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Oxidative stress is a leading contributor to spinal cord ischemia-reperfusion (SCIR) injury. Recently, MLN4924, a potent and
selective inhibitor of the NEDD8-activating enzyme, was shown to exert a neuroprotective effect against oxidative stress in vitro.
However, it is unknown whether MLN4924 plays a protective role against SCIR injury. In the present study, we found that
MLN4924 treatment significantly attenuated oxidative stress and neuronal cell death induced by H2O2 in SH-SY-5Y neural cells
and during rat SCIR injury. Furthermore, MLN4924 administration restored neurological and motor functions in rats with
SCIR injury. Mechanistically, we found that MLN4924 protects against H2O2- and SCIR injury-induced neurodegeneration by
regulating sirtuin 1 (Sirt1) expression. Collectively, these findings demonstrate the neuroprotective role of MLN4924 against
oxidative stress in SCIR injury via Sirt1.

1. Introduction

Spinal cord ischemia-reperfusion (SCIR) injury is a major
complication of thoracoabdominal aortic surgery [1], which
can result in debilitating paraplegia with a reported incidence
of 3-18% [2]. Despite considerable therapeutic interventions
to reduce SCIR injury, the protective effect of these interven-
tions is very limited and the incidence of paraplegia remains
high [3, 4].

The pathophysiological changes underlying ischemia-
reperfusion (I/R) injury involve necrosis and apoptosis [5].
During I/R, hemorrhage and fluid resuscitation promote the
excessive production of reactive oxidative species (ROS), which
overwhelms the antioxidant defense system and ultimately
leads to cell death and neuronal damage [6]. Although the cel-
lular and molecular mechanisms that cause I/R damage to the
medulla spinalis are poorly understood, many studies have
demonstrated that oxidative stress plays a crucial role in the

pathogenesis of I/R injury [7, 8]. In line with these reports,
our previous studies revealed that the administration of adenine
dinucleotide (NAD) or hydrogen sulfide effectively protected
against SCIR injury by reducing oxidative stress-induced neuro-
nal apoptosis [1, 9, 10]. Thus, pharmacological therapies target-
ing oxidative stress may be critical for limiting SCIR injury.

MLN4924, a newly discovered small molecule inhibitor
of the NEDD8-activating enzyme (NAE), inactivates
Cullin-RING E3 ubiquitin ligases (CRLs) by blocking CUL-
LIN neddylation [11]. In addition to the antiproliferative
and proapoptotic properties [12, 13], the neuroprotective
role of MLN4924 was also demonstrated. It was reported that
MLN4924 significantly attenuated H2O2-induced neurocyte
damage in vitro via Nrf2 protein accumulation [14]. How-
ever, it is unknown whether MLN4924 effectively prevents
oxidative damage in SCIR.

Given that oxidative stress contributes to neurodegenera-
tion during SCIR and MLN4924 is reported to provide
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neuroprotection against oxidative injury, we aimed to inves-
tigative whether MLN4924 could protect against oxidative
stress-induced cell damage during SCIR.

2. Materials and Methods

2.1. Animals. Eight-week-old male Sprague-Dawley rats,
weighing 180-250 g, were obtained from Shanghai Labora-
torial Animal Center at the Chinese Academy of Sciences.
The rats had ad libitum access to food and water in an air-
conditioned room with a 12h light-dark cycle, at 25°C and
50% relative humidity, in the animal cage at Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, China.

2.2. Ethics Statement. All animal experiments were per-
formed in accordance with the protocol approved by the
Shanghai Jiao Tong University (SJTU) Animal Care and
Use Committee (IACUC protocol number: SYXK (Shanghai)
2011-0113) and in accordance with the Ministry of Science
and Technology of the People’s Republic of China Animal
Care guidelines. All surgeries were performed under anesthe-
sia, and all efforts were made to minimize the suffering of
animals.

2.3. SCIR Injury. The I/R model was generated according to
previous reports [1, 9, 10]. All rats were neurologically intact
and anesthetized with intraperitoneal injection of 2.5%
sodium pentobarbital (60mg/kg) following SCIR injury.
After the procedures and drug interventions, the animals
were euthanized with an overdose of sodium pentobarbital
(intraperitoneal injection, 160mg/kg) [15, 16].

2.4. SCIR Treatment. For the in vivo experiments, the animals
were assigned a unique number and then randomly divided
into groups (n = 6 per group). The sham group underwent
the surgical procedure without aortic clipping. The I/R group
received abdominal aortic exposure and cross-clamping for
60min followed by intraperitoneal injection of an equivalent
volume of 0.9% saline solution immediately after reperfusion.
The rats in the I/R +MLN4924 (S7109, Selleck Chemicals)
(n = 6) and I/R +MLN4924 + EX527 (S1541, Selleck Chemi-
cals) (n = 6) groups also received the same surgical procedure
as those in the I/R group but were treated with MLN4924
immediately after I/R injury. EX527 was injected 0.5 h before
the onset of SCIR in the I/R +MLN4924 + EX527 group. All
experiments were repeated three times.

2.5. Neurological Function Assessment. Locomotor recovery
after SCIR was assessed using the Basso, Beattie, and Bresna-
han (BBB) open-field locomotor scale [17], which is scored
from 0 (complete paralysis) to 21 (normal locomotion).
The BBB scores were recorded at 1, 6, 12, and 24 h in the
acute phase after reperfusion by two experienced investiga-
tors who were blinded to the experimental groups and treat-
ments. Disagreements were resolved via discussion to reach a
consensus.

2.6. Cell Culture. SH-SY-5Y neural cells [18, 19] were pur-
chased from the China Center for Type Culture Collection
(Wuhan University, China, 22-4-2015, http://www.cctcc

.org) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM) (Invitrogen, Carlsbad, CA, USA) containing 10%
fetal bovine serum (Invitrogen) and antibiotics
(100 units/mL penicillin and 100μg/mL streptomycin) incu-
bated in a humidified atmosphere containing 5% CO2 at
37°C. The cells were passaged every 3-5 days with 0.25%
trypsin-ethylenediaminetetraacetic acid (Invitrogen, Carls-
bad, CA, USA).

2.7. Cell Treatment. A variety of freshly prepared doses of
H2O2 were added for 6 h to the cells with or without pretreat-
ment with MLN4924 for 1 h before all experiments. The neu-
rotoxic effects of H2O2 and MLN4924 were assessed by cell
counting kit-8 analysis, terminal deoxynucleotidyl
transferase-mediated dUTP nick end labeling (TUNEL)
immunofluorescence staining, and immunoblot analysis of
Bax, B-cell lymphoma 2 (BCL2), and cleaved caspase-3
expression. The oxidative stress was detected by malondial-
dehyde (MDA) concentration and superoxide dismutase
(SOD) activity.

2.8. Oxidative Stress Assay. SOD activity and the MDA con-
centration in the SH-SY-5Y cells and spinal cord tissue were
determined using a superoxide dismutase assay kit (Beyo-
time, Shanghai, China) and MDA kit (Nanjing Jiancheng
Bioengineering Institute, China). The SH-SY-5Y cells were
pretreated with different concentrations of MLN4924 for
1 h prior to exposure to H2O2 (200μM) for an additional
6 h. The cells were washed twice with precooled phosphate-
buffered saline (PBS). Fresh spinal cord tissues were collected
and washed with precooled PBS.We added ninefold the mass
of PBS to convert the spinal cord tissue into 100 g/L homog-
enates in a homogenizer. The homogenates were centrifuged
at 4°C for 15min at a speed of 3500 r/min. The homogenates
were collected and incubated in radioimmunoprecipitation
assay (RIPA) lysis buffer in order to determine the total pro-
tein contents using the bicinchoninic acid protein assay kit
(Beyotime Biotechnology). Samples were measured and ana-
lyzed according to the manufacturer’s instructions.

2.9. Immunofluorescence Staining of Sirtuin 1. The treated
SH-SY-5Y cells were fixed with 4% paraformaldehyde for
15min at 22 ± 2°C, then permeabilized with 0.5% Triton X-
100 for 10min, and finally blocked with 5% serum albumin
for 1 h. The cells were then incubated with primary antisir-
tuin 1 (Sirt1) (1 : 100; Abcam) diluted in 1% bovine serum
albumin at 4°C overnight. The cells were washed three times
with PBS with Tween 20 (PBST) and incubated with the sec-
ondary antibody solution for 1 h at 22 ± 2°C in the dark and
then washed three times with PBST. DAPI was added drop-
wise, and the cells were incubated in the dark for 5min to
stain the nuclei. The excess DAPI was removed by washing
three times with PBST, the antifluorescence quencher was
added dropwise, and images were collected under a fluores-
cence microscope.

