFR2 (rs7385804),
TF (rs3811647) can be used to assess genetic risk for low
iron status, primarily due to their involvement in regulating
the expression of hepcidin, which is a peptide hormone that
controls iron absorption (25, 123, 127). Iron-deficiency anemia
impairs performance by reducing oxygen-carrying capacity, but
a number of reports indicate that iron deficiency without anemia
may affect physiological performance and work capacity as well
(21), particularly in women who experience iron deficiency more
frequently (22, 23).

There is a fine balance in achieving and maintaining
adequate, but not excessive, iron levels for optimal performance.
Individuals with the GG genotype in the TMPRSS6 gene have
an increased risk of low transferrin saturation and hemoglobin,
compared to those who are carriers of the A allele (25, 26,
123, 136). In the TF gene, individuals have a greater risk for
low ferritin and elevated transferrin when they possess the AA
genotype (25, 123, 136). Variation in the TFR2 gene can impact
hematocrit, mean corpuscular volume, and red blood cell count
where individuals with the CC genotype have an increased risk
of low serum levels (25). Utilizing algorithms to assess various
genotype combinations, these genes can help to determine an
individual’s overall risk for low iron status, which can lead
to iron-deficiency anemia, and can be used to target dietary
iron intake. Although iron supplementation is common and
frequently prescribed in athletes, many individuals are at risk
of taking iron supplements in excess (22, 137, 138). Although
iron supplements are commonly “prescribed” by healthcare
professionals and nutritionists (139, 140), excess iron stored in
skeletal muscle may not only be dangerous to the health of
the athlete (124, 141), but also can lead to oxidative stress and
the formation of free radicals, and reduced athletic performance
(135, 142, 143).

Vitamin B12

Vitamin B12 is also associated with RBC formation and
aerobic capacity. Megaloblastic anemia results from vitamin B12
deficiency and is associated with elevated homocysteine, and
results in general feelings of fatigue and weakness. Megaloblastic
anemia limits the blood’s oxygen carrying capacity, thus reducing
its availability to cells (144). Variation in the FUT2 gene
(rs602662) has a significant impact on serum B12 levels where
individuals with GG or GA genotypes possess the greatest risk
for low serum vitamin B12 levels, but only when the diet is low
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in bioavailable sources of vitamin B12 (145). This is consistent
with previous genome-wide association studies, which found
that individuals with the AA genotype had significantly higher
concentrations of serum vitamin B12 compared to carriers of the
G allele (145).

Vitamin C
Vitamin C is a water-soluble antioxidant that aids in the
reduction of exercise-induced free-radical production (146). The
production of potentially harmful ROS (147–149) in athletes is
greater than in non-athletes due to the massive increases (up to
200-fold at the level of skeletal muscle) in oxygen consumption
during strenuous exercise (146, 150). Vitamin C supplementation
was once thought to mitigate this risk; however, studies have
shown that excess vitamin C supplementation during endurance
training can blunt beneficial training-induced physiological
adaptations, such asmuscle oxidative capacity andmitochondrial
biogenesis and may actually diminish performance (148, 149,
151, 152). Dietary consumption of vitamin C, up to 250mg daily
from fruits and vegetables, is likely sufficient to reduce oxidative
stress without having a negative effect on performance (151, 153).
Additionally, collagen is a key constituent of connective tissue
such as tendons and ligaments, and vitamin C is necessary
for collagen production. This suggests that vitamin C may
play a role in muscle growth and repair (154, 155). Indeed, a
recent landmark study examining collagen synthesis in athletes,
reported that adding a gelatin and vitamin C supplement to an
intermittent exercise protocol improves collagen synthesis and
could play a beneficial role in injury prevention and accelerate
musculoskeletal, ligament, and/or tendon tissue repair (155).

The relationship between dietary vitamin C and circulating
levels of ascorbic acid depend on an individual’s GSTT1 genotype
(156). Individuals who do not meet the Recommended Dietary
Allowance (RDA) for vitamin C are significantly more likely to
be vitamin C deficient (as assessed by serum ascorbic acid levels)
than those who meet the RDA, but this effect is much greater in
individuals with theGSTT1Del/Del genotype than those with the
Ins allele (156).

