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ABSTRACT: We present here the first application of the quantum chemical topology
force field FFLUX to condensed matter simulations. FFLUX offers many-body potential
energy surfaces learnt exclusively from ab initio data using Gaussian process regression.
FFLUX also includes high-rank, polarizable multipole moments (up to quadrupole
moments in this work) that are learnt from the same ab initio calculations as the
potential energy surfaces. Many-body effects (where a body is an atom) and polarization
are captured by the machine learning models. The choice to use machine learning in
this way allows the force field’s representation of reality to be improved (e.g., by
including higher order many-body effects) with little detriment to the computational
scaling of the code. In this manner, FFLUX is inherently future-proof. The “plug and play” nature of the machine learning models
also ensures that FFLUX can be applied to any system of interest, not just liquid water. In this work we study liquid water across a
range of temperatures and compare the predicted bulk properties to experiment as well as other state-of-the-art force fields
AMOEBA(+CF), HIPPO, MB-Pol and SIBFA21. We find that FFLUX finds a place amongst these.

1. INTRODUCTION
The best performing modern force fields are typically
characterized by several important features. Firstly, they tend
to allow molecules to be flexible rather than rigid. Secondly, it
is increasingly the case that potential energy surfaces (PES) are
fitted using at least some ab initio data. Some force fields such
as AMOEBA+1 blend ab initio and experimental data when
fitting whereas others use only ab initio data. For example, the
two- and three-body terms of the MB-Pol potential are fitted
using exclusively CCSD(T) data.2,3 Thirdly, it is now relatively
common to include multipole moments thereby abandoning
the paradigm of point charges. For example, the AMOEBA+,
SIBFA214 and HIPPO5 force fields have permanent atomic
multipole moments up to and including quadrupole moments.
Fourthly, there is also a considerable emphasis on making at
least some of the multipole moments polarizable. Polarization
is achieved in several different ways depending on the force
field. The aforementioned AMOEBA+, SIBFA21 and HIPPO
potentials have induced dipole moments while the MB-Pol
potential also includes explicit three-body polarization.6 The
recent AMOEBA+(CF) potential7 extends the AMOEBA+
potential to include so-called “charge flux”, i.e., charges that
change with molecular geometry. Finally, there has been a push
towards capturing many-body effects. All of the aforemen-
tioned force fields make at least some effort to include many-
body effects. SIBFA21 and AMOEBA+ capture many-body
effects with their induced dipole moments as well as charge
transfer terms. However, it is MB-Pol that captures many-body
effects in the most comprehensive manner, with considerable
success.8 Note that there are many other successful modern

force fields that have not yet been mentioned such as MB-
UCB9 and the TTM family of force fields10 among others.11,12

To summarize, in order for a force field to be considered
state-of-the-art it should be grounded in quantum mechanics,
be flexible, and include many-body effects and high-rank
polarizable multipole moments. The novel force field FFLUX
is well positioned to contend in this space as it has all of these
attributes. Alongside the essential features of a modern force
field, FFLUX offers three more features that are key to its
current and future success. Firstly, the parameterization of the
force field for different systems is not tied to the functional
form of the potential. Instead, the problem of parameterization
is exported to a machine learning (ML) problem. The
architecture of FFLUX is such that machine learning models
can be used in a “plug and play” fashion. This means that an
ML model can be made for any molecule of interest and
plugged into FFLUX without requiring any modification of
FFLUX itself. In this way, FFLUX approaches the ideal of a
universal force field. Secondly, the level of approximation in
the force field (e.g., the extent of the polarization and many-
body effects) is tied into the ML models. This means that the
approximations are well understood and controlled and that
the level of approximation can be reduced in a systematic
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manner. Moreover, these improvements can be made without
worsening the computational scaling of FFLUX thus offering a
future-proof strategy, which will be explained in full in the
Methods section. Finally, FFLUX is unique in that it utilizes
the parameter-free atoms of quantum chemical topology
(QCT).13,14 QCT is particularly well suited for a force field
that operates at the atomic level because the theory establishes
a properly defined atomic kinetic energy. Secondly, all atomic
properties (charge, dipole, kinetic energy, potential energies)
come from a single overarching three-dimensional (3D)
integral over an atomic volume (or a six-dimensional (6D)
integral for interatomic potential energies). This is important
in the case of the multipole moments as it means that they are
derived from the same ab initio calculations as the PESs. There
is no need to introduce an additional, separate scheme (e.g.,
Hirshfeld15 or iterative stockholder atoms16) for multipole
moments that is generally not rooted in quantum mechanics.
This paper represents the first foray of the FFLUX force field

into bulk simulations. However, the fundamental components
of the methodology have been developed and validated from
the bottom up over the course of many years.17−21 At last,
FFLUX brings everything together and the entire construction
is validated against the most important arbiter of success:
experimental data. The initial test case of water is an obvious
choice. Water is an important solvent for biological systems
and so it is of genuine utility to have accurate water models
that can be combined with simulations of more complex
molecules. Furthermore, water is very well studied exper-
imentally and so there is a wealth of available data to validate
against.

2. METHODS
The key elements of the FFLUX methodology have been
explained elsewhere.19,20,22 We will give a brief but
comprehensive overview of the important details in this
section. As with most force fields, the interactions in FFLUX
can be divided into short-range and long-range. Note that the
FFLUX force field is currently implemented in the
DL_FFLUX code, which is a combination of DL_POLY 4
and the FFLUX force field.
2.1. Short-Range Interactions. The short-range inter-

actions in FFLUX are handled by machine learning models,
that is, Gaussian process regression (GPR) models. Figure 1
shows a representation of a single water molecule in FFLUX.
Each atom is endowed with a number of GPR models, each of
which predicts an atomic property such as atomic energies and
atomic (point-)multipole moments. These models are denoted
MO and MH for oxygen and hydrogen atoms, respectively. The
GPR models learn atomic properties that are the output of
quantum chemical topology calculations. The gradient paths
that map out the QCT atomic basins are shown in Figure 1.
The atomic energies are obtained using the interacting
quantum atoms (IQA) energy partitioning scheme,23 which
falls under the arch of QCT.
A given GPR model predicts properties for a single atom but

it has “knowledge” of its surroundings. In the case of the water
molecule shown in Figure 1, the boundary of the system that
informs the predictions made by the models is shown by the
dashed black line. In other words, the predictions made by MO
depend not only on the oxygen but also the two hydrogen
atoms. In general, the prediction of a property Qi belonging to
atom i, by a model Mi

Q, will depend on some collection of
Natom atoms that make up the local environment. Note that the

model now has a superscript Q because each property has its
own model, i.e., each atom has a set of models sitting on it, one
for each property that is predicted. The position vectors r of
each of the Natom atoms that comprise the local environment
are converted into a feature vector f, where each feature f j is a
function of some subset of the atomic positions. For example,
feature 1 is the distance between atoms 1 and 2, and as atom 3
is not involved, this feature is a function of the subset{1, 2}.
The feature vector is Nfeat = 3Natom − 6 dimensional and serves
as input to the GPR models as demonstrated in eq 1,
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The full details of the feature definitions are given
elsewhere.19 In this scheme the predicted, short-range energy
for a given atom is a combination of the intra-atomic energy as
well as the energy of the interaction between the atom and the
Natom − 1 atoms that fall within the bounds of its model (i.e.,
the other atoms that fall within the black boundary of Figure
1). The energy can be written more explicitly as

E E E
1
2

N

IQA
AA

Intra
A

B A
Inter
AB

atom

= +
(2)

The IQA energy,EIQAAA′, for atom A has the superscript AA′
because it comprises the intra-atomic energy, EIntraA , as well as
the interaction between atom A and all other atoms within the
model boundaries labeled as A′. This second term is expressed
in eq 2 as the sum of the interatomic interaction energies, EInterAB .
The intra-atomic energy, EIntraA , and the inter-atomic energies,
EInterAB , provide chemical insight but, for the purposes of the
FFLUX force field, only EIQAAA′ is needed. The result of eqs 1 and
2 is that there is a predicted quantum mechanical, short-range
PES that is inherently many-body in nature. Note that here a
body stands for an atom and more details can be found in
reference.22 This PES can be analytically differentiated with
respect to the coordinates of each of the atoms in the short-

Figure 1. Diagram of a single water molecule in FFLUX. MO and MