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Abstract
Postural control is often quantified by recording the trajectory of the center of 
pressure (COP)—also called stabilogram—during human quiet standing. This 
quantification has many important applications, such as the early detection of 
balance degradation to prevent falls, a crucial task whose relevance increases 
with the aging of the population. Due to the complexity of the quantification 
process, the analyses of sway patterns have been performed empirically using a 
number of variables, such as ellipse confidence area or mean velocity. This study 
reviews and compares a wide range of state-of-the-art variables that are used to 
assess the risk of fall in elderly from a stabilogram. When appropriate, we dis-
cuss the hypothesis and mathematical assumptions that underlie these variables, 
and we propose a reproducible method to compute each of them. Additionally, 
we provide a statistical description of their behavior on two datasets recorded in 
two elderly populations and with different protocols, to hint at typical values of 
these variables. First, the balance of 133 elderly individuals, including 32 fallers, 
was measured on a relatively inexpensive, portable force platform (Wii Balance 
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1   |   INTRODUCTION

The assessment of balance disorders is a common practice 
in geriatric care, as the problem of falls in the elderly is 
so serious in maintaining good health. As a major public 
health problem, falls are the leading cause of accidental 
death in the elderly, leading to serious psychomotor con-
sequences and accelerating institutionalization (WHO, 
2008). Health authorities recommend a standardized risk 
assessment for falls in the elderly that includes identifi-
cation of risk factors and assessment of motor control. 
The latter is often carried out through functional clinical 
tests requiring the performance of one or more exercises 
while an operator assesses the feasibility of the task for 
the participant (Beauchet et al., 2011). Limitations of 
functional tests relate to the ability to distinguish the sys-
tems disturbed in relation to imbalance (vestibular, visual, 
proprioceptive, motor, etc.), the provision of quantified 
and objective values, as well as a capacity to discrimi-
nate between fallers that is both more effective than a 
history of past falls and sufficiently sensitive to the evo-
lution of balance capacities in the short and medium term 
(Balasubramanian, 2015; da Costa et al., 2012; Mancini & 
Horak, 2010), especially in extended care settings where 
the risk of fall is higher.

To address the lack of reliable clinical tests in the eval-
uation of balance and posture disorders, posturography 
aims at developing quantifiable analyses of postural con-
trol (Baloh et al., 1998), mainly through the analysis of the 
trajectory of the center of pressure (COP). The COP tra-
jectory is recorded using force platforms, which track the 
point of application of the ground reaction forces resultant 
under the feet. The resulting signal, called stabilogram, is 
frequently analyzed using either its one-dimensional vari-
ations in the mediolateral (ML) or anteroposterior (AP) di-
rection, or its two-dimensional trajectory (de Sá Ferreira & 
Baracat, 2014; Duarte & Zatsiorsky, 2011). The COP signal 
is then described using a number of variables, which are 
used to evaluate the risk of fall. This approach has pro-
duced interesting results in the assessment of the risk of 
falling, in subjects with a balance degradation due to neu-
rological impairment (Ojala et al., 1989; Vališ et al., 2012) 
or physiological aging (Baloh, Jacobson, Enrietto, et al., 

1998; Camicioli et al., 1997; Colledge et al., 1994; Perrin 
et al., 1997). In quiet standing, the COP is considered to 
reflect in part the motor mechanisms that ensure balance, 
precisely the maintenance of the projection of the cen-
ter of mass (COM) inside the base of support (Hof et al., 
2005). There is a correlation between the displacement of 
the COP at the limits of stability and the incidence of falls, 
underlining the interest of exploring dynamic balance in 
determining the risk of falling (Johansson et al., 2019). In 
addition, time-to-boundaries analysis has revealed signif-
icant spatio-temporal instabilities during voluntary ex-
cursion by leaning in all directions on force platform in 
elderly people compare to younger subjects (van Wegen 
et al., 2002). Nevertheless, a simple test to quantify resting 
balance on a firm and stable surface is thought to already 
provide relevant information for the analysis of fall risk 
(Bauer et al., 2016b; Lord & Clark, 1996). Thus, static pos-
turography on a force platform could be a convenient tool 
for assessing the risk of falling, particularly for the old-
est people for whom psychomotor disorders are known to 
exist and greatly limit the possibility of conducting func-
tional tests that compromise their already precarious bal-
ance. The quantification of balance using a force platform 
is now commonly used (Pizzigalli et al., 2014).

Despite the relevance of exploring balance through 
quantified and explainable COP variables for the clini-
cians, their computation suffers from significant draw-
backs. First, studies may present different definitions of 
the same variable or may not give a precise definition. For 
example, several variables rely on the calculation of peaks 
in particular signals obtained from the COP, however the 
method used for calculating these peaks is not explic-
itly defined, evoking notions of maximum values (Doyle 
et al., 2005) or high values between two “valleys” (Baratto 
et al., 2002) without any clear indication of a threshold 
in time or amplitude, and no clear algorithmic procedure. 
Moreover, the vocabulary used to introduce the variables 
sometimes varies from one study to another, making the 
identification of variables difficult, especially given that 
the equations used to calculate them are rarely provided. 
Second, the definitions of many of the COP variables rely 
on mathematical assumptions that are in general not 
clearly stated or verified (such as uniform resampling, see 

Board, Nintendo) with a 25-s open-eyes protocol. Second, the recordings of 76 
elderly individuals, from an open access database commonly used to test static 
balance analyses, were used to compute the values of the variables on 60-s eyes-
open recordings with a research laboratory standard force platform.
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e.g. Audiffren & Contal, 2016). This lack of clarity can lead 
to contradictory conclusions between studies for the same 
variables (Delignières et al., 2011). Finally, even when 
clear computation procedures have been presented in the 
literature, some of them include several algorithmic steps 
which may not be convenient to code in the context of clin-
ical practice (Chiari et al., 2000; Collins & De Luca, 1993), 
highlighting the need of developing open-access codes to 
compute the variables. The aforementioned drawbacks 
make it particularly delicate to compare the results of dif-
ferent studies and generalize their finding.

The number of available variables in the literature is 
also challenging. Indeed, in a previous systematic review 
(Quijoux et al., 2020), we identified more than 50 variables 
derived from the trajectory of the COP recorded in quiet 
stance to discriminate elderly fallers from non-fallers. A 
large number of these posturographic variables can be 
calculated along the AP or ML direction and in the two-
dimensional signal which further increases the quantity 
of variables that can be considered, leading to statistical 
problems related to data dimensionality. Moreover, since 
the semiological understanding of posture disorders is rel-
atively limited, no consensus has been reached regarding 
the grouping of these variables under large physiological 
classes that could alleviate this problem—as may have 
been the case with gait (Mansour et al., 2017; Vienne et al., 
2017).

The objective of this review is to propose a compen-
dium of definitions of the COP variables that are the most 
frequently found in the literature to compare elderly fall-
ers from elderly non-fallers, based on a systematic review 
(Quijoux et al., 2020). The lack of standardized methods 
and analysis procedures has been proposed to explain dis-
crepancies of results with similar analysis (Kirchner et al., 
2012). Accordingly, we aim to facilitate the comparison 
between studies through a review of the scientific litera-
ture as well as the computation and the presentation of 
the values for the selected variables. The method of vari-
able selection is presented below. In accordance with our 
selection process (see Section 2.1 and 2.2), we did not in-
clude in this review several postural control models and 
variables (Hernandez et al., 2015; Hur et al., 2012; Reed 
et al., 2020; Sakanaka et al., 2016), that were not used in 
the clinical examination of elderly people at risk of falling. 
Additionally, and to help the identification and compre-
hension of the variables, we also propose a new classifica-
tion that reflects the aspects of the COP trajectories they 
are designed to capture: positional, dynamic, frequency, 
and stochastic variables. We hope that by providing this 
compendium, future works may compare and aggregate 
more easily their results. Furthermore, and to help the 
use of these variables, we propose a descriptive analysis 
of their behavior on two databases of COP trajectories 

recorded in elderly people. We provide the average values 
and standard deviation of each variable on both datasets, 
in order to provide a baseline for typical values or order of 
magnitudes that can be expected for these variables in an 
elderly population. Note that these datasets present a large 
variability of medical profiles, and have been collected 
with different protocols and equipments, thus hinting at 
the general scope of the indexed variables. The contribu-
tion of these two datasets is to present values from the 
same calculation methods, but for different experimental 
conditions, which we hope will provide a means of com-
parison for future users of these algorithms.

2   |   METHOD

2.1  |  Literature review

A systematic review of the literature was originally con-
ducted to identify articles that addressed the discrimina-
tion of older people at risk of falling. Randomized control 
trials (RCTs), non-randomized control trials, and observa-
tional studies were all eligible for inclusion. Articles ana-
lyzing the balance through COP recordings during quiet 
standing with both feet on the ground and evaluating the 
risk of falling by the number of falls during a period of 
time (retrospectively or prospectively) were selected. Four 
databases (PubMed, Cochrane CENTRAL, EMBASE, and 
ScienceDirect) were used as sources for published articles. 
The search was performed for all articles published (with-
out date restriction) until July 1, 2019. In addition, a search 
of “grey” literature (Conn et al., 2003) was performed 
which included items like reports, theses, and studies that 
were found online using Google Scholar, ClinicalTrials.
gov sources, Google, theses.fr, HAL, ResearchGates, and 
ethos.bl.uk. All reference lists from included studies were 
reviewed for additional relevant studies. The papers had 
to be written in a language understood by the authors (i.e. 
English, French, Italian, Spanish, or German). The choice 
was made to include a wide range of study types and not 
to limit the study to RCT in order to have a broad view of 
the COP analysis methods used to differentiate between 
fallers and non-fallers of 60 years and older (Quijoux et al., 
2019).

Studies, and the variables extracted from them, were 
included if the research involved a comparison of older 
people with and without a history of falls (retrospective 
studies) or longitudinal follow-ups of these elderly people 
with regular measurement of the number of falls (pro-
spective studies). Analyses of COP trajectories should be 
clearly stated, as well as the protocol for recording bal-
ance, excluding recordings of dynamic balance with in-
structions such as bending forward, repositioning after 
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destabilization, or standing on one foot. It is of practical 
interest for balance analysis to distinguish between older 
people on the basis of their number of falls. Many stud-
ies have shown differences between healthy and young 
subjects compared to the elderly (Condron et al., 2002; 
King et al., 2016; Pizzigalli et al., 2014), but from a clinical 
point of view it seems more relevant to focus on the stud-
ies comparing individuals of the same age group.

2.2  |  Selection of COP variables

The variables presented in this work were selected as fol-
lows. Based on Quijoux et al. (2020)—a recent systematic 
review of the COP characteristics that were used to iden-
tify fall risk in elderly—and the aforementioned criterion, 
we identified 27 articles presenting results using measure-
ments derived from the COP trajectory. Among the varia-
bles introduced in those articles, we selected all those that 
satisfied the following inclusion criteria:

•	 Must be used in at least two different articles
•	 Must be tested to distinguish older people at risk of 

falling from a control group, even if the variable is not 
discriminating

•	 Must be sufficiently described, with enough details, to 
be reproducible. This includes formal mathematical 
definition such as equations or explanations of compu-
tation methods.

It should be noted that for some variables included 
in this study, the description in previous works was only 
partial. In this case, additional hypotheses were made to 
permit the computation of the feature, and these assump-
tions are clearly stated in the paragraphs of this study ded-
icated to the sway variables concerned.

2.3  |  Corpus of the selected variables

Each variable is presented with references to its computa-
tion in previous studies and the algorithm that enables its 
calculation. The variables are grouped in four families to 
ease the reading of this study, according to their reliance 
on different aspects of the COP trajectories:

•	 Positional variables
•	 Variables that describe characteristics of the dispersion 

of the trajectory or position of the feet, and do not re-
quire the knowledge of the dynamics of the signal.

•	 Dynamic variables
•	 Variables based on the dynamic of the COP, requiring 

the knowledge of its local displacements.

•	 Frequency variables
•	 Variables used to describe the power spectral density of 

the COP trajectory.
•	 Stochastic variables
•	 Variables derived from the models in which the COP is 

represented as a stochastic process.

A more detailed description of each group is provided at 
the beginning of its respective part, in Section 3. It is important 
to note that these categories are not necessarily orthogonal, in 
the sense that features inside different groups could possibly 
be correlated. The classification inside distinct groups is nev-
ertheless useful as these features rely on different models or 
mathematical concepts and therefore lead to interpretations 
of different nature. For instance, some stochastic features 
which are linked to diffusion phenomena could be positively 
correlated with positional features that also measure disper-
sion aspects of the signal, however in the first case the compu-
tation of the feature relies on a model of stochastic diffusion, 
whereas in the second case the dynamic of the trajectory is not 
taken into account leading to different interpretations.

2.4  |  Data collection

The clinical Research Ethics Committee approved the clin-
ical study, registered at ANSM (ID RCB 2014-A00222-45).

2.4.1  |  Participants

Elderly people with or without balance impairments were 
recruited during routine consultations in neurology de-
partments (Val-de-Grace Hospital) and physical medicine 
and rehabilitation departments (Fernand Widal Hospital, 
Paris, France). In total, 133 individuals were included, 32 
of them with recent history of falls (fallers: at least one fall 
in the previous 6  months). The participants included in 
this study were aged at least 60 years old.

2.4.2  |  Experimental procedure

During these consultations and before the experiment, 
patients were asked about their history of falls in the last 
6  months. Measurement of the COP displacement charac-
teristics of the individuals was then performed using a Wii 
Balance Board (WBB; Nintendo), an alternative to laboratory 
grade force platform that have received increased attention in 
the recent years for quantifying postural control (Park & Lee, 
2014; Severini et al., 2017). The use of the WBB is justified 
by its advantages in terms of convenience compared to labo-
ratory force platforms. Its within-device and between-device 
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reliability have been considered good and suitable for clini-
cal settings (Clark et al., 2010), especially when preprocess-
ing methods are applied to improve accuracy (Audiffren & 
Contal, 2016; Leach et al., 2014). During the static balance 
recording, patients were invited to stand on the platform. 
Data were collected by a custom software on a Samsung tab-
let (Android operating system version 2.0, Samsung), using 
Bluetooth L2CAP protocol. The balance test was performed 
two times with different conditions. First, the individuals 
stood in quiet stance, eyes open, looking straight ahead, arms 
at their sides, and feet comfortably positioned within the 
space provided on the WBB. After 10 s in this position, the 
trajectory of the COP was recorded for 25 s, a duration that 
has been shown to be sufficient to quantify postural control 
with variables (Bargiotas et al., 2018). Then the individuals 
were asked to close their eyes. After a further 10 s, the closed-
eye recording was started for 25 s. Between the two phases, 
there was no rest period, except in case of vertigo expressed 
by the subject. For the calculation of the variables, only the 
open-eyes record is kept (a single repetition).

2.4.3  |  Data preprocessing

Data preprocessing and analysis software were written using 
Python (v3.7, Python Software Foundation). The signals col-
lected from the force platform were resampled at 25 Hz using 
SWARII (Audiffren & Contal, 2016), as the WBB is known to 
produce data at nonuniform frequency. Then, resulting force 
platform data were processed with a fourth-order, zero-lag, 
low-pass Butterworth filter with a 10 Hz cutoff frequency in 
accordance to Hernandez et al. (2015).

Finally, due to the variability of foot positioning on the 
force platform, we chose to center the COP trajectories 
with respect to their arithmetic mean in our definitions 
and analysis, in line with most of previous studies (Prieto 
et al., 1996; Qiu & Xiong, 2015).

2.4.4  |  Public dataset of human balance

Due to the lack of consensus on the methods of recording 
and analyzing posturographic signals, a public dataset was 
made available to allow comparison and testing of analy-
sis methods (Santos & Duarte, 2016a). The dataset was 
constructed by a single experimenter at the Laboratory 
of Biomechanics and Motor Control at the Federal 
University of ABC, Brazil. Only the COP displacements 
of participants aged 60 and over, from this public dataset, 
were used to calculate the variables presented above.

The data in this set are resting balance recordings on a 
force platform (OPT400600-1000; AMTI), for 60 s, at a sam-
pling rate of 100 Hz. We use the averaged value on the three 

recordings made for each participant. To be consistent with 
our recording protocol, only data from the firm surface open-
eye recordings were used. Participants were asked to remain 
as steady as possible with their arms at their sides and to look 
at a target in front of them. The position of the feet was stan-
dardized as follows “with an angle of 20  degrees between 
them and their heels were kept 10 cm apart.” The force plate 
data were preprocessed through a 10 Hz fourth-order, zero-
lag, low-pass Butterworth filter. More details are available in 
the original publication (Santos & Duarte, 2016b).

2.4.5  |  Sample characteristics

In total, 133 people recorded with the Wii Balance Board 
were included in this study. The demographics character-
istics of participants are shown in Table 1. The mean age 
in this sample is high but corresponds to the populations 
presented by other authors (Aufauvre et al., 2005; Bauer 
et al., 2016a; Bigelow & Berme, 2011; Borg & Laxåback, 
2010; Hewson et al., 2010; Maki et al., 1994; Muir et al., 
2013; Ramdani et al., 2013). The incidence of the number 
of falls among people over 80 years of age was measured 
at nearly six falls per year (5,930 for women and 5,467 for 
men in 2009; Korhonen et al., 2012), which is consistent 
with the number of falls over the last 6 months in this 
study. In addition, the elderly participants’ characteris-
tics of the public data base are presented in Table 1. We 
can note that the proportion of fallers in the two groups 
is close to 25%, although the average ages, the retrospec-
tive period during which falls are investigated and the 
average number of falls are different.

2.5  |  Descriptive analysis

2.5.1  |  Variables distributions

In order to provide indicative values for the vari-
ables presented, we report the means and standard 

T A B L E  1   Characteristics of study participants

WBB dataset Public dataset

Total 133 76

Men 72 16

Women 61 60

Age 78.7 (±6.7) 71.3 (±6.5)

BMI 24.4 (±4.1) 25.5 (±2.9)

Fallers 32 (6 last months) 19 (12 last months)

Number of falls  
(for fallers)

2.3 (±2.4) 3.8 (±11.7)
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deviations for both populations, for each of the COP 
variables during eyes-open recordings. Fallers and 
non-fallers are aggregated for each database since 
the objective is not to discriminate between sub-
populations of the samples according to their fall risk 
or pathologies. Note that we chose not to include in 
our analysis two aforementioned variables, MEAN 
VALUE and VFY, in line with previous studies con-
cerns about the considerable measurement errors 
that these features are prone to (Duarte & Freitas, 
2010)—a problem that is compounded here as our 
study was multi-centric, which inherently increased 
the probability of small variations between the par-
ticipant feet position.

2.6  |  Open-access code

A code enabling the calculation of all the COP vari-
ables that are presented is available at https://
github.com/Jythe​n/code_descr​iptors_postu​ral_con-
trol, as well as an oline demo on the IPOL website: 
https://ipolc​ore.ipol. im/demo/clien​tApp/demo.
html?id=77777​00013​7&key=C2AE7​495B4​E7282​
49E4C​E1905​DA15186

3   |   RESULTS

3.1  |  General notations

In the following, we assume that the recorded COP trajec-
tory contains N data points, sampled at constant frequency 
Fs. T = N/Fs denotes the total duration of the signal in sec-
onds (Table 2). For each 1 ≤ n ≤ N, MLn, (respectively APn) 
denotes the coordinate of the COP position at time n/Fs on 
the ML axis, from left to right, (respectively the AP axis, 
from backward to forward). Then for each 1 ≤ n ≤ N

and

represent the coordinates of the centered trajectories on 
the ML axis and AP axis, respectively. We also introduce 
the Radius signal (Rn)1≤n≤N as the Euclidean distance of 
the centered COP to the origin: for each 1 ≤ n ≤ N,

Xn =MLn −
1

N

N∑
i=1

MLi

Yn = APn −
1

N

N∑
i=1

APi

Rn =
√
X2
n + Y 2

n

T A B L E  2   General notations and signal transformations used in the definition of the features. For each quantity, we report the symbol 
used in this manuscript, the name of the symbol, the formula, the units, as well as the section where the feature is defined. Note that S is a 
placeholder symbol that can be replaced by both X (ML coordinates) and Y (AP coordinates)

Symbol Name Formula Units Section

T Total duration of the signal — s 3.1

N Number of points of the signal — —

Fs Sampling frequency N/T Hz

MLn Mediolateral (ML) coordinates — cm

APn Anteroposterior (AP) coordinates — cm

Xn Centered ML coordinates MLn −
1

N

∑N
i=1MLi

cm

Yn Centered AP coordinates APn −
1

N

∑N
i=1 APi

cm

Rn Radius
√
X 2
n + Y 2

n

COV Covariance AP 1

N

∑N
i=1 XnYn

cm²

SDn Sway density see Definition 1 s 3.3

zℓ Zero-crossing see Definition 3

pℓ Peaks see Definitions 4 and 2

Vx
n ML velocity see Computing velocity and Notation cm.s-1

Vy
n AP velocity see Computing velocity and Notation cm.s-1

Vn Velocity norm
√(

Vx
n

)2
+
(
Vy
n

)2 cm.s-1

ΓS
k

PSD of S for frequency kFs/N — cm2.Hz-1 3.4

MS
�

ℓ-th spectral moment of S
∑

k
f l
k
Γs
k

cm2.Hz−1

MSDS (Δt) Mean square displacement S ∑
n

�
Sn+FsΔt −Sn

�2
N − FsΔt

cm² 3.5

https://github.com/Jythen/code_descriptors_postural_control
https://github.com/Jythen/code_descriptors_postural_control
https://github.com/Jythen/code_descriptors_postural_control
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000137&key=C2AE7495B4E728249E4CE1905DA15186
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000137&key=C2AE7495B4E728249E4CE1905DA15186
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000137&key=C2AE7495B4E728249E4CE1905DA15186
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Finally, we define the covariance between the AP and 
ML variations of the COP as

3.2  |  Positional variables

Variables are classified in this category if they depend on 
the COP positions and do not require the knowledge of its 
local displacements. Therefore, these descriptors can cap-
ture characteristics of the dispersion of the trajectory or a 
favored position for the point of support of the feet, and do 
not embed dynamic aspects of the signal, as they ignore 
the temporal nature of the data (Table 3).

3.2.1  |  Mean value

The mean position, computed as the arithmetic average 
of the COP trajectory before centering, has been consid-
ered by Aufauvre et al. (2005), Stel et al. (2003), Brauer 
et al. (2000) and Maki et al. (1994), for the ML and AP 

COV =
1

N

N∑
i=1

XnYn

coordinates. Importantly, previous works have disagreed 
with the use of this variable (Duarte & Freitas, 2010), 
given the variability in the placement of the feet on the 
force platform.

3.2.2  |  Mean distance

This feature represents the mean distance of the COP from 
the center of the trajectory (Maranesi et al., 2016; Prieto 
et al., 1996; Qiu & Xiong, 2015), which we estimate as the 
empirical average of the signal. Therefore, we define the 
mean distance using the centered signal, see the paragraph 
general notations. According to the authors, this descrip-
tor could be related to the stability of the postural system. 
Age differences were found with higher values in the ML 

MEANML
1

N

N∑
n=1

MLn

MEANAP
1

N

N∑
n=1

APn

T A B L E  3   Summary of the definition of the positional features. All the listed ML features can also be computed for the AP axis. For 
units, cm stands for centimeter, ° for degree (angle), and − for unitless

Feature Full name Formula Units

MEAN ML Mean ML coordinate 1

N
ΣnMLn cm

MEAN DIST. ML Mean distance ML 1

N

∑
n
��Xn�� cm

MEAN DIST. Mean distance 1

N

∑
n
��Rn�� cm

MAX ML Maximal distance ML maxn |Xn| cm

MAX RADIUS Maximal distance maxn |Rn| cm

RMS ML Root mean square ML
�

1

N

∑
nX

2
n

cm

RMS RADIUS Root mean square radius
�

1

N

∑
nR

2
n

cm

RANGE ML Amplitude ML maxn,m |Xn − Xm| cm

RANGE ML-AP Amplitude ML-AP
max1≤n≤m≤N

√(
Xn−Xm

)2
+
(
Yn−Ym

)2 cm

RANGE RATIO Ratio of amplitudes RangeML

RangeAP

—

PLANAR DEV. Planar deviation
√
RMSML2 + RMSAP2 cm

COEF. SWAY DIR. Coefficient of sway direction COV

RMSML × RMSAP
—

95% CONF. AREA 95% confidence ellipse area See Def. cm²

PRINCIPAL SWAY DIR. Principal sway direction
arccos

�
�v2�√
v2
1
+ v2

2

�
×

180

�

°
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direction, especially in older women compared to younger 
participants or men (Kim et al., 2010). This variable also 
showed sensitivity to the size of the support base as it was 
found to decrease monotonically, especially in the ML di-
rection, as the distance between the feet increased (Kim, 
Kwon, Jeon, Bang, et al., 2014). Regarding falls, Maranesi 
et al. (2016) have not either found significant differences for 
this feature between elderly fallers and non-fallers in both 
ML and AP directions.

3.2.3  |  Maximal distance

This feature has been defined as the maximal distance of 
the COP from the centroid (Muir et al., 2013), which we in-
terpret as the center of the trajectory. Similar to the mean 
distance, we define this feature as the maximum of the 
centered signal. This descriptor has been shown to be sig-
nificantly greater in elderly fallers than in non-fallers (Muir 
et al., 2013).

3.2.4  |  Root mean square

The root mean square (RMS) is calculated on the centered 
trajectory. In the ML axis and AP axis it corresponds to 
the standard deviation of the trajectory and on the two-
dimensional signal it is the square root of the arithmetic 
mean of the squared radius (Prieto et al., 1996). Previous 
works have found changes associated with aging in this 
feature direction (Maki et al., 1994), particularly in the ML 
direction (Piirtola & Era, 2006; Swanenburg et al., 2010). 
(Bargiotas et al., 2018) also used successfully the RMS on 
the ML axis for their classification model between elderly 
fallers and elderly non-fallers. However, Laughton et al. 
(2003) found significant differences between elderly non-
fallers and young participants for the AP standard devia-
tion but not in the ML direction.

MEANDIST. ML
1

N

N∑
n=1

||Xn||

MEANDIST. AP
1

N

N∑
n=1

||Yn||

MEANDIST.
1

N

N∑
n=1

||Rn||

MAX ML max1≤n≤N ||Xn||
MAX AP max1≤n≤N ||Yn||

MAX RADIUS max1≤n≤N Rn

3.2.5  |  Range (Amplitude)

The range, also called amplitude, of the COP path, has 
been widely used in the literature (Aufauvre et al., 2005; 
Bauer et al., 2010; 2016a; Howcroft et al., 2015, 2017; 
Laughton et al., 2003; Maranesi et al., 2016; Ramdani 
et al., 2013). In Prieto et al. (1996), the authors define the 
range as the maximal distance over two points of the sta-
bilogram. Along one particular axis, this is mathemati-
cally equivalent to the distance between the maximum 
and the minimum positions of the signal. Previous works 
have shown contradictory results regarding the predictive 
power of this variable for the assessment of fall risks, but 
it has been shown that the RANGE in the ML direction 
differs between fallers and non-fallers based on a meta-
analysis of data from elderly participants with a history of 
falls, in a previous systematic review (Quijoux et al., 2020).

3.2.6  |  Ratio of amplitudes (Quotient of both 
directions)

The ratio of the COP dynamics in ML and AP directions 
has been frequently studied in regards to the balance strat-
egy involved to maintain erect posture in elderly people. 
Błaszczyk et al. (2014) computed the directional index as 
the ratio of the AP or ML path length divided by the total 
COP length. In Bauer et al. (2016a), the quotient of both 
directions is defined as the ratio of mediolateral amplitude 
over the anteroposterior amplitude, and this measure is 
shown to be significantly different between fallers and non-
fallers during eyes-closed recordings (Bauer et al., 2010).

RMS ML

√√√√ 1

N

N∑
n=1

X2
n

RMS AP

√√√√ 1

N

N∑
n=1

Y 2
n

RMS RADIUS

√√√√ 1

N

N∑
n=1

R2n

RANGE ML max1≤n≤m≤N
||Xn − Xm||

RANGE AP max1≤n≤m≤N
||Yn − Ym||

RANGE AP -ML max1≤n≤m≤N

√(
Xn−Xm

)2
+
(
Yn−Ym

)2

RANGE RATIO
RANGE ML

RANGE AP
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3.2.7  |  Planar deviation

The planar deviation was defined by (Raymakers et al., 
2005) as the square root of the sum of the variances of dis-
placements in ML and AP directions. While it has been ar-
gued that this variable may be less discriminant than the 
range or the mean velocity (Raymakers et al., 2005) and 
has shown a small relative reliability, with an intraclass 
correlation coefficient (ICC) of 0.5, in eyes-open condi-
tion, and a poor absolute reliability (Qiu & Xiong, 2015), 
the planar deviation has been used in multiple previous 
works to quantify human stability (Ilett et al., 2016; Xiong 
& Karim, 2013).

3.2.8  |  Coefficient of sway direction

Bauer et al. (2016a) have defined the coefficient of sway 
direction as the ratio of the covariance between AP and 
ML directions over the marginal standard deviations, 
that is, as the coefficient of correlation between the ML 
and AP trajectories. This descriptor has been shown to be 
significantly associated with falls (Bauer et al., 2016a) in 
community-dwelling older adults.

3.2.9  |  95% confidence ellipse area 
(Sway area)

The confidence ellipse area (also called sway area) is defined 
as the area of the ellipse which contains the true mean of 
(Xn, Yn)1≤n≤N with a probability of 95% (Schubert & Kirchner, 
2014). An increase in this feature value among elderly peo-
ple has been associated with a significantly higher risk of fall 
(Merlo et al., 2012). The confidence ellipse is derived from 
using the central limit theorem (Duarte & Freitas, 2010; Prieto 
et al., 1996; Schubert & Kirchner, 2014), which requires the 
assumption that the serie samples are independent and iden-
tically distributed. Let F0.95,2,n−2 denote the 0.95-quantile of 
the Fisher distribution with 2 and n − 2 degrees of freedom. 
Note that the unbiased versions of the covariance matrix 
could also be used (Schubert & Kirchner, 2014). The confi-
dence ellipse can be approximated by the following formula:

An illustration of the calculation of this feature is shown in 
Figure 1.

PLANAR DEV.
√
RMS ML2 + RMS AP2

COEF. SWAY DIR.
COV

RMS ML × RMS AP

95% CONF. AREA 2�×
N−1

N−2

×F0.95,2,N−2×
√
RMS ML2×RMS AP2−COV2

3.2.10  |  Principal sway direction

Oliveira et al. (1996) introduced the principal sway direc-
tion as a tool to represent the relative contribution of the 
ML and AP components to the oscillations of the COP. 
The computation of the sway direction is based on a prin-
cipal component analysis (PCA) which derives the direc-
tion of maximum dispersion of the COP trajectory. The 
principal direction is defined as the angle between 0° and 
90°, between the AP axis and the direction of the main ei-
genvector produced by the PCA. Rocchi et al. (2004) have 
claimed that this variable provides a significant additional 
information regarding the COP dynamic, relative to other 
features. Let v = (v1, v2) denote the eigenvector associated 
with the highest variance produced by a PCA of the COP 
bi-dimensional signal (Xn, Yn)1≤n≤N. Then the principal 
sway direction is defined as:

An illustration of the calculation of this feature is shown in 
Figure 2.

3.3  |  Dynamic variables

These descriptors are based on the local displacements 
of the COP trajectory (Table 4). Most of them revolve 
around the quantification of the velocity of the signal, 
and consequently, are sensitive to additive noise, such 
as electromagnetic noise, and variation of the sampling 
frequency (see e.g. Press & Teukolsky, 1990; Schubert 

SWAY DIRECTION arccos

⎛⎜⎜⎜⎝

��v2���
v2
1
+ v2

2

⎞⎟⎟⎟⎠
×
180

�

F I G U R E  1   Illustration of the calculation of the 95% confidence 
ellipse. The feature is equal to the area of the ellipse
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et al., 2012). Another quantity of interest for dynamic 
variables is the sway density, which is designed to encode 
the local stability of the COP signal. This is quantified by 
measuring around each point, the number of consecutive 
points which lie in a circle of a certain radius. This count 
is then divided by the sampling frequency. In this study 
we choose to use a radius of 3 mm, as it has been shown 
that the choice of the radius is not critical and that a value 
between 3 and 5  mm is adequate for most applications 
(Jacono et al., 2004).

Definition 1  (Sway density). The sway density at time 
n∆t is defined as.

where

Definition 2  (Peaks of sway density). To compute the 
peaks of the sway density, the signal is first low-pass 
filtered at 2.5 Hz with a Butterworth filter of order 4 
(Jacono et al., 2004). Let S̃Dn represent the sway den-
sity signal obtained after filtering. Then, the peaks of 
SDn are defined as the local maximum of the filtered 
signal that is, they occur at the indices in {nSp1 , … , nSpk

}  
such that for all k ∈ {1, . . . , K} , 1 < nSpk

< N , �SDnSpk
> �SDnSpk

−1
 

and �SDnSpk
> �SDnSpk

+ 1.

SDn =
SD(+)

n + SD(−)
n

Fs

SD(+)
n = max

{
q ≥ 0, ∀p ≤ q,

√(
Xn+p−Xn

)2
+
(
Yn+p−Yn

)2
≤ 3 mm

}

SD(−)
n = max

{
q ≥ 0, ∀p ≤ q,

√(
Xn−p−Xn

)2
+
(
Yn−p−Yn

)2
≤ 3 mm

}

An example of peaks identified on a sway density signal is 
shown in Figure 3b.

3.3.1  |  Computing velocity

The COP trajectory recorded using force platforms is by 
nature a noisy signal. To address this problem, common 
preprocessing methods, such as low-pass filters are used 
to remove the high-frequency components of the noise. 
However, there is no consensus on the frequency thresh-
old that separates body sway from sensor noise. For in-
stance, values of 5, 10, and 20 Hz have been proposed by 
Geurts et al. (1993), Hernandez et al. (2015) and Huurnink 
et al. (2013). This choice has a significant impact on the 
computation of the COP velocity, in particular when using 
discrete derivative formula. Therefore, and to limit the 
influence of the hyperparameters and the force platform 
characteristics, it is important to use robust methods such 
as spline interpolation or Savitzky–Golay filters to dif-
ferentiate the signal (Curtain & Pritchard, 1977; Press & 
Teukolsky, 1990; Savitzky & Golay, 1964).

Notation In the following, Vx  =   (Vn
x)1≤n≤N and 

Vy = (Vn
y)1≤n≤N represent the estimations of the COP veloc-

ities in the ML axis and AP axis, respectively. In our experi-
ments, they are computed using a Savitsky–Golay filter with 
a polynomial of order 3 and a filter window of length 5. V 
represents the norm of the velocity, that is, for each 1 ≤ n ≤ N,

The mean values of Vx, Vy, and V  are, respectively, denoted 
by Vx , Vy, and V .

Definition 3  (Zero-crossing points of velocity) Let 
V =

(
Vn

)
1≤n≤N

 stand for the velocity signal in the 
ML axis or AP axis. The zero-crossing points z1, …, 
zJ, are the variables in {1, …, N} verifying the follow-
ing conditions:

1.  For all � ∈ {1, … , J} , Vz�−1 × Vz� ≤ 0 and Vz� ≠ 0

2.  Vz1 × Vn0 < 0 and for all 
� ∈ {2, … , J} , Vz� × Vz�−1 < 0

Definition 4  (Peaks of velocity) Let V = (Vn)1≤n≤N stand 
for Vx or Vy. Let z1, …, zJ be the zero-crossing points 
of V. Then for all 1 ≤ ℓ ≤ K = J − 1, the ℓ-th peak of 
V occurs at the sampling variable npV

�

 and is equal to 

pV
�

, where npV
�

= argmaxn∈{1,…,N},z�≤n≤z�+1−1
||Vn|| 

and pV
�
= Vn

pV
�

. An example of peaks identified on a 

velocity signal is shown in Figure 4.

Vn =

√(
Vx
n

)2
+
(
V
y
n

)2

F I G U R E  2   Illustration of the calculation of the principal sway 
direction. The feature is equal to the angle θ
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3.3.2  |  Mean velocity (Normalized sway 
length, sway path)

The mean velocity of the COP is one of the most widely used 
variables. Overall, the mean velocity is considered as one of 
the most reliable feature, especially in the AP direction (Low 
et al., 2017). This variable has been shown to be influenced 
by age-related postural alterations, under both eyes-open and 
eyes-closed conditions (Prieto et al., 1993, 1996) and to be pre-
dictive of the risk of falling (Howcroft et al., 2017). Indeed, 
the COP movement velocity was significantly correlated with 
age-related neuromuscular phenomena such as loss of plan-
tar flexor muscle volume (Kouzaki & Masani, 2012), tremors 
(Kouzaki & Masani, 2012), or an increase in the co-contraction 
strategy of agonist and antagonist muscles of the leg (Benjuya 
et al., 2004; Carpenter, Frank, Silcher, et al., 2001; Ho & 
Bendrups, 2002; Nelson-Wong et al., 2012). The perception 
of the COP movement velocity could be an important factor 

in the control of ankle extensor activity through anticipatory 
strategies (Masani, 2003; Sun et al., 2019), highlighting the 
impact of age-related neuromuscular deterioration on static 
balance, with significant differences between eyes-open or 
eyes-closed condition (Howcroft et al., 2015) and more gener-
ally on the risk of falling (Brauer et al., 2000; Kwok et al., 2015). 
For a constant sampling interval, the mean velocity is defined 
as the sum of the distances between consecutive points, also 
called sway length, divided by the duration of the recording. 
Therefore, the mean velocity can be seen as a normalized ver-
sion, with respect to the duration, of the sway length, which 
has been previously cited as the most common feature in the 
literature to evaluate the effect of exercise interventions (Low 
et al., 2017), and has been shown to distinguish people at risk of 
falling from healthy people (Kantner et al., 1991).

SWAY LENGTH ML

N−1∑
n=1

||Xn+1 − Xn||

T A B L E  4   Summary of the definition of the dynamic features. All the listed ML features can also be computed for the AP axis. For units, 
cm stands for centimeter, s for seconds, Hz for Hertz, and − for unitless. *: This feature is obtained by summing non-homogeneous term, 
and therefore has no valid units

Feature Full name Formula Units

SWAY LENGTH ML Sway length ML
∑

n�Xn+1 − Xn�
SWAY LENGTH Total sway length ∑

n

��
Xn+1−Xn

�2
+
�
Yn+1−Yn

�2 cm

MEAN SPD ML Average velocity ML SWAY LENGTH ML/T cm.s-1

MEAN SPD Average velocity SWAY LENGTH/T cm.s-1

AREA PER SEC. Sway area per sec. 1

2T

∑
n
��Xn+1Yn − XnYn+1�� cm².s-1

STD SPD ML. Deviation velocity ML
�

1

N

∑
n

�
Vx
n −V

x
�2 cm.s-1

STD SPD. Deviation velocity
�

1

N

∑
n

�
Vn−V

�2 cm.s-1

PHASE PLANE ML ML phase plane parameter
√
RMSML2 + STDSPDML2 *

VFY — STDSPD2∕MEANAP cm.s-2

LFS Length over area SWAYLENGTH

95% CONF. AREA
cm

FRACTAL DIM Fractal dimension See Def. Fractal Dimension —

SET OF ZERO CROSS. ML Set of zero-crossings ML ZV
x

ZERO CROSS. ML Number of zero-crossings ML #ZV
x

PEAK VEL. + ML Mean positive peak of ML Vel. see Def. cm.s-1

PEAK VEL. - ML Mean negative peak of ML Vel. see Def. cm.s-1

PEAK VEL. ML Mean peak of ML velocity 1

K
Σ
�
pV

x

�
cm.s-1

PEAK SD Mean peak of sway density 1

K
Σ
�
pSD
�

s

DIST. PEAK SD Mean spatial dist. between S.D. 
peaks

See Def cm

MEAN FREQ. ML Mean frequency ML 1

4
√
2
×
MEANSPDML

MEANDISTML
Hz

MEAN FREQ. ML-AP Mean frequency 1

4
√
2
×
MEANSPD

MEANDIST
Hz
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SWAY LENGTH AP

N−1∑
n=1

||Yn+1 − Yn||

SWAY LENGTH

N−1∑
n=1

√(
Xn+1−Xn

)2
+
(
Yn+1−Yn

)2

MEAN SPD ML
SWAY LENGTH ML

T

Note that it is also possible to compute the mean veloc-
ity differently, using the Savitzky–Golay derivative pre-
viously discussed in the paragraph Computing Velocity. 

MEAN SPD AP
SWAY LENGTH AP

T

MEAN SPD
SWAY LENGTH

T

F I G U R E  3   Illustration of the sway density computation and the peaks computation. (a) Illustration of the computation of the sway 
density at time t. In this example, four consecutive points fall in the circle of radius 3mm, therefore the sway density at time t is equal 
to 4/ Fs. (b) Example of filtered trajectory of the sway density over time. The black crosses indicate the position of peaks identified using 
Definition 2

F I G U R E  4   An example of velocity signal. The red dots indicate zero-crossings identified using Definition 3 and the black crosses 
indicate the position of peaks identified using Definition 4
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While not mathematically equivalent, these two defini-
tions lead to similar values of mean velocity, as the av-
erage operator is robust to smooth interpolation such 
as Savitzky–Golay filters. Therefore we present here the 
normalized sway length formulation, which is frequently 
used in clinical studies (Low et al., 2017).

3.3.3  |  Sway area per second

This variable evaluates the average area circumscribed 
by the COP for each 1  s time interval. The interval du-
ration used for its calculation may vary between studies 
(Hufschmidt et al., 1980), and is not always clearly stated 
in the literature (Maranesi et al., 2016). The sway area 
per second is computed by adding the area of the trian-
gles whose vertices are two consecutive points of the COP 
trajectory and the mean position of the COP (Hufschmidt 
et al., 1980; Prieto et al., 1996). Figure 5 shows an exam-
ple of the triangle formed at a specific time for a real sig-
nal. This feature has been shown to significantly differ 
between non-fallers and fallers (Lichtenstein et al., 1988; 
Maranesi et al., 2016; Pajala et al., 2008).

3.3.4  |  Phase plane parameter

This feature is thought to express the dispersion of both the 
velocity and the position of the COP (Riley et al., 1995). It 
has been claimed that this variable provides insight into this 
dynamic aspect of balance control, and significantly differs 
between young healthy and elderly participants (Raymakers 
et al., 2005). Moreover, the phase plane parameter has been 
found to be reliable in both open-eyes and closed-eyes condi-
tions (Moghadam et al., 2011; Qiu & Xiong, 2015). However 
it should be noted that the two terms that are added together, 
the standard deviation of position and the standard devia-
tion of velocity, are not homogeneous.

AREA PER SEC.
1

2T

N−1∑
n=1

||Xn+1Yn − XnYn+1||

STD SPD ML

√√√√ 1

N

N∑
n=1

(
Vx
n −V

x
)2

STD SPD AP

√√√√ 1

N

N∑
n=1

(
V
y
n −V

y
)2

PHASE PLAN ML
√
RMS ML2 + STD SPD ML2

3.3.5  |  VFY

Gagey and Gentaz (1993) first1 defined this parameter as 
the variance of the COP velocity divided by the mean posi-
tion of the COP on the AP axis, but this definition was 
contested by more recent work (Gagey, 1999). However, 
this definition is still commonly used (see e.g. Aufauvre 
et al., 2005), therefore we chose to report it below. The 
VFY could be correlated with the tension of the posterior 
leg muscles (due to both viscoelasticity and basic tone; de 
Tauzia et al., 2010; Gagey & Gentaz, 1993) but the link 
with physiology has yet to be demonstrated. Importantly, 
the VFY suffers from the same drawback as the mean 
value does, due to the variability in the placement of the 
feet on the force platform (Duarte & Freitas, 2010).

PHASE PLAN AP
√
RMS AP2 + STD SPD AP2

 1This definition is contested, see for example, (Gagey, 1999).

STD SPD

√√√√ 1

N

N∑
n=1

(
Vn−V

)2

VFY1
STD SPD2

MEAN AP

F I G U R E  5   The sway area per second sums the area of the 
successive triangles OSnSn+1 (in blue) formed at each time n by the 
points of the signal and the center of the trajectory O
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3.3.6  |  Length over area (LFS)

In Aufauvre et al. (2005), the length over area is defined 
as the total length of the sway path over the surface of the 
circumscribing area (circle or ellipse). In their study, the 
authors did not find any significant difference between 
fallers and non-fallers for this variable, or according to 
whether the eyes were open or closed. Kim et al. (2019) 
have shown that the length over area was correlated in 
eyes-closed condition with mild-to-moderate traumatic 
brain injury, showing a poorest balance control when the 
white matter trauma is more severe.

3.3.7  |  Fractal dimension

The fractal dimension is a unitless measure of the degree 
to which a curve fills the space it is embedded in Prieto 
et al. (1996). Previous works have claimed that the fractal 
dimension of the COP is one of the most reliable sway vari-
able for differentiating among age groups and pathologies 
(Myklebust et al., 1995). Three main methods are used 
to compute the fractal dimension (Prieto et al., 1996). In 
a first model, the area of the stabilogram is approximated 
using a circle including all the points of the COP trajectory, 
which generally over estimates the area enclosed by the 
signal (Prieto et al., 1996). In the two other methods, the 
area is computed using either a confidence circle or a con-
fidence ellipse. We present hereafter the formula using the 
confidence ellipse, which is more flexible. The value of the 
fractal dimension could increase in healthy adults when 
the eyes are closed (Tassani et al., 2019) or when wearing 
orthopedic insoles (Bateni, 2013). Significantly higher val-
ues were found in young participants than in elderly peo-
ple during eyes-open recording (Qiu & Xiong, 2015). These 
findings are more in line with an improvement in stability 
as the value of the fractal dimension increases.

