
Effects of continuous force application for extrusive 
tipping movement on periapical root resorption in 
the rat mandibular first molar

Objective: The purpose of this study was to clarify the effects of continuous 
force application for extrusive tipping movement and occlusal interference 
on periapical root resorption in the rat mandibular first molar. Methods: We 
constructed an appliance comprising a titanium screw implant with a cobalt–
chromium post as the anchorage unit and a nickel–titanium closed coil spring 
(50 cN) as the active unit. Force was applied on the mandibular left first molar 
of rats for 8 (n = 10) and 15 days (n = 10; experimental groups), with the tooth 
in occlusion. Five rats were included as a non-treated control group to examine 
the body effect of the appliance. Active root resorption lacunae, identified 
using tartrate-resistant acid phosphatase, were evaluated in terms of the length, 
depth, and area. Results: The rat mandibular first molars were mesially tipped 
and extruded in the occlusal direction. This mesio-occlusal tipping movement 
and occlusion resulted in the formation of a compression zone and active root 
resorption lacunae in the distoapical third of the distal roots. However, there 
was no significant difference in the amount of root resorption between the two 
experimental groups. The control group did not exhibit any active root resorption 
lacunae. Conclusions: Periapical root resorption was induced by continuous 
extrusive tipping force and occlusal interference in rat mandibular molars. These 
data suggest that we orthodontists had better take care not to induce occlusal 
interference during our orthodontic treatment.
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INTRODUCTION

The etiology of undesirable root resorption is consid-
ered to be multifactorial. The factors responsible for root 
resorption are now investigated at the molecular level.1,2 
Therefore, a root resorption-inducing model should be 
established to facilitate studies at morphological, cel-
lular, and molecular levels. In the past, a number of 
etiological studies concerning root resorption have 
been conducted, and various root resorption models 
have been developed to test several hypotheses. The re-
plantation model,3 internal resorption model,4 luxation 
model,5 surgical periodontal injury model,6 orthodontic 
injury model,7-10 and freezing injury model11 have all 
provided novel information about the initial phases of 
the resorption process. An in-vitro model has also been 
developed.12 However, orthodontic root resorption dif-
fers from other types of root resorption because it is 
primarily caused by mechanical stress to the periodon-
tium, not by bacterial infection or systemic/metabolic 
diseases.1,2 To date, the maxillary first molar has been 
moved and investigated in most orthodontic root re-
sorption models in rats.1,2 However, the maxillary first 
molar in rats has five roots, including a thick mesial root 
and a narrow mesiobuccal root, that are quite different 
from their human counterparts in shape and composi-
tion. On the other hand, the mandibular first molar in 
rats has two thick roots that are quite similar to those 
of the human mandibular first molar. In order to clarify 
the characteristics of apical orthodontic root resorp-
tion that are different from those of other types of root 
resorption, we tried to establish an apical orthodontic 
root resorption model in the rat mandibular first molar 
for use in experiments examining factors such as the 
effects of differences in periodontal conditions and the 
effects of mechanical stimuli on periodontal and cellular 
responses. The purpose of this study was to clarify the 
effects of continuous force application for extrusive tip-
ping movement and occlusal interference on periapical 
root resorption in the rat mandibular first molar. 

MATERIALS AND METHODS

Animals 
All animal experiments were approved by the In-

stitutional Animal Care and Use Committee of Tokyo 
Medical and Dental University (approval No. 0150192A, 
0160246A). Twenty-five 8-week-old male Sprague 
Dawley rats were randomly divided into a non-treated 
control group (n = 5) and an experimental group (n = 
20) to examine the body effect of an appliance. The 
rats in the experimental group were further randomized 
into an 8-day movement group (8d group, n = 10) and 
a 15-day movement group (15d group, n = 10). The 

animals were kept in separate cages in a 12-hour light/
dark environment at a constant temperature of 23oC and 
were provided food and water ad libitum. All procedures 
were conducted under general anesthesia with ketamine 
hydrochloride (KETALAR 50; Sankyo Co., Ltd., Tokyo, 
Japan) and 20% xylazine hydrochloride (Celactal 2% in-
jections; BAYER-Japan Co., Ltd., Tokyo, Japan). During 
the study period, the rats were weighed every week. 