Genetic testing can help to identify athletes who may be at the
greatest risk of low circulating vitamin C (ascorbic acid) levels
in response to intake. These low circulating ascorbic acid levels
may, in turn, diminish performance through an increased risk
of high ROS and diminished muscle or connective tissue repair.
Although studies have identified associations between circulating
ascorbic acid concentrations and vitamin C transporters, SVCT1

and SVCT2, which are encoded by SLC23A1 and SLC23A2 (157),
there is no evidence that response to vitamin C intake differs
by genotype (158). As such, the use of variants in SLC23A1 and
SLC23A2 to make personalized dietary recommendations is not
supported by the studies to date.

Vitamin D
There are no studies that link genetic modifiers of vitamin
D status on athletic performance outcomes; however, there
are several functions of this vitamin that are associated with
bone health, immunity, recovery from training and various

performance variables. Genetic determinants of circulating 25-
hydroxyvitamin D (25(OH)D) can influence each of these factors
thereby influencing performance.

Vitamin D is essential to calcium metabolism, increasing
calcium absorption for optimal bone health (1), which is
relevant to all athletes, but particularly those participating in
sports with a high risk of stress fracture (159–161). Research
comparing individuals with sufficient levels to insufficient or
deficient levels of 25(OH)D has shown that it helps to prevent
injury (159–161), promote larger type II muscle fiber size (24),
reduce inflammation (162), reduce risk of acute respiratory
illness (159, 160) enhance functional rehabilitation (162), thereby
optimizing recovery and acute adaptive responses to intense
training through reduced inflammation and increased blood flow
(163, 164).

Two genes that have been shown to impact vitamin D
status are the GC gene and the CYP2R1 gene (165, 166).
Variations in the GC and CYP2R1 genes are associated with
a greater risk for low serum 25(OH)D. In one study (165),
where 50% of participants took vitamin D supplements, only
22% of the participants had sufficient serum 25(OH)D levels.
In the remaining 78% who had insufficient levels, also only
about half (47%) took vitamin D supplements. Within this
population, vitamin D supplementation only explained 18%
of the variation, compared to 30% from genetics, suggesting
that genetics may play a greater role than supplementation
in determining risk for low 25(OH)D levels (165). Out of
the four genotypes analyzed, only CYP2R1 (rs10741657) and
GC (rs2282679) were significantly associated with vitamin D
status. Specifically, participants with the GG or GA genotype of
CYP2R1 (rs10741657) were nearly four times more likely to have
insufficient vitamin D levels. Those with the GG genotype of
the GC gene (rs2282679) were significantly more likely to have
low vitamin D levels compared to those with the TT genotype
(165). These results were consistent with findings from previous
studies, including the Study of Underlying Genetic Determinants
of Vitamin D and Highly Related Traits (SUNLIGHT), which
found significance on a genome-wide basis in 15 cohorts with
over 30,000 participants between three genetic variants including
CYP2R1 (rs10741657) and GC (rs2282679) on vitamin D status.
Not surprisingly, the number of risk variants that the participants
possessed was directly related to their risk for vitamin D
insufficiency (166). These findings demonstrate that genetic
variation may be more impactful than supplementation intakes
and behaviors on determining risk for vitamin D insufficiency.

Calcium
Although studies linking calcium intake, genetics and bone
fracture has not been conducted in athletes specifically, genetic
variation as it relates to risk of calcium deficiency and fracture
risk have been studied in a large cohort of individuals, described
below (167). Calcium is necessary for growth, maintenance and
repair of bone tissue and impacts maintenance of blood calcium
levels, regulation of muscle contraction, nerve conduction, and
normal blood clotting (168). In order to absorb calcium, adequate
vitamin D intake is also necessary. Inadequate dietary calcium
and vitamin D increases the risk of low bone mineral density
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(BMD) and stress fractures. Low energy intakes, and menstrual
dysfunction in female athletes, along with low vitamin D and
calcium intakes further increase the risk of stress fractures in both
males and females (169–171), and stress fractures are common
and serious injuries in athletes (172).