2.10. Immunohistochemical Staining Analysis of NEDD8 and
CULLIN1. Immunohistochemical staining was performed as
previously described [20]. Briefly, after the slides were incu-
bated with blocking serum for 60min, they were blotted
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and then overlaid with the primary antibody against NEDD8
(NEDD8 (19E3) rabbit monoclonal antibody #2754, CST),
CULLIN1 (rabbit monoclonal antibody (EPR3103Y) to
CULLIN1/CUL-1, ab75817, Abcam), or Sirt1 (rabbit mono-
clonal antibody (EPR18239) to Sirt1, ab189494, Abcam) for
2 h at 22 ± 2°C. Subsequently, biotinylated secondary anti-
bodies (anti-rabbit IgG (H + L), biotinylated antibody
#14708, CST) were added into the sections, followed by a
peroxidase-labeled streptavidin-biotin staining technique
(DAB Kit, Invitrogen, Paisley, UK).

2.11. siRNA Preparation and Targeting Gene Knockdown.
siRNA oligonucleotides encoding human Sirt1 and the
scrambles were designed and synthesized by GenePharma
(Shanghai, China). A blast search was performed using the
National Center for Biotechnology Information (NCBI)
database to ensure that the siRNA constructs targeted only
human Sirt1. A mixture of three siRNA oligonucleotides for
Sirt1 was used to transfect the SH-SY-5Y cells. The siRNA
construct and transfection were performed according to the
manufacturer’s protocol of Lipofectamine 3000 (Invitrogen).
After 24 h of transfection, the cells were treated with
H2O2/MLN4924.

2.12. TUNEL Staining. A TUNEL assay was performed to
detect cell apoptosis. The cells were stained using the In Situ
Cell Death Detection kit (Roche Diagnostics GmbH) accord-
ing to the manufacturer’s instructions. Briefly, the cells were
incubated with TUNEL solution containing TMR-dUTP for
1 h at 37°C. After labeling with TUNEL, the cell nuclei were
counterstained with DAPI. The cells were then observed
under a fluorescence microscope, and images were acquired.

2.13. Immunoblotting Analysis. The spinal cords and SH-SY-
5Y cells as described were lysed using RIPA buffer (pH7.4)
containing protease inhibitor cocktail (Roche). For the West-
ern blot, 10μg of total protein was used. Sirt1, acetylated
forkhead box O1 (FoxO1), Bax, BCL2, and cleaved caspase-
3 were detected by immunoblotting with Sirt1 antibodies
(Abcam), acetylated FoxO1 (Abcam), Bax (Cell Signaling
Technology), BCL2 (Cell Signaling Technology), and cleaved
caspase-3 (Cell Signaling Technology), respectively. The
intensities of the protein bands were quantified by densitom-
etry analysis using NIH ImageJ software.

2.14. Annexin V-FITC/PI Analysis by Flow Cytometry. The
cells were stained with Annexin V and PI Kit (BD Pharmin-
gen™ FITC Annexin V Apoptosis Detection Kit). The analy-
sis was performed according to the manufacturer’s
instructions. Briefly, the treated SH-SY-5Y cells were washed
with PBS twice and resuspended in 1x binding buffer at a
concentration of 1 × 106 cells/mL. Then, 5μL of Annexin V
and 5μL of PI were added to the 1x binding buffer and the
solution was incubated for 15min at 22 ± 2°C in the dark.
The cells were analyzed using CytoFLEX (Beckman Coulter
Inc., Brea, CA, USA) and CytExpert (version 2.1; Beckman
Coulter Inc.).

2.15. Statistical Analysis. All data are presented as the mean
± standard error of the mean. Two-tailed t-tests were used

to determine the significances between two groups. We per-
formed analyses of multiple groups using a one-way ANOVA
with a Bonferroni posttest in GraphPad Prism 5. For all sta-
tistical tests, P values of <0.05 were considered statistically
significant.