Experimental tooth movement 
When the rats in the experimental groups were 8 

weeks old, the mandibular left first molars were mesio-
occlusally moved for 8 or 15 days. The necessary anchor-
age was provided by a 3.5-mm-long titanium screw im-
plant with a 1.0-mm diameter (Shioda Co, Ltd., Tochigi, 
Japan)13 that was fixed to the left body of the mandible 
and a cobalt–chromium (Co-Cr) alloy wire with a 1.2-
mm diameter extending along the incisal axis as a post 
(Figure 1A and 1B). A 2-mm-long, 50-cN, superelastic 
nickel–titanium (Ni-Ti) alloy closed coil spring (Tomy 
International Co., Ltd., Tokyo, Japan) extended from the 
tip of the Co-Cr alloy post to a clamp at the furcation 
of the mandibular left first molar (Figure 1C)14 to facili-
tate mesio-occlusal tipping movement. The antagonistic 
teeth were retained to produce occlusal interference. 

Histological analysis 
After the completion of tooth movement in the ex-

perimental groups, the animals were anesthetized using 
diethyl ether and sacrificed by cervical dislocation. The 
left half of the mandible was dissected and immersed 
overnight in 10% neutral buffered formalin (pH 7.4) at 
4oC. Before decalcification, the horizontal distance be-
tween the first and second molars was recorded from the 
center of the distal contact area of the first molar to the 
center of the mesial contact area of the second molar on 
the horizontal stage of a noncontact digital microscopic 
gauge (MS-214; FUSOH Co., Ltd, Tokyo, Japan; Figure 
1D).15 The specimens were then decalcified in 10% (W/
V) ethylene diamine tetra-acetic acid for 4 weeks at 4oC, 
dehydrated, and embedded in paraffin. Serial sections 
with a 5.0-μm thickness were cut along the sagittal axis. 
The sections that included the root canal were stained 
with hematoxylin and eosin to examine root resorption 
in the compression zone. Active resorption lacunae were 
identified by the presence of odontoclasts on the tooth 
surface. These multinucleated odontoclasts were detect-
ed by staining with tartrate-resistant acid phosphatase 
(TRAP). According to our previous study,16 specimens 
were incubated at 37oC for 10 minutes in 0.1 M acetate-
buffered medium (pH 5.4) containing naphthol AS-MX 
(Sigma, St. Louis, MO, USA) as a substrate, fast red violet 
(Sigma) for a color reaction, and 10 mM sodium tartrate 
(Sigma). The reaction was stopped by the addition of 
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Figure 1. A and B, The orthodontic appliance used for extrusive tipping movement. The mandibular left first molar is 
mesio-occlusally tipped by an orthodontic appliance comprising a 3.5-mm-long titanium screw implant (I) with a 1.0-
mm diameter; a cobalt–chromium wire (P) with a 1.2-mm diameter; and a 2-mm-long, 50-cN nickel–titanium (Ni-Ti) 
closed coil spring (CS). The attachment of the appliance to the body of the mandible and the mandibular first molar is also 
illustrated (A). B shows the appliance and screw implant fixed in the oral cavity of a rat. C, The load–displacement curve. 
A part of the load–displacement curve for the 50-cN Ni-Ti closed coil spring shows the unloading (reverse martensitic 
transformation) part of the force, when the spring returns to the original length. The spring was activated to 130–180% 
(arrowheads), which resulted in approximately 50 cN of continuous force. D, The areas assessed for root resorption. The 
horizontal distance between the first and second molars (the space between arrows) was recorded using a noncontact 
digital microscopic gauge. The distoapical compression zone (small rectangular area) in the distal root of the rat mandibular 
first molar (dotted line) is evaluated by averaging the area in the buccal, central, and lingual portions of the middle third 
of the root canal. The cross-section of the distal root is shown in the figure in the right panel. E, The measurement of root 
resorption lacunae. a, b, and c show how the length (RL, black line), depth (RD, dotted line), and area (RA, black region) of 
the active root resorption lacunae were measured on a histological section. Hematoxylin and eosin stain; bar, 250 mm.
L, Lower incisor; M, mesial; D, distal; T, tooth; B, alveolar bone; PDL, periodontal ligament.
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distilled water and the specimens were counterstained 
with hematoxylin. The control specimens were incubated 
in medium without a substrate under the same condi-
tions. 