3.3.8  |  Zero-crossing (of velocity)

This variable is defined as the number of times that the 
COP velocity crosses the zero value axe (Jeong et al., 2007). 
Tuunainen et al. indicated that “zero-crossing velocity 
showed a high rate of velocity change around the neutral 
position of stance” (Tuunainen et al., 2013). The latter 
found an association between this variable and falls, but 
no significant difference between fallers and non-fallers, 

LFS
SWAY LENGTH

95% CONF.AREA

FRACTAL DIM
logN

logN + log
√

4

�
× 95% CONF. AREA − log SWAY LENGTH

which is in line with previous results that found no sig-
nificant difference even when comparing the two groups 
of older people to healthy subjects (Hewson et al., 2010). 
Let ZVx and ZVy denote the sets of zero-crossing points of 
Vx and Vy, respectively, given by Definition 3. The zero-
crossing variables represent the number of zero-crossing 
points in each direction: 

 

3.3.9  |  Mean velocity peak

A velocity peak has been defined as the maximal value be-
tween two zero-crossing points (Hewson et al., 2010). The 
positive peaks of velocity, which correspond to displacements 
forward and to the right in the AP axis and ML axis, respec-
tively, may be considered separately from negative peaks, 
which correspond to displacements backward and to the left 
in the AP axis and ML axis, respectively. The mean AP veloc-
ity peak has been shown to discriminate between elderly fall-
ers and non-fallers (Hewson et al., 2010). An increase in the 
absolute value would indicate poorest postural control. The 
zero-crossing velocity variables are correlated with each other 
in each direction (R = 0.88) but may be more weakly corre-
lated with other variables, especially with positional variables 
(R < 0.8), in the older population (Rasku et al., 2012). Peak 
COP velocity has also been previously correlated with the se-
verity of knee osteoarthrosis during the transition task from 
double-leg to single-leg standing (Sabashi et al., 2021). 

 

 

These variables are similarly defined in the AP axis by re-
placing Vx by Vy.

3.3.10  |  Mean sway density peak

With the idea that postural control in quiet standing is gov-
erned by two major mechanisms (intrinsic feedback and 

ZERO CROSS. ML #ZV
x

ZERO CROSS. AP #ZV
y

PEAKAPVEL. +ML

∑K
�=1 p

Vx

�
× ��

pV
x

�
>0

�

∑K
�=1 �

�
pV

x

�
>0

�

PEAKAPVEL. −ML

∑K
�=1 p

Vx

�
× ��

pV
x

�
<0

�

∑K
�=1 �

�
pV

x

�
<0

�

PEAKAPVEL. ML
1

K

K∑
�=1

pV
x
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anticipatory feedforward), previous studies have focused on 
structural posturographic parameters. (Baratto et al., 2002) 
have proposed a model in which these mechanisms, modu-
lated by ankle muscle activation and the internal inverted 
pendulum model, respectively, distinguish between short- 
and long-term factors. From this hypothesis, they propose 
to analyze the sway density (SD), counting the number of 
consecutive samples of the posturographic trajectory that, 
for each instant, fall within a circle of given radius defined 
by the operator (typically between 3 and 5  mm, Jacono 
et al., 2004). In the resulting signal, the SD peaks (high val-
ues of the number of points in the circle) correspond to the 
moments when the ankle torque and the associated motor 
control systems enable relatively stable COP displacements.

3.3.11  |  Mean spatial distance between sway 
density peaks

While peaks of SD correspond to relatively stable COP 
displacements, valleys (low values of SD) are interpreted 
as destabilization phases in which the ankle torque rap-
idly changes from one stable state to another, similar to a 
micro-fall. Hence, the distance between two consecutive 
peaks in the SD represent a micro-fall or a period of desta-
bilization for (Baratto et al., 2002). This saccade could cor-
respond to the amplitude of the posturographic command 
or “the amount of change in torque required for stabiliza-
tion” (Vieira et al., 2009b). The values of the “jump” from 
one posturographic target to the next can be averaged to 
compute the mean spatial distance between peaks. The 
mean distance between peaks seems to increase signifi-
cantly when the eyes are closed (Kim et al., 2012; Vieira 
et al., 2009b), in old age (Kim et al., 2012) or with history 
of past falls (Audiffren et al., 2016; Maranesi et al., 2016).

3.3.12  |  Mean frequency

The mean frequency is defined by Prieto et al. (1996) as the 
rotational frequency, considering the total length of the 
COP as a trajectory around a circle with a radius equals 
to the mean distance. This variable is proportional to the 
ratio of the mean velocity to the mean distance, which has 
been studied in Hufschmidt et al. (1980). In Maki et al. 
(1994), the mean frequency did distinguish fallers from 
non-fallers in prospective follow-up and provided limited 
information to discriminate fallers based on the history of 
falls in retrospective studies (König et al., 2014; Maranesi 

PEAK SD
1

K

K∑
�=1

pSD
�

DIST. PEAK SD
1

K

K∑
�=1

√(
X��+1

−X��

)2
+
(
Y��+1 −Y��

)2

et al., 2016). However, it has been argued that MEAN 
FREQUENCY, especially in the AP direction, can be used 
to distinguish elderly fallers from non-fallers (McGrath 
et al., 2012), and is reliable (Qiu & Xiong, 2015). 

 

 

3.4  |  Frequency variables

This category is similar to the one presented in Prieto 
et al. (1996), and includes the variables used to describe 
the power spectral density of the COP trajectory. Similar 
to the dynamic variables, these descriptors are influenced 
by the sampling frequency of the force platform as well as 
the signal preprocessing (Table 5).

Notation In the following, ΓX
k
= ΓX

(
fk
)
 denotes the 

power spectral density (PSD) coefficient of X  correspond-
ing to the frequency fk = k

Fs
N

, for k ∈ {1, … , N∕2} if N is 
even, k ∈ {1, … , (N − 1) ∕2} otherwise. The frequency-
domain measures are calculated for the frequency range 
from finf = 0.15 Hz to fsup = 5 Hz, which corresponds to 
variables kinf =

[
0.15 N

Fs

]
+ 1 and ksup =

[
5 N
Fs

]
, an interval 

likely to provide significant information about the pos-
tural control system (Prieto et al., 1996). We denote by

The ℓ-th moment of the PSD. ΓY
k

 and MY
�

 are defined simi-
larly. In our experiments, we estimate the PSD using Welch's 
method with 10-s segments, with 50% overlapping and lin-
ear detrending (Vieira et al., 2009a).

3.4.1  |  Total power

The total power is the energy contained in the entire power 
spectrum (Prieto et al., 1996). Previous works have shown 
that the TOTAL POWER may be significantly larger in el-
derly participants compared to young adults (Kim et al., 
2010; Loughlin & Redfern, 2001). In both groups, TOTAL 
POWER seems to be positively correlated with height and 
also be dependent on the base-of-support in ML direction 
(Chiari et al., 2002, Kim, Kwon, Jeon, Eom, et al., 2014). 
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The same feature is defined for the AP axis through replac-
ing ΓX

k
 by ΓY

k
.

Quantiles of PSD (Baratto et al., 2002) have shown 
that the frequency containing approximately 80% (from 
70.7% to 95%) of the PSD may be of interest to the quan-
tification of postural control. However these percentage 
values of interest vary significantly between studies. In 
(Maranesi et al., 2016) the authors proposed the values 
from 50 to 95%, which were in turn used in (Howcroft 
et al., 2017). In particular, the 50% power frequency has 
been shown to be sensitive to muscle fatigue (Corbeil 
et al., 2003).

The same features are defined for the AP axis through 
replacing ΓX

k

TOTAL POWER ML

ksup∑
k=kinf

ΓX
k

50%POWER FREQ.ML inf

⎧
⎪⎨⎪⎩
k⋆ ∈ℕ,

k⋆�
k=kinf

ΓX
k
≥0.5

ksup�
k=kinf

ΓX
k

⎫
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×
Fs
N

95%POWER FREQ.ML inf

⎧
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k⋆ ∈ℕ,

k⋆�
k=kinf

ΓX
k
≥0.95

ksup�
k=kinf

ΓX
k

⎫
⎪⎬⎪⎭
×
Fs
N

3.4.2  |  PSD mode

The power spectrum density mode is the dominant fre-
quency of the PSD (McClenaghan et al., 1995). This 
variable has previously been used to track changes in 
the physiological rhythm, under the assumption that it 
would reflect modifications of the postural control strat-
egy (Mackey & Glass, 1977; McClenaghan et al., 1995; 
Williams et al., 1997). This parameter showed no signifi-
cant difference between fallers and non-fallers in either 
the AP or ML direction (Lajoie, 2004). 

The same features are defined for the AP axis through re-
placing ΓX

k
 by ΓY

k
.

3.4.3  |  Centroidal frequency and 
frequency dispersion

Both of these metrics measure the concentration of the 
spectral mass in the PSD. The centroidal frequency lo-
cates where the spectral mass is concentrated, and is 
defined as the square root of the ratio of the second to 
the zeroth spectral moments. The frequency dispersion 

Power Model ML
Fs
N

× arg max
kinf ≤k≤ksup

ΓX
k

T A B L E  5   Summary of the definitions of the frequency features. All the listed features can also be computed for the AP coordinates. For 
units, cm stands for centimeter, Hz for Hertz, and − for unitless

Feature Full name Formula Units

TOTAL POWER ML Total power ML ∑ksup
k=kinf

ΓX
k

cm2

50% POWER FREQ ML Median of PSD ML inf
�
k∗ ∈ ℕ,

∑k∗

k=kinf
ΓX
k
≥ 0.5

∑ksup
k=kinf

ΓX
k

�
×
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N

Hz

95% POWER FREQ ML 95% percentile of PSD ML inf
�
k∗ ∈ ℕ,

∑k∗

k=kinf
ΓX
k
≥ 0.95

∑ksup
k=kinf

ΓX
k

�
×

Fs
N

Hz

POWER MODE ML Mode of PSD Fs
N
× argmaxkinf ≤k≤ksupΓ

X
k

Hz

CENTROIDAL FREQ ML Centroidal frequency ML
√

MX
2

MX
0

Hz

FREQ. DISP. ML Frequency dispersion ML
√
1 −

(MX
1 )

2

MX
2
MX

0

—

ENERGY ≤0.5 HZ ML Energy content below 0.5 Hz ML ∑
finf ≤ fk ≤ 0.5

ΓX
�
fk
�

cm²

ENERGY 0.5–2 HZ ML Energy content 0.5–2 Hz ML ∑
0.5≤ fk ≤ 2

ΓX
�
fk
�

cm²

ENERGY >2HZ ML Energy content above 2 Hz ML ∑
2< fk ≤ fsup

ΓX
�
fk
�

cm²

FREQ. QUOTIENT ML Frequency quotient ∑
2≤fk≤5

ΓX
�
fk
�

∑
finf ≤fk≤2

ΓX
�
fk
�
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is a measure of the variability in the frequency content of 
the power spectral density, ranging from zero (no disper-
sion) to one (uniform spectral bandwidth; Prieto et al., 
1996; Vanmarcke, 1972). In previous studies, these two 
variables have been found not to be significantly differ-
ent between young individuals and elderly (Loughlin & 
Redfern, 2001).

The same features are defined for the AP axis through re-
placing MX

�
 by MY

�
.

3.4.4  |  Energy content of 
frequencies intervals

The energy contents of particular frequency bands have 
raised significant interest in the evaluation of postural 
control. In Soames and Atha (1982), the energy content 
(in the AP direction) of the intervals 0.3–0.45, 0.6–0.75, 
and 1.05–1.20 Hz was considered, while in the ML direc-
tion, the intervals were 0.30–0.45, 0.45–0.60, and 0.75–
0.90  Hz. Since then, other studies have proposed less 
granular intervals, to focus on low frequencies (between 
0 and 2  Hz) and high frequencies (2–5  Hz; Aufauvre 
et al., 2005; Bauer et al., 2010; 2016a). This difference is 
partly due to the population studied: while Soames and 
Atha (1982) have studied the balance of young healthy 
people the more recent studies were interested in older 
subjects. Similarly, Baloh et al. (1998) have proposed 

to study the quotient of the power of high frequencies 
(2–5  Hz) over the power of low frequencies (0–2  Hz). 
This quotient has been shown to significantly differ be-
tween young and elderly people (Baloh et al., 1994), and 
may be relevant to evaluate the influence of neurologi-
cal impairment over postural control (Table 6; Sullivan 
et al., 2006, 2010, 2015).

The same features are defined for the AP axis through re-
placing ΓX

k
 by ΓY

k
.

3.5  |  Stochastic variables

The variables of this category are derived from stochastic 
models of the COP. The descriptors presented originate 
from the seminal work of Collins and De Luca (1993), 
which introduced the idea of the SDA.

3.5.1  |  Stabilogram diffusion analysis

In Collins and De Luca (1993), the authors have suggested 
that the COP quadratic displacement is similar to the one 
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Feature Full name Formula

SHORT-TERM 
DIFF. ML

Short-term diffusion coefficient ML exp
(
�̂
X
s

)

LONG-TERM 
DIFF. ML

Long-term diffusion coefficient ML exp
(
�̂
X
l

)

SHORT-TERM 
SCAL. ML

Short-term scaling coefficient ML �̂
X

s ∕2

LONG-TERM 
SCAL. ML

Long-term scaling coefficient ML �̂
X

l ∕2

CRIT. TIME ML Critical time ML
exp

(
�̂
X

s − �̂
X

l

�̂
X
s − �̂

X
l

)

CRIT. MSD ML Critical MSD ML �̂
X
s × CRIT. TIMEML + �̂

X

s

T A B L E  6   Summary of the definition 
of the stochastic features. All the listed 
features can also be computed for the 
AP coordinates. Units are not reported 
since they are undefined in the stochastic 
models



18 of 32  |      QUIJOUX et al.

of a fractional Brownian motion with two regimes. This 
claim was based on the analysis of the mean square dis-
placement (MSD) defined as follows:

Definition 5  (MSD) For any 0 ≤  Δt ≤  ΔtN  =  T/3, the 
mean square displacement of the COP along the ML 
axis on the time interval Δt is defined as.

This function can be similarly defined for the AP axis with 
Y.

The constraint ∆t  ≤  T/3  limits the definition of the 
MSD to time intervals shorter than one third of the total 
duration, a necessary restriction to avoid unreliable re-
sults (Collins & De Luca, 1993). In their work, Collins 
and De Luca (1993) have noted that there exists a critical 
time ∆tc such that the curve of the MSD variations with 
respect to ∆t (called diffusion plot) can be split into two 
regions with very different behaviors: a short-term region 
(∆t ≤ ∆tc) and a long-term region (∆t ≥ ∆tc) (see Figure 
6). The short-term and long-term regions are the expres-
sion of different behaviors of the dynamic on different 
time scales: on short time scales, the system exhibits per-
sistence, that is, positive correlation between successive 
displacements, and on longer time scales, the dynamic 
is anti-persistent, meaning that the successive displace-
ments are negatively correlated (Collins & De Luca, 1993). 
Different interpretations have been made following this 
observation. Collins and De Luca (1993) have claimed 
that it was the result of two different postural control re-
gimes: on short time scales, the system evolves in open-
loop, whereas on longer time scales, control is activated 
and produces postural adjustments. This conclusion has 
been however refuted by several authors, with the argu-
ment that a closed-loop continuous control model could 

MSDX (Δt) =
1

N − FsΔt

N−FsΔt∑
n=1

(
Xn+FsΔt−Xn

)2

reproduce similar patterns of the diffusion plot (Peterka, 
2000). Several control models have been proposed to 
explain the phenomenon and there is no consensus on 
the true model of control which governs posture stabili-
zation (Collins & De Luca, 1993; Chow & Collins, 1995; 
Delignières et al., 2011; Peterka, 2000). These short-term 
and long-term regions can be characterized through the 
estimation of the parameters in a two regimes model of 
the MSD. For this purpose, we use the single model for-
mulation proposed by Chiari et al. (2000):

where Hs and HA are the short- and long-term scaling ex-
ponents and Ds and DA can be seen as short- and long-term 
diffusion coefficients. Note that the model and the com-
putation technique proposed in Chiari et al. (2000) are not 
exactly the same as the one formerly introduced in Collins 
and De Luca (1993), therefore the resulting features are not 
directly comparable with the previous ones. However, the 
general interpretation of the variables remains similar.

3.5.2  |  Diffusion and scaling coefficients

For parameters estimation, the two regimes (short term 
and long term) of the MSD are approximated by two linear 
functions of the time interval on a logarithmic scale:

If this model fitted perfectly the data, we could directly 
search for the time ∆tc which separates the diffusion plot 

MSDX (Δt) =

{
DsΔt

2Hs for Δt≤Δtc (short− term)

DlΔt
2Hl for Δt≥Δtc (long− term)

lnMSDX (Δt) =

{
�Xs ln (Δt) +�Xs for Δt∈

[
Δt0, Δt1

]
(1) short−term

�X
l
ln (Δt) +�X

l
for Δt∈

[
Δt2, ΔtN

]
(2) long−term

F I G U R E  6   Example of stabilogram 
diffusion analysis and parameters 
estimation in each regime. The fitted 
functions in each region are drawn 
in blue. (Top) Curve of the MSD as a 
function of the time interval. (Bottom) 
Curve of the MSD as a function of the 
time interval on a logarithmic scale and 
intervals of time used for the estimation of 
the linear functions in each region



      |  19 of 32QUIJOUX et al.

into two different linear regions. However, as stated in 
Chiari et al. (2000), there exists for some trajectories a tran-
sition region in the MSD curve which is not well fitted by a 
linear model. For this reason the short-term regime is esti-
mated on a first region (∆t0, ∆t1) where ∆t0 = 1/Fs and ∆t1 is 
defined in the range (0.3 s, 2.5 s) as the highest time stamp 
which minimizes the root-mean-square-error (RMSE) in 
the Ordinary Least Square (OLS) fit of the model (1), then 
the long-term regime is estimated on a second region (∆t2, 
∆tN) where ∆tN = T/3 and ∆t2 is defined in the range (0.3 s, 
2.5 s) as the highest time stamp which minimizes the mean 
square error in the OLS fit of the model (2). An illustration 
of this estimation can be found in Figure 6.

Let �̂Xs , �̂Xl , �̂
X

s , and �̂
X

l  denote the OLS estimator of �Xs , 
�X
l

, �Xs , and �X
l

, respectively. Then:

These indices are similarly defined for the AP axis through 
replacing X by Y.

In other words, the SDA models the CoP behavior 
on short- and long-term scales as two distinct stochastic 
processes. On the one hand, the diffusion coefficients 
are interpreted as the level of stochastic activity of the 
process in the two control regimes, along the medio-
lateral axis and the anteroposterior axis (Collins & De 
Luca, 1993; Melzer et al., 2010). The short-term diffu-
sion coefficient has been shown to differ significantly 
between individuals who sustained injuries after falls 
compared to non-fallers and fallers without injuries 
(Kurz et al., 2013). On the other hand, the scaling coef-
ficients are thought to quantify the correlation of the in-
crements of the process in its persistent (short term) and 
its anti-persistent (long term) regimes, along the medio-
lateral axis and the anteroposterior axis. In practice, the 
scaling coefficients generally appear to satisfy Hs ≥ 1/2 
and Hl ≤ 1/2. Consequently, the short-term increments 
are considered to be positively correlated and the long-
term increments are negatively correlated (Collins & De 
Luca, 1993). The long-term scaling coefficient has been 
shown to significantly differ between young individuals 
and elderly (Muir et al., 2013), and could be impacted by 
muscular fatigue (Corbeil et al., 2003).

SHORT - TERM DIFF. ML exp
(
�̂
X
s

)

LONG - TERM DIFF. ML exp
(
�̂
X
l

)

SHORT - TERM SCAL. ML
�̂
X

s

2

LONG - TERM SCAL. ML
�̂
X

l

2

3.5.3  |  Critical time and critical MSD

The critical time interval δc is estimated as the value of δ for 
which the two linear functions in the logarithmic scale, (1) 
(short term) and (2) (long term), intersect. The critical mean 
square displacement is defined as the ordinate of the critical 
point, that is, the value of the linear approximation at the 
critical time interval (Melzer et al., 2010). It represents the 
mean quadratic displacement covered in the critical time 
interval, that is, in a period of persistence. While these vari-
ables differ significantly between fallers and non-fallers in 
Tuunainen et al. (2014) and between individuals who sus-
tained injuries after falls compared to non-fallers and fallers 
without injuries in Kurz et al. (2013), previous works have 
shown that these variables 646 have low reliability (Qiu & 
Xiong, 2015). Moreover, these variables are uniquely derived 
from the other SDA 647 parameters and therefore with these 
additional features the model is not parsimonious (Chiari 
et al., 2000). �̂Xs , �̂Xl , �̂

X

s , and �̂
X

l  denote the OLS estimator of 
�Xs , �X

l
, �Xs , and �X

l
, respectively. Then:

Note that if the estimated critical time is larger than dura-
tion limit ∆tN, it is set at ∆tN. The critical mean square dis-
placement is defined as.

Critical time and critical MSD are similarly defined for the 
AP axis with Y.

3.6  |  Descriptive analysis

Average values of the different variables and their stand-
ard deviations are reported in Table 7. Variables that are 
strongly correlated with the total duration of the record-
ing (such as the Length Over Area) are reported separately 
in the second part of the table. Interestingly, and despite 
the significant differences between the two datasets, 
the range of values obtained were comparable for most 
variables. However, there are still some noticeable dif-
ferences, particularly for the variables PEAK VELOCITY 
ML, TOTAL POWER ML, ENERGY CONTENT BELOW 
0.5HZ ML, and SHORT TIME DIFFUSION ML which 
show standard deviations higher than the means on the 
SmartCheck database. This is in line with previous works 
that have hypothesized that longer recording duration 
might be necessary for the proper evaluation of the per 
spectrum (Vieira et al., 2009b). Moreover, the standard 

CRIT. TIME ML exp
⎛⎜⎜⎝
�̂
X

s − �̂
X

l

�̂
X
s − �̂

X
l

⎞⎟⎟⎠

CRIT. MSD ML �̂
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s
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T A B L E  7   Distribution of COP variables. For each variable, average values and standard deviations are reported in each dataset. WBB 
dataset refers to the data from our experiment, recorded with the Wii Balance Board and Public dataset refers to the open-access dataset of 
human balance (Santos & Duarte, 2016a). Duration sensitive variables refer to variables that are strongly dependent on the duration of the 
recording

Mean ± SD (WBB dataset) Mean ± SD (Public dataset)

Mean distance ML 0.31 ± 0.25 0.24 ± 0.10

Mean distance AP 0.53 ± 0.28 0.39 ± 0.19

Mean distance radius 0.68 ± 0.38 0.51 ± 0.22

Maximal distance ML 1.21 ± 0.98 0.94 ± 0.40

Maximal distance AP 1.89 ± 1.00 1.47 ± 0.65

Maximal distance radius 2.05 ± 1.16 1.58 ± 0.68

Rms ML 0.40 ± 0.31 0.30 ± 0.12

Rms AP 0.66 ± 0.35 0.49 ± 0.24

Rms radius 0.79 ± 0.44 0.59 ± 0.26

Amplitude ML 2.08 ± 1.67 1.67 ± 0.69

Amplitude AP 3.37 ± 1.79 2.64 ± 1.15

Amplitude ML AND AP 3.59 ± 2.03 2.79 ± 1.20

Quotient both direction ML AND AP 0.62 ± 0.29 0.66 ± 0.17

Planar deviation ML AND AP 0.79 ± 0.44 0.59 ± 0.26

Coefficient sway direction ML AND AP 0.01 ± 0.30 0.03 ± 0.20

Confidence ellipse area ML AND AP 6.01 ± 9.35 3.02 ± 3.32

Mean velocity ML 0.83 ± 0.68 0.50 ± 0.22

Mean velocity AP 1.60 ± 1.36 0.87 ± 0.39

Mean velocity ML AND AP 1.97 ± 1.60 1.10 ± 0.47

Sway area per second ML AND AP 0.48 ± 0.79 0.18 ± 0.20

Phase plane parameter ML 1.20 ± 1.03 0.75 ± 0.31

Phase plane parameter AP 2.23 ± 1.74 1.25 ± 0.55

Peak velocity pos SPD ML 1.04 ± 0.98 0.65 ± 0.32

Peak velocity neg SPD ML 1.05 ± 1.06 0.65 ± 0.33

Peak velocity all SPD ML 1.05 ± 1.02 0.65 ± 0.33

Peak velocity pos SPD AP 2.17 ± 2.12 1.19 ± 0.60

Peak velocity neg SPD AP 2.14 ± 1.95 1.20 ± 0.64

Peak velocity all SPD AP 2.16 ± 2.03 1.19 ± 0.62

Mean peak sway density 1.05 ± 0.71 1.84 ± 0.92

Mean distance peak sway density 0.59 ± 0.39 0.34 ± 0.20

Mean frequency ML 0.52 ± 0.21 0.39 ± 0.13

Mean frequency AP 0.56 ± 0.29 0.42 ± 0.15

Mean frequency ML AND AP 0.48 ± 0.22 0.37 ± 0.12

Total power ML 3.03 ± 8.22 2.14 ± 2.08

Total power AP 6.33 ± 8.52 5.66 ± 10.22

Power frequency 50 ML 0.42 ± 0.13 0.43 ± 0.14

Power frequency 50 AP 0.37 ± 0.18 0.42 ± 0.13

Power frequency 95 ML 1.16 ± 0.42 1.09 ± 0.23

Power frequency 95 AP 1.33 ± 0.56 1.23 ± 0.24

Frequency mode ML 0.32 ± 0.17 0.33 ± 0.18

Frequency mode AP 0.25 ± 0.19 0.27 ± 0.14

(Continues)
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deviation of the variables is generally higher in the re-
cordings from our protocol, which might result from 
both the shorter recording duration and the more varied 
demographics.

4   |   DISCUSSION

The main objective of this review is to present the variables 
calculated from the stabilogram that are most commonly 
used in the analysis of balance in elderly participants 
prone or not to fall. The rationale of this approach is to 
propose a common framework for the analysis of COP dis-
placements by presenting together the calculation meth-
ods and the values obtained on two different databases. In 
order to provide an explicit corpus, we relied on a recent 

systematic review with published methodology and broad 
selection criteria for the variables. The results of 70 vari-
ables are presented for two groups of participants aged 60 
and over, with and without a history of falls. The means 
and standard deviations thus obtained make it possible 
to appreciate the homogeneity of the values despite sig-
nificant differences in the recording protocols. The first 
protocol corresponds to a methodology easily applicable 
in routine consultations, while the other is more in line 
with the metrological standards of posturography.

4.1  |  Aging and postural control

Falls in the older population are multifactorial in na-
ture as they include socio-economic and environmental 

Mean ± SD (WBB dataset) Mean ± SD (Public dataset)

Centroid frequency ML 0.65 ± 0.18 0.61 ± 0.14

Centroid frequency AP 0.69 ± 0.25 0.66 ± 0.14

Frequency dispersion ML 0.61 ± 0.07 0.56 ± 0.06

Frequency dispersion AP 0.65 ± 0.07 0.60 ± 0.05

Energy content below 05 ML 2.23 ± 7.21 1.36 ± 1.75

Energy content below 05 AP 4.23 ± 5.71 3.67 ± 8.47

Energy content 05 2 ML 0.75 ± 1.27 0.76 ± 0.90

Energy content 05 2 AP 1.83 ± 3.46 1.93 ± 2.23

Energy content above 2 ML 0.05 ± 0.24 0.01 ± 0.01

Energy content above 2 AP 0.26 ± 1.53 0.05 ± 0.07

Frequency quotient ML 0.02 ± 0.02 0.01 ± 0.00

Frequency quotient AP 0.03 ± 0.06 0.01 ± 0.01

Short time diffusion ML 0.72 ± 1.44 0.32 ± 0.34

Long time diffusion ML 0.36 ± 1.10 0.09 ± 0.14

Critical time ML 0.54 ± 0.74 0.41 ± 0.22

Critical displacement ML 0.31 ± 1.05 0.07 ± 0.14

Short time scaling ML 0.83 ± 0.07 0.90 ± 0.03

Long time scaling ML 0.17 ± 0.19 0.19 ± 0.10

Short time diffusion AP 1.72 ± 2.53 0.80 ± 1.03

Long time diffusion AP 0.88 ± 1.19 0.26 ± 0.59

Critical time AP 0.68 ± 0.47 0.43 ± 0.24

Critical displacement AP 0.81 ± 1.17 0.22 ± 0.58

Short time scaling AP 0.81 ± 0.10 0.88 ± 0.03

Long time scaling AP 0.08 ± 0.18 0.18 ± 0.12

Duration sensitive variables Mean ± SD (WBB dataset) Mean ± SD (Public dataset)

LFS ML AND AP 14.49 ± 9.52 31.26 ± 14.83

Fractal dimension ML AND AP 1.88 ± 0.23 1.98 ± 0.15

Zero-crossing SPD ML 127.43 ± 34.16 195.47 ± 32.94

Zero-crossing SPD AP 113.84 ± 31.43 200.08 ± 39.55

T A B L E  7   (Continued)
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elements in addition to biomedical factors. By providing 
a quantification of motor control in the elderly people, 
static posturography could help to determine a balance 
semiology (Nardone & Schieppati, 2010), especially for 
the most fragile people. This is particularly true since 
age-related sensorimotor alterations can impact motor 
functions and increase the risk of falling (Ambrose et al., 
2015). Static balance is controlled in a complex way by 
different sensory (visual, vestibular, proprioceptive, and 
tactile) and neuromotor systems (involving both sensory 
integration and movement planning to cortical control of 
standing and spinal reflex action resulting in changes in 
joint stiffness and damping; Goodman & Tremblay, 2021; 
Kang et al., 2013; Winter et al., 1998). Older people show 
altered motor strategies compared to young and healthy 
people, either for balance maintenance tasks or postural 
anticipation in the face of destabilization (Garcez et al., 
2021; Woollacott & Manchester, 1993). But, in addition to 
the difficulty of studying the interactions between these 
systems and their actions in posture maintenance, there 
is a lack of interpretability of the COP variables (Palmieri 
et al., 2002), which is enhanced by the diversity of meth-
ods for calculating them. Finally, the choice of variables 
is difficult to justify from a physiological point of view 
(Chaudhry et al., 2011).

In the recent years, numerous methods have been 
proposed to analyze the trajectory of the COP, in order 
to investigate the differences between elderly fallers and 
non-fallers, as presented in our previous systematic review 
(Quijoux et al., 2020). At the same time, the univariate anal-
ysis of postural variables provides limited information on 
the physiological causes of falls (Duarte & Freitas, 2010). 
This has encouraged the multiplication of variables, as it 
may be necessary to analyze all the components of the sta-
bilogram—in a particular axis and in two dimensions—to 
fully capture the COP dynamics and the age-related motor 
adaptations (Bargiotas et al., 2018). Indeed, age-related de-
cline in postural control is not uniform, which is under-
standable given the various anatomical structures that may 
be affected (Shaffer & Harrison, 2007).

Distal myelin fibers and sensory receptors are affected 
by senescence and sedentary life, leading to impaired pro-
prioception, particularly in the hips, knees, and ankles 
(Horak et al., 1989; Robbins et al., 1995), as well as loss of 
touch discrimination (Perry, 2006), with a potential pre-
dominance in the distal joints of the lower limb (Pickard 
et al., 2003; Shaffer & Harrison, 2007). At the neuromus-
cular level, all the contractile properties of the muscles 
are impacted (Liu et al., 2005), notably by the reduction 
in the vascular feeding system and thus, in the number 
of muscle fibers, their volume and their contractibility. 
Presynaptic inhibition of Ia afferents, which plays a role 
in leg muscle contractility, is more favored in the elderly 

when sensory and somesthetic afferents are reduced 
(Baudry & Duchateau, 2012). This type of neuromuscular 
alteration could partly explain the adoption of a leg mus-
cle co-contraction strategy in the elderly (Papegaaij & 
Hortobágyi, 2017). This co-contraction may reduce the ex-
ploitation of proprioceptive afferents from the mechano-
receptors (Baudry, 2016; Benjuya et al., 2004; Craig et al., 
2016) and the efficiency of the muscular efferents in the 
segmental control of balance (Finley et al., 2012; Nelson-
Wong et al., 2012). A significant correlation between the 
increase in co-contraction measured in the elderly and 
the increase in MAX AP was found, whereas it was absent 
in young adults (Baudry & Duchateau, 2012). As a result, 
studies agree that an overall shift in balance control from 
spinal to supraspinal levels occurs in older adults, in line 
with what is found in healthy subjects when proprio-
ceptive afferents decrease (Alizadehsaravi et al., 2020). 
Given the diversity of disorders affecting the elderly, a 
bilateral alteration of the vestibular system could lead to 
an increase in the values of the COP variables, as seen on 
SWAY LENGTH (Mbongo et al., 2005). When visual in-
puts are altered (with the use of a moving target), there is 
an increase in the contribution of the knee and hip joints, 
which correlate with an increase in COP variables in the 
elderly people (Freitas & Duarte, 2012). An increase in 
the amplitude of displacement suggests a decrease in 
the ability to maintain a stable upright position, but the 
diversity of results obtained for positional and dynamic 
variables led Palmieri et al. to minimize their clinical in-
terpretation (Palmieri et al., 2002). Dynamic, frequency, 
and stochastic variables could provide complementary 
and clinically relevant information. Although more stud-
ies are needed before concluding on their physiological 
interpretation, we note that biomechanical modeling 
has shown a negative correlation between the supposed 
stiffness of the system and mean frequency and MEAN 
VELOCITY, but positive with CRITIAL TIME (Maurer & 
Peterka, 2005).