3. Results

3.1. Neddylation Might Be Activated in SCIR Injury.
MLN4924 is reported to inactivate CRLs by blocking CUL-
LIN neddylation. Therefore, to determine whether
MLN4924 can effectively prevent oxidative damage in SCIR
injury, the presence of neddylation activation-related genes,
such as NEDD8 and CULLIN1 [20], was evaluated in the spi-
nal cords of rats with or without I/R injury. The results of
Western blot (Figures 1(a)–1(c)) and immunohistochemical
staining (Figures 1(d) and 1(e)) analyses revealed that CUL-
LIN1 and NEDD8 were notably increased in the spinal cord
after I/R injury. This finding indicates that neddylation acti-
vation might play a pathogenic role in SCIR injury and pro-
vides a strong rationale for evaluating the therapeutic effect
of MLN4924.

3.2. MLN4924 Ameliorated H2O2-Induced Oxidative Stress
and Apoptosis in SY-SH-5Y Neural Cells. The neuroprotec-
tive role of MLN4924 against H2O2-induced oxidative dam-
age was first demonstrated in SY-SH-5Y neural cells.
Figures 2(a) and 2(b) present the results of the cell counting
kit-8 assay. H2O2 treatment inhibited cell viability in a
dose-dependent manner (Figure 2(a)), whereas exposure to
different concentrations of MLN4924 had no significant
effect on the viability of SY-SH-5Y neural cells
(Figure 1(b)). Therefore, 200μM H2O2 and 110nM
MLN4924 were used in our subsequent in vitro experiments.
The concentration of MDA and enzymatic activities of SOD
are often used to evaluate oxidative and antioxidative reac-
tions [21]. A decrease in SOD activity (Figure 2(c)) and an
increase in MDA concentration (Figure 2(d)) were detected
in SY-SH-5Y neural cells in response to H2O2 treatment.
However, both processes were significantly reduced by incu-
bation with MLN4924 (Figures 2(c) and 2(d)). This indicates
that MLN4924 successfully reduced H2O2-induced oxidative
stress in SY-SH-5Y neural cells. In addition, the presence of
cell apoptosis, identified by fluorescence-activated cell sort-
ing (FACS) analysis (Figures 2(e) and 2(f)), and the expres-
sion of BCL2, Bax, and cleaved caspase-3 detected by
Western blot (Figures 3(a)–3(f)) demonstrated that incuba-
tion with MLN4924 significantly decreased H2O2-induced
death of SY-SH-5Y neural cells. Taken together, these data
demonstrated that MLN4924 ameliorated H2O2-induced
oxidative stress and apoptosis in SY-SH-5Y neural cells.

3.3. MLN4924 Ameliorated H2O2-Induced Oxidative Stress
and Apoptosis in SY-SH-5Y Neural Cells via Sirt1. In our pre-
vious studies, we demonstrated the protective effect of NAD
against SCIR injury via reductions in oxidative stress-
induced neuronal apoptosis [9, 10]. Sirt1 is a NAD-
dependent protein deacetylase and has been demonstrated
to protect against I/R injury in various organs [22–24].
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Furthermore, our present results indicated that incubation
with MLN4924 significantly restored Sirt1 expression, which
was decreased by H2O2 (Figures 3(a) and 3(g)). Therefore,
we hypothesized that the amelioration of H2O2-induced oxi-
dative stress and apoptosis in SY-SH-5Y neural cells by
MLN4924 might occur via Sirt1. To test this hypothesis, the
selective Sirt1 inhibitor, EX527, and Sirt1 siRNA were used
to inhibit the Sirt1 pathway. As illustrated in Figures 3(a)
and 4(b), Sirt1 inhibition via 1μM EX527 or siRNA signifi-
cantly increased acetylated FoxO1 accumulation. Accompa-
nied by the increased oxidative stress, as evidenced by the
decreased SOD activity (Figure 2(c)) and increased MDA con-
centration (Figure 2(d)), the protective effect of MLN4924 on
H2O2-induced apoptosis of SY-SH-5Y neural cells was signif-
icantly blocked by incubation with EX527 or Sirt1 siRNA, as
evidenced by the expression of BCL2, Bax, and cleaved
caspase-3 as detected by Western blot (Figures 3(a)–3(f) and
4(b)–4(g)); the presence of TUNEL-positive cells
(Figure 4(a)); and the FACS analysis of cellular apoptosis
(Figures 2(e) and 2(f)). Taken together, these results demon-
strated that MLN4924 ameliorated H2O2-induced oxidative
stress and apoptosis in SY-SH-5Y neural cells via Sirt1.

3.4. MLN4924 Protects against Neurodestruction in SCIR
Injury. We also investigated the in vivo neuroprotective role
of MLN4924 in SCIR injury. Pretreatment with 10, 30, and
60mg/kg of MLN4924 significantly decreased the apoptosis
of neuronal cells as detected by BCL-2, Bax, and reduced

caspase-3 expression and the number of TUNEL-positive
cells (Figures 5(a)–5(d) and 5(f)). Furthermore, MLN4924
pretreatment restored neurological and motor functions as
indicated by the BBB scores (Figure 5(e)). The results also
indicated that 30mg/kg of MLN4924 exerted a more protec-
tive effect than did 10 and 60mg/kg of MLN4924. Taken
together, these results demonstrated that 30mg/kg of
MLN4924 effectively protected against neurodestruction
during SCIR injury, and thus, 30mg/kg of MLN4924 was
used in the subsequent experiments.

3.5. MLN4924 Protects against Neurodestruction in SCIR
Injury via Sirt1. Having established the neuroprotective role
of MLN4924 during SCIR, we next sought to investigate
whether the protective role of MLN4924 was dependent on
Sirt1 in vivo. The Western blot and immunohistochemical
staining analyses revealed that Sirt1 expression was signifi-
cantly decreased in neuronal cells after SCIR injury. How-
ever, MLN4924 treatment significantly restored Sirt1
expression (Figures 6(a), 6(b), and 6(j)). Consistent with
the in vitro results, Sirt1 inhibition by EX527 significantly
blocked the antiapoptotic (Figures 4(a)–4(f) and 7(a)) and
antioxidative (Figures 7(b) and 7(c)) effects of MLN4924 on
neuronal cells in SCIR injury. In addition, the ability of
MLN4924 to rescue neurological and motor function in SCIR
was also reduced by EX527 (Figure 7(d)). Taken together,
these results demonstrated that MLN4924 protects against
neurodestruction in SCIR via Sirt1.
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4. Discussion

Although the pathophysiological mechanisms that underlie
hypoxic/ischemic injury in the spinal cord have not been
fully elucidated, the rapid increase in free radicals and oxida-
tive stress is currently considered the most critical event for
irreversible cellular damage in SCIR injury [25]. A reduction
in blood flow in the spinal cord (ischemia) after aortic or spi-
nal surgery causes hypoxia in the spinal cord and increases
the levels of lactic acid, hypoxanthine, and lipid peroxide.
Reperfusion restores lost cellular functions during ischemia;
however, it increases blood flow and tissue oxygenation and
thereby causes further damage in ischemic tissues via the for-
mation of ROS. This leads to reperfusion injury [26, 27].
Therefore, therapies that protect against I/R injury by inhi-
biting ROS have been explored [28, 29]. Consistently, our

previous reports revealed that the attenuation of oxidative
stress using N-acetylcysteine or sodium hydrosulfide (NaSH)
significantly decreased the apoptosis of neuronal cells and
restored neurological and motor functions during SCIR
injury [1, 9, 10]. Therefore, pharmacological therapies target-
ing oxidative stress may be critical for limiting the damage
caused by SCIR injury.

MLN4924 is a specific inhibitor of NAE. It was initially
discovered via high-throughput screening as a first-in-class
anticancer agent [12, 14]. MLN4924 inhibits NAE activity
by binding to NAE at the active site to form a covalent
Nedd8-MLN4924 adduct and thus inactivates the neddyla-
tion pathway [30]. Beyond the antiproliferative and proapop-
totic properties [12, 13], the anti-inflammatory [20, 31],
cytoprotective, and antioxidant effects of MLN4924 were also
demonstrated recently [32]. In addition, it was demonstrated
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that MLN4924 remarkably attenuated H2O2-induced neuro-
nal damage [14]. Since oxidative stress is a leading cause of
SCIR injury, we evaluated whether MLN4924 could amelio-
rate neuronal damage during SCIR injury. Our results

indicated that treatment with MLN4924 significantly attenu-
ated oxidative stress and neuronal cell death in vivo and
in vitro. Furthermore, restored neurological and motor func-
tions were also observed during SCIR injury after MLN4924
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administration. Thus, our results demonstrated that
MLN4924 could effectively protect against neurodegenera-
tion in SCIR injury.