Quantitative evaluation of root resorption 
The distoapical region of the distal root was observed 

as the compression zone. All sections that included the 
root canal were examined. Sagittal sections from the 
buccal, central, and lingual portions of the middle third 
of the distal root were selected for measurement (Figure 
1D). 

Because the distal root has a stable conformation, the 
root outline can be easily estimated using a reference 
template. The distal root was microphotographed using 
a digital camera (DXm1200; Nikon, Tokyo, Japan), and 
the length (RL), depth (RD), and area (RA) of the resorp-
tion lacunae were three-dimensionally estimated using 
an image analysis program (Image-Pro Plus 4.0; Media 
Cybernetics, Silver Spring, MD, USA). RL and RA repre-
sented the lacunar surface area and volume, respective-
ly,17 while RD was the deepest point from the simulated 
root surface to the resorption surface of the lacuna16 
(Figure 1E). 

Statistical analysis 
The amount of tooth movement and the dimensions 

of the root resorption lacunae are expressed as means 
± standard deviations (n = 10). Comparisons among the 
control, 8d, and 15d groups were performed using t-
tests and Wilcoxon signed-rank tests with a statistical 
software program (SPSS ver. 15.0; SPSS Inc., Chicago, IL, 
USA). The level of significance was set at 0.05. 

RESULTS

The animals in the control and experimental groups 
exhibited no significant differences with regard to 
changes in the body weight during the study period 
(Figure 2). 

Amount of tooth movement 
Horizontal tooth movement was observed in both 

the 8d (0.15 ± 0.09 mm, n = 10) and 15d (0.26 ± 0.13 
mm, n = 10) groups, but not in the control group. The 
amount of tooth movement was not significantly differ-
ent between the two experimental groups (Figure 3). 

Characteristics of root resorption 
TRAP-positive multinucleated cells, i.e., odontoclasts, 

were identified in the root resorption lacunae, indicating 
newly formed lacunae (Figure 4). The control group did 
not exhibit any active lacunae. In all specimens from the 
8d and 15d groups, resorption facing the alveolar bone 
close to the root apex had occurred in the distoapical 
third of the mesial and distal roots; this resorption was 
more severe in the mesial roots. Moreover, most root 
resorption areas did not exhibit a hyalinization zone or 
necrotic periodontal area. 