4.2  |  Feature classification

To the best of our knowledge, the classification of pos-
turographic variables that is introduced in this study is 
new and differs from previous classification paradigms. 
Duarte and Freitas (2010) used a classification which 
distinguishes the descriptors resulting from a structural 
analysis—that is, which aim to explain the control pos-
tural commands through the behavior of the COP, with 
sway density models or stochastic models—from other 
variables. In Prieto et al. (1996), four categories of descrip-
tors were proposed: (1) time-domain distance measures, 
(2) time-domain area measures, (3) hybrid measures, and 
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(4) frequency-domain measures. The first class includes 
features associated with either the displacement of the 
COP from the average, or the velocity; the second gath-
ers geometric approximations of the surface of the COP; 
the third includes combinations of distance measures 
(Prieto et al., 1996), which have been considered by oth-
ers as dimensionless features (Qiu & Xiong, 2015); the 
fourth contains variables related to the analysis of the 
power spectral density of the COP trajectory, usually ob-
tained through Fast Fourier Transformation (FFT). Our 
classification, while similar to the one proposed in Prieto 
et al. (1996), presents two major differences. First, since 
the work of Prieto et al. (1996), popular stochastic models 
have been developed (Collins & De Luca, 1993; Duarte & 
Freitas, 2010; Qiu & Xiong, 2015). Hence we introduce a 
fourth category of variables, called stochastic descriptors, 
which includes the features derived from stochastic-based 
models of the COP. Second, we choose to regroup the 
non-stochastic, non-frequency derived descriptors into 
positional and dynamic classes. Importantly, this classifi-
cation originated from signal processing concepts, and its 
main purpose was to ease the reading of this study.

4.3  |  Variables reliability

The reliability of stabilogram variables depends on several 
factors. The variation in the values of the posturographic 
variables recorded on the force platform reflect the par-
ticipation of the muscles involved in maintaining balance 
and the contribution of the joints to postural oscillations. 
Feet placement could also modify postural strategy in 
older population (Chiari et al., 2002; Winter et al., 1996). 
For instance, when feet are joined, the ML displacements 
of the COP are mostly influenced by the hip adductors and 
abductors, whereas in the tandem position, movements in 
the ML direction are mostly related to the contractions of 
the invert and spurs muscles of the leg (Prince et al., 1995; 
Winter et al., 2003, 1996). In the upright, straight position, 
feet open up by 45◦ apart, the movement in the ML di-
rection is a mix of hip and ankle strategies, whereas the 
AP displacements are under the dominance of the ankle 
muscles.

Anthropometric factors influencing posturographic 
variables include height, weight, maximum foot width, 
base of support area, and foot opening angle as the relevant 
biomechanical variables (Chiari et al., 2002). The authors 
note a significant dependence of gender for the SWAY 
LENGTH, in the AP direction with eyes open. This could 
be explained by higher “height” and “weight” in males, 
with which the variables are strongly positively correlated. 
As also mentioned by the authors, several ML variables, 
especially positional (MEAN DISTANCE ML, SWAY 

LENGTH ML, RMS ML, RANGE ML), dynamic vari-
ables (MEAN VELOCITY ML), and frequentist variables 
(TOTAL POWER, FREQ. DISP. ML), decrease while base of 
support increase, in eyes-open condition. Few frequentist 
variables are positively correlated with the size of the base 
of support (50% POWER FREQ ML, 95% POWER FREQ, 
CENTROIDAL FREQ ML). At the same time, the foot 
opening angle could have only a marginal or no impact on 
the variable values during open-eyes recordings. The max-
imum foot width showed a positive correlation for several 
frequentist variables but negative for the stochastic vari-
ables (notably SHORT TIME DIFFUSION COEFFICIENT, 
LONG TIME DIFFUSION COEFFICIENT, and SHORT 
TIME SCALING DIFFUSION). These results illustrate the 
impact of morphological factors and foot position on the 
variables that vary within each family. It should be noted 
that these results are based on a signal filtered at 8 Hz and 
downsampled at 20 Hz. Between sessions, posturographic 
variables have shown good reliability in the elderly people 
with the same experimental conditions (Li et al., 2016). 
Riemann et al. have shown a better reliability of the vari-
ables when the position of the feet was left at the partic-
ipant's choice, also considered as comfortable (Riemann 
& Piersol, 2017). Imposing a standardized foot placement 
could lead to a change of the biomechanics of the lower 
limp by reducing the number of degrees of freedom and 
hence, modify the strategy adopted to maintain balance 
(Gibbons et al., 2019). Finally, the authors do not agree on 
a recommendation concerning the position of the feet and 
the width of the base of support, either by standardizing 
them or by leaving it to the subject's choice of comfort, to 
increase the reliability of the measurements (Riemann & 
Piersol, 2017; Ruhe et al., 2010).

The differences between the values reported in the 
literature may also be explained by differences in equip-
ment, sampling frequency, preprocessing, and acquisi-
tion protocol (Carpenter, Frank, Winter, et al., 2001; Ruhe 
et al., 2010; Vieira et al., 2009b; Schmid et al., 2002). First, 
the sampling frequency varies greatly between studies. 
The sampling frequency seems to have a greater impact 
on frequency variables than on positional and dynamic 
variables. Rhea et al. add that a decrease in the sampling 
frequency (from 100 to 25 Hz) has a non-significant im-
pact on the nonlinear analyses to obtain the stochastic 
variables (Rhea et al., 2015). The reliability of the WBB, 
used in this study, has been widely studied in the liter-
ature and the authors generally conclude that it can be 
used to record balance (Abujaber et al., 2015; Bartlett 
et al., 2014; Clark et al., 2010; Severini et al., 2017). 
However, we would emphasize the need to correct the 
sampling frequency of this force platform and refer the 
readers to our previous work for more details (Audiffren 
& Contal, 2016).
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Second, the differences between preprocessing strat-
egies that can be found in the literature may alter the 
computation of the parameters (Schmid et al., 2002), in 
particular for the dynamic group, as they involve the de-
rivative of the trajectory and are sensitive to the cut-off 
frequency of applied filters. This led to the recommenda-
tion of a sampling frequency of 100 Hz and a cut-off fre-
quency of 10 Hz, in the absence of further studies (Ruhe 
et al., 2010).

Third, reliability may be affected by the acquisition 
protocol. It has been claimed that a sufficient recording 
duration, generally around 60  s, is required to obtain a 
robust estimation of the power spectral frequency (Vieira 
et al., 2009b). The dynamic variables could show a greater 
reliability as the recording time is increased, up to 90  s, 
and then the benefit would be less noticeable (Ruhe et al., 
2010). However, the relevance of continuing the record-
ings beyond 60 s must be measured according to the pop-
ulation to be recorded because, on the one hand, good 
reliability has been obtained with dynamic and stochastic 
variables as early as 30 s (Caballero et al., 2015; Nagymáté 
et al., 2018) and the reproducibility of the variable mea-
surements does not show the same dependence on the du-
ration of recording according to the families of variables 
(Nejc et al., 2010), while on the other hand, proposing long 
recordings with several repetitions does not seem very fea-
sible for measuring the balance in the clinical context, es-
pecially for extremely fragile people (Alsubaie et al., 2019). 
Additionally, many of the parameters, such as the MEAN 
VALUE, RMS, and all variables derived from the power 
spectral density analysis, are based on the assumption that 
the COP signal is stationary, which is generally not true 
(Strang et al., 2013). This could significantly impact the 
variability of the parameters (Carroll & Freedman, 1993).

This influence of individual factors, experimental con-
ditions, and preprocessing methods on the values of the 
COP variables makes particularly essential studies repro-
ducibility which could be eased by the use of standardized 
definitions and implementation of the posturographic 
variables.

4.4  |  Scope and limitations

This review focuses on the variables used to discriminate 
between elderly fallers and other older adults. However, 
in order to generalize the description of the variables, and 
more generally the mathematical requirements for cal-
culating them, it was necessary to extend the search to 
the references of the articles, which made it possible to 
highlight the reliability of several indices as well as their 
variability according to age. This review does not take into 
account indices that can be used to distinguish between 

younger and older participants and as such cannot be 
described as comprehensive. Many other posturographic 
variables have been proposed to 819 assess the risk of falls 
in older people, either through measures of dynamic bal-
ance (Ringhof & Stein, 2018), or in correlation with clinical 
assessments of motor skills (Cheng et al., 2012; Karlsson & 
Frykberg, 2000), or because they are less commonly found 
in the literature, which did not fit the selection criteria of 
this review. Regarding the latter, we have not included 
variables based on biomechanical or other equilibrium 
modeling (Koltermann et al., 2020; McKee & Neale, 2019; 
Nicolai et al., 2021), as well as several other modelizations 
such as wavelet analyses (Chagdes et al., 2009), sample 
entropy analysis, and other associated entropies compu-
tations (Degani et al., 2017; Gow et al., 2015) or analyses 
based on Markov chains (Hur et al., 2012). To overcome 
these limitations, further literature reviews should be con-
ducted in the future to explore the most recent methods 
that have been applied to the postural signals. This would 
require going beyond the variables used to discriminate 
between fallers and non-fallers.

We only present the calculation methods here, but the 
search for correlations between the risk of falling and 
these posturographic variables and their exploitation for 
prevention purposes leads to selection processes. Several 
models could be considered to identify the most relevant 
variables in the assessment of fall risk, whether using a 
Poisson regression (Palumbo et al., 2015) or zero-inflated 
models (Ullah et al., 2010) to describe the number of falls 
in a given time as well as other nonlinear approaches with 
a selection process of the multiple variables as it was re-
cently performed in patients with Parkinson's disease 
(Bargiotas et al., 2021) or between healthy fallers and non-
fallers (Audiffren et al., 2016).

The presentation of the values on the basis of two dif-
ferent recording protocols, and the similarity of the results 
obtained for these two populations, should enable more 
homogeneity in future studies, while the link between 
the physiology of static balance and these posturographic 
variables remains to be clarified.

5   |   CONCLUSION

A review of the literature on the analysis of the charac-
teristics of the COP for the discrimination of elderly peo-
ple at high risk of falling revealed the lack of information 
concerning the methods of calculation of the posturo-
graphic variables used, as well as the lack of homogene-
ity and standardization between studies. By presenting 
a comprehensive glossary of calculation methods and 
a library of functions that is as clear and exhaustive as 
possible, this should facilitate reproducibility between 
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studies. Comparison with future studies should also be 
made easier by providing a basis for comparing these 
variables for two different protocols of COP recording, 
in elderly participants, with or without a history of falls. 
The choice of the selection of variables among the grow-
ing number of possible methods of analysis of the COP 
trajectory should be explained, in particular to make 
explicit whether it is based on a statistical approach to 
reduce the dimensionality of the exploration or on habits 
that are the result of clinical experience and interpret-
ability of the chosen variables. Furthermore, the exact 
definitions of the variables used should be detailed and it 
should be precised if these variables depend strongly on 
the standardization of foot placement or on the length of 
the recording. In addition, despite the similarities that we 
observed between the values obtained with two different 
protocols of quiet stance balance recorded on two sepa-
rated samples of elderly people, it is advisable to follow 
the recommendations concerning recording duration (of 
at least 60 s with several repetitions), the sampling fre-
quency (100 Hz and a cut-off frequency of 10 Hz) and a 
standardization of the placement of the feet on the force 
platform (especially if the variables that depend on the 
base of support are used), when it is possible. Regarding 
the instructions, the positioning of the arms, generally 
alongside the body, the use of instructions to the partici-
pant such as to remain stable without moving or the ad-
dition of a visual target to facilitate standing at a distance 
of a few meters from the person should be indicated. 
These recommendations must take into account the fea-
sibility of recording balance in a real environment, which 
does not necessarily permit this level of standardization 
depending on the equipment used, the space available, 
or the physical capacities of the elderly people being re-
corded, especially when their frailty leads to a high risk 
of falling, since these people are probably the ones who 
could benefit most from fine balance measurements. 
Future studies with a larger sample size and longitudinal 
follow-up could further investigate the choice of a com-
bination of postural variables, as well as the benefits of 
multidimensional analysis in elderly people.
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