Some individuals do not utilize dietary calcium as efficiently as
others and this may depend on variations in the GC gene. In one
study (167), subjects (n= 6,181) were genotyped for two SNPs in
the GC gene, rs7041 and rs4588, and calcium intake was assessed
in relation to the participants’ risk for bone fracture (167). In
the entire sample of participants, only a small increased risk of
bone fracture was observed for individuals homozygous for the
G allele of GC (rs7041) and the C allele of GC (rs4588). However,
in participants with low dietary calcium intake (<1.09 g/day) and
who were homozygous for the G allele of rs7041 and the C allele
of rs4588, there was a 42% increased risk of fracture compared to
other genotypes. No differences between genotypes were found
in participants with high dietary calcium intakes (167). These
findings suggest that calcium intake recommendations could be
based on GC genotype in athletes to help prevent stress fracture.

Choline
Choline was officially recognized as an essential nutrient
by the Institute of Medicine (IOM) in 1998 (173). Choline
plays a central role in many physiological pathways including
neurotransmitter synthesis (acetylcholine), cell-membrane
signaling (phospholipids), bile and lipid transport (lipoproteins),
and methyl-group metabolism (homocysteine reduction) (174).
Human requirements for choline are dependent on gender,
age and physical activity level as well as genetics. Choline is
produced in the body in small amounts, however, de novo
synthesis of choline alone is not sufficient to meet human
requirements for optimal health (174, 175). The liver and
muscles are the major organs for methyl group metabolism,
and choline deficiency has been shown to cause both liver
and muscle damage (176, 177). Signs of choline deficiency
are identified through elevated serum creatine phosphokinase
(CPK), a marker of muscle damage (178, 179), and abnormal
deposition of fat in the liver, which may result in non-alcoholic
fatty liver disease (NAFLD) (176, 180). Reductions in plasma
choline associated with strenuous exercise such as triathlons and
marathon running have been reported (181, 182). Acetylcholine,
a neurotransmitter involved in learning, memory, and attention,
depends on adequate choline and a reduction in the release
of this neurotransmitter may contribute to the development
of fatigue and exercise performance impairment (181–183).
Choline supplementation may also improve lipid metabolism,
as it has been associated with more favorable body composition
(184) and the ability to aid rapid body mass reduction in weight
class sports (185).

Common genetic variants in choline (PEMT gene) and a
folate pathway enzyme (MTHFD1) have been shown to impact
the metabolic handling of choline and the risk of choline
deficiency across differing nutrient intakes (178, 186, 187). The
relationship between genetic variants in folate metabolism and
choline requirement may arise from the overlapping roles of
folate and choline in methionine and phosphatidylcholine (PC)

biosynthesis. PC is critical for the structural integrity of cell
membranes and cell survival, and methionine is an essential
amino acid that plays a critical role in human metabolism
and health (187, 188). The MTHFD1 rs2236225 SNP, which is
associated with folate metabolism, has been shown to increase the
demands for choline as a methyl-group donor, thereby increasing
dietary requirements for this nutrient (188). Individuals that
are A allele carriers of the MTHFD1 gene have been shown
to develop signs of choline deficiency and organ (liver and
muscle) dysfunction compared to those with the GG genotype
(186, 188, 189).

While humans can make choline endogenously via the
hepatic phosphatidylethanolamineN-methyltransferase (PEMT)
pathway, a SNP in the PEMT gene (rs12325817) has been shown
to influence the risk of choline deficiency and the partitioning
of more dietary choline toward PC biosynthesis at the expense
of betaine synthesis (used a methyl donor) (186). Individuals
who are C allele carriers of the PEMT gene have been shown to
develop signs of choline deficiency and organ (liver and muscle)
dysfunction compared to those with the GG genotype (178).

Athletes by nature experience muscle damage through high
volume and high intensity training (195). A deficient or
suboptimal status of choline may place additional stressors on
an athlete’s ability to recover, repair and adapt to their given
training stimulus.