Quantitative analysis 
The amount and severity of root resorption exhib-
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Figure 2. Changes in the body weight of rats in the 
control (solid line) and experimental (dotted line; extrusive 
tipping movement via continuous force application on 
the mandibular left first molar for 8 or 15 days) groups 
during the study period. Values are expressed as means ± 
standard deviations for 5 to 10 rats. All animals showed 
normal growth during the experiment, with no significant 
differences. This indicates few systemic problems caused 
by the implants and appliances.
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Figure 3. Horizontal tooth movement in the two experi
mental groups of rats (continuous extrusive tipping force 
application on the mandibular left first molar for 8 or 15 
days). Horizontal tooth movement was observed in both 
the 8-day movement group (8d; 0.15 ± 0.09 mm, n = 10) 
and 15-day movement group (15d; 0.26 ± 0.13 mm, n = 
10) groups, but not in the control (C) group. The amount 
of tooth movement was not significantly different 
between the two experimental groups. The bar indicates 
the standard deviation.
**p < 0.01 compared with the control group.
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Figure 4. Tartrate-resistant acid phosphatase (TRAP) and hematoxylin and eosin (H-E)-stained sections from the 
distoapical third of the distal roots of rat mandibular left first molars. Active root resorption lacunae in the control (A, 
D), 8-day (B, E; continuous extrusive tipping force application for 8 days), and 15-day (C, F; continuous extrusive tipping 
force application for 15 days) specimens are stained with TRAP (A, B, C) and H-E (D, E, F). The solid line indicates the 
active root resorption sites. TRAP-positive multinucleated cells, i.e., odontoclasts (red-stained cells, arrowheads), are 
observed in the active lacunae (B, C). Bar, 250 mm.
B, Alveolar bone; T, tooth; PDL, periodontal ligament; M, mesial; D, distal.
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Figure 5. Amount of root resorption measured in terms of the length (RL), depth (RD), and area (RA) of resorption 
lacunae in 8- and 15-day specimens obtained from rat mandibular left first molars subjected to continuous extrusive 
tipping force for 8 and 15 days, respectively The amount and severity of root resorption exhibited no significant 
differences between the 8-day group (8d) and 15-day group (15d).
**p < 0.01 compared with the control (C) group. The bar indicates the standard deviation.
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ited no significant differences between the 8d and 15d 
groups (Figure 5). 

DISCUSSION

In our root resorption model, we applied known root 
resorption factors during tooth movement, such as con-
tinuous force application,8,15,18,19 long duration of force 
application or tooth movement,7,20 mesio-occlusal tip-
ping for the induction of high stress at the root apex,21,22 
and movement under occlusal interference from antago-
nist teeth.23,24 Therefore, this experimental model could 
result in root resorption in the anticipated compression 
zone. 

Because of mesio-occlusal tipping movement, the dis-
toapical third of the mesial and distal roots was defined 
as the compression zone. Mesial tipping alone may not 
create adequate stress or stress distribution to induce 
root resorption in the distoapical third of the root.22 

Because tipping movement and occlusal interfer-
ence were simultaneously applied, resorption was more 
evident in the mesial root than in the distal root. We 
speculate that an intruding vector of force for a jiggling 
effect may have occurred along the mesial root and was 
focused in the apical region, whereas the extruding vec-
tor occurred along the distal root.22,25 

Intermittent orthodontic forces have often been ap-
plied to the rat molar resulting in tooth movement with-
out root resorption; this may be due to a decrease in 
force toward the end of the experiment.26 In the present 
study, we utilized a continuous force for the mainte-
nance of mechanical forces acting on the periodontium. 
This continuous force application stimulates inflamma-
tion through the promotion of inflammatory mediators27 
secreted from local cells and migrated leukocytes to 
induce bone and tooth destruction by maintaining the 
resorption function of osteoclasts and odontoclasts and 
protecting them from apoptosis.28

Moreover, most of the root resorption areas did not 
exhibit a hyalinization zone or necrotic periodontal area, 
probably because of a relatively long duration of tooth 
movement.29

The increase in the severity of root resorption with 
time may have resulted from the continuous force ap-
plied by the superelastic Ni-Ti closed coil spring, which 
does not provide a resting period to allow tissue repair.30 

Unlike that in previously developed root resorption 
models such as the replantation model3 and the peri-
odontal ligament injury model induced by surgical pro-
cedures,6 root resorption in our model was not caused 
by damage due to necrosis/infection. In addition, it 
occurred in the main roots of the rat mandibular first 
molar, which is convenient for several experimental pro-
cedures such as extraction and sectioning. Moreover, the 

rat mandibular first molar is a suitable representative of 
the human mandibular first molar because it exhibits a 
similar root configuration.

CONCLUSION

In conclusion, periapical root resorption was induced 
by continuous extrusive tipping force and occlusal in-
terference in rat mandibular molars. These data suggest 
that we orthodontists had better take care not to induce 
severe and long lasting occlusal interference during our 
orthodontic treatment. 
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