Sirt1 is an NAD+-dependent protein deacetylase and the
human homolog of yeast Sir2 that has been demonstrated to
affect numerous processes including, but not limited to, cell
survival, differentiation, senescence, and metabolism via
anti-inflammation or antioxidation [33]. Previous studies
have revealed that Sirt1 mediates a wide range of cellular
responses via its deacetylation activity targeting numerous
transcription factors such as nuclear factor-κB, forkhead
box O3, p53, peroxisome proliferator-activated receptor
gamma coactivator-1α, and hypoxia-inducible factor-1α
[34] and directly or indirectly regulates several key nuclear
receptors, including the constitutive activated receptor [35],
farnesoid X receptor [36], peroxisome proliferator-activated
receptor [37], and liver X receptor [38], along with numerous
coregulators [39, 40]. The protective effect of Sirt1 against I/R
injury has been reported in various organs [22, 24]. He et al.
reported that Sirt1 protected the kidneymedulla against oxida-
tive stress injury via the induction of the cytochrome C oxidase
subunit II [41]. Cardiac-specific overexpression of Sirt1 stimu-
lates the expression of prosurvival molecules that decrease the
expression of proapoptotic molecules via the deacetylation of
FoxO1. This reduces oxidative damage and apoptosis as well
as the extent of myocardial infarction after myocardial I/R
injury [23]. Thus, the modulation of Sirt1 signaling might be
a potential therapeutic strategy in the treatment of SCIR
injury. In the present study, we found that SCIR or exposure
to H2O2 significantly reduced Sirt1 expression. However,
MLN4924 treatment rescued the process; therefore, we specu-
lated that MLN4924 protects against neurodegeneration dur-
ing SCIR and this might occur via Sirt1. Our results
indicated that Sirt1 inhibition via the selective inhibitor
EX527 significantly increased acetylated FoxO accumulation.
Accompanied by increased oxidative stress, the protective
effects of MLN4924 on neuronal apoptosis and neurological
and motor functions were significantly blocked by EX527.
Therefore, these data demonstrated that Sirt1 is a target mole-
cule of MLN4924 during protection against SCIR injury.

In the present study, we found that sirt1 neddylation was
notably detected after NEDD8 was overexpressed and was
reduced in the presence of MLN4924. Although neddylation
modification has an important role in regulating ubiquitin-
mediated protein degradation [42], we did not observe an
apparent change in the endogenous Sirt1 content. Therefore,
we speculated that sirt1 neddylation might not play a major
role in MLN4924-normalized Sirt1 expression. On the con-
trary, we found that the mRNA expression of Sirt1 was
reduced in the presence of H2O2 incubation as well as in
the spinal cord after SCIR injury, whereas the expression
was abundantly restored after MLN4924 administration.
This suggests that MLN4924 normalizes Sirt1 expression in
part by regulating Sirt1 mRNA expression.

Although we present important findings in this study, sev-
eral limitations need to be addressed. First, although the SCIR
model used in this study has been widely used due to the seg-
mental blood supply of the spine, the model has its own short-
comings, such as the occurrence of lower limb ischemia.

Different modifiedmodels should be considered in future stud-
ies. Second, although no apparent side effects of MLN4924
were identified in this study regarding the concentrations used
in vivo and in vitro, it must be noted that MLN4924 has both
positive and negative effects. Several studies have revealed the
antisurvival property of MLN4924 in both cancerous cells
and normal cells [30]. Therefore, further studies investigating
higher doses of MLN4924 and longer observation periods are
needed to strengthen and extend our present work.

5. Conclusions

In conclusion, our study provides evidence that MLN4924
can exert a neuroprotective effect against oxidative stress in
SCIR injury by regulating Sirt1 expression and suggests the
potential application of MLN4924 in the treatment of SCIR
injury.
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