Macronutrients and Body Composition
Several aspects of physique such as body size, shape and
composition contribute to the success of an athlete, in most
sports. In the athletic population, body composition is often the
focus for change, as it can be easily manipulated through diet as
both total energy intake and macronutrient composition (192,
196). Variations in macronutrient intake can significantly impact
both body fat percentage and lean mass (29, 190, 193, 197–199),
as well as performance, where macronutrient manipulation has
long been used to partition calories to be used for specific goals
across different sports (196).

Although research examining dietary factors and genetics
has revealed that manipulation of dietary fat and protein intakes
may have greater modifying effects on body composition
than carbohydrates, all macronutrients serve a critical
purpose. Carbohydrates provide a key fuel for the brain,
CNS and working muscles, and the amount and timing
of intake impacts sport performance over a large range of
intensities (200, 201). Adequate dietary protein is essential
for strength and lean body mass accretion, while also playing
a relevant role in preserving lean body mass during caloric
restriction and immune function (29, 202, 203). Dietary
fat provides energy for aerobic activities and is required
for the absorption of fat-soluble vitamins (204). Recent
research shows that percent energy intake from protein
and fat can be targeted to the individual based on genetic
variation for optimizing body weight and composition
(190, 193, 197–199). Percent energy from carbohydrates
should be guided by fuel needs for training and competition
while also considering targeted protein and fat intakes based on
genetic variation.
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Protein
The FTO gene is also known as the ‘fat mass and obesity-
associated gene’ since it has been shown to impact weight
management and body composition (194, 199, 205, 206). Dietary
interventions may mitigate genetic predispositions associated
with a higher body mass index (BMI) and body fat percentage,
as determined by genetic variation in the FTO gene. Specifically,
the Preventing Overweight Using Novel Dietary Strategies
(POUNDS Lost) multicenter trial found that carrying an A
allele of the FTO gene (rs1558902–a surrogate marker for
rs9939609) and consuming a high protein diet was associated
with a significantly lower fat mass at the 2-year follow
up period compared to carrying two T alleles. Importantly,
participants with the AA genotype (lesser effects in those
with AT genotype) who were following the high protein diet
protocol had significantly greater losses of total fat mass, total
adipose tissue, visceral adipose tissue, lower total percent fat
mass and percent trunk fat, compared to those following a
lower protein diet protocol (199). Other studies have shown
similar results where dietary protein intake was shown to
be protective against the effect of the FTO risk variants on
BMI and waist circumference (194). A randomized controlled
trial (RCT) in 195 individuals showed that a hypocaloric diet
resulted in greater weight loss in rs9939609A allele carriers than
noncarriers in both higher and lower protein diets, although
metabolic improvements improved in all genotypes in the higher
protein diets (205). Athletes who possess the AA genotype
of the FTO gene at rs1558902 would benefit the most in
terms of consuming a moderate-to-high protein diet (at least
25% of energy from protein) to optimize body composition.
Greater lean mass in athletes has been associated with improved
performance in strength and power sports, as well as some
endurance events, and a decreased risk for injuries (191, 207).
For those athletes who do not possess the response variant
(i.e., greater fat loss with higher protein intakes), following
a diet with moderate protein intake (∼15–20% energy), to
achieve and maintain an ideal body composition is important
to note, as excess protein calories may be counterproductive
toward this goal. In this instance, dietary goals for optimal
performance may be better met by substituting protein energy
for other macronutrients such as carbohydrates for fuel, fiber,
prebiotics and other micronutrients, or by increasing intakes of
essential fats.

Dietary Fat
Dietary fat, an essential component of the human diet, provides
energy for aerobic endurance exercise and is necessary for
the absorption of the fat-soluble vitamins A, D, E, and K.
Independent of total energy intake, the percentage of energy
derived from fat in an athlete’s diet can impact body composition,
based on genetic variation (204). Individuals possessing the TT
genotype of TCF7L2, transcription factor 7 like 2, at rs7903146
appear to benefit from consuming a lower percent of total energy
from fat (20–25% of energy) to optimize body composition (198).
Specifically, participants with the TT genotype lost more fat
mass when they were consuming a low-fat diet, compared to a
high-fat diet (40–45% of energy) (198). Moreover, individuals

with the CC genotype in rs7903146 who consumed lower-fat
diets actually lost significantly more lean mass, suggesting that
these individuals should avoid low-fat nutrition interventions
(197) in order to optimize body composition for athletic
performance (191, 207). Body composition can, therefore, be
optimized by targeting fat intake based on genetic variation in the
TCF7L2 gene.

Monounsaturated Fat
Recommendations for fat intake can be further targeted to the
different types of fats comprising total dietary fat. Athletes with
the GG or GC genotype of the PPARγ 2 gene at rs1801282 would
benefit from a weight loss intervention that specifically targets
body fat, while preserving lean body mass. Such individuals have
been shown to demonstrate an enhanced weight loss response
when consuming > 56% of total fat from monounsaturated fatty
acids (MUFAs) compared to those with the GG or GC genotype
who consume< 56% of total fat fromMUFAs. These results have
not been found in those with the CC genotype of PPARγ 2 at
rs1801282 (208).

MUFAs can be targeted in athletes who are aiming to decrease
their body fat. It is well-known that a lower body fat percentage
is associated with enhanced performance in most sports (191,
207), however, sport clinicians must be cautious about nutrition
recommendations aimed at reducing body fat. Striving for very
low levels of body fat is highly correlated with the Relative
Energy Deficiency in Sport (RED-S) syndrome in both females
and males, which refers to ‘impaired physiological functioning
caused by relative energy deficiency and includes impairments
of metabolic rate, menstrual function, bone health, immunity,
protein synthesis and cardiovascular health (209).

Saturated Fat and Polyunsaturated Fat
A nested case-control study found that the ratio of dietary
saturated fatty acids (SFA) to polyunsaturated fatty acids (PUFA)
influenced the risk of obesity associated with the TA and
AA variants of the FTO gene at rs9939609 (210). Specifically,
participants possessing the A allele had a significantly higher BMI
and waist circumference (WC) compared to TT homozygotes,
but only when intakes of SFA were high and PUFAs were low.
When participants with the A allele consumed < ∼15% of
energy from SFA and had a higher dietary PUFA:SFA ratio,
there were no significant differences in WC and BMI between
this group and participants with the TT genotype of rs9939609
(210). These findings have implications for nutrition counseling
impacting body composition (abdominal fat specifically) and
BMI. Athletes with the TA or AA genotype may have a greater
risk for accumulating excessive abdominal fat. An athlete can
mitigate this risk by aiming to consume <10% of energy from
SFA (to also account for heart health) and > 4% of energy from
PUFAs, resulting in a PUFA:SFA ratio of at least 0.4 (210).

SUMMARY

This paper provided an overview of the current science linking
genetic variation to nutritional or supplemental needs with a
focus on sport performance. One of the ultimate goals in the field
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of personalized sport nutrition is the design of tailored nutritional
recommendations to improve direct and indirect factors that
influence athletic performance. More specifically, personalized
nutrition pursuits aim to develop more comprehensive and
dynamic nutritional and supplement recommendations based
on shifting, interacting parameters in an athlete’s internal and
external (sport) environment throughout their athletic career
and beyond.

Currently, there are few gene-diet interaction studies that have
directly measured performance outcomes and been conducted
in competitive athletes, so this should be a focus of future
research. However, it has been established that serum levels
and/or dietary intakes of several nutrients and food bioactives
can impact overall health, body composition and in turn result in
modest to sizable modifying effects in athletic performance. The
strongest evidence to date appears to be for caffeine on endurance
performance with several trials demonstrating the modifying

effects of genetic variants with sports performance outcomes.
Genetic testing for personalized nutrition may, therefore, be an
additional tool that can be implemented into the practice of
sport clinicians, nutritionists and coaches to guide nutritional

counseling and meal planning with the aim of optimizing
athletic performance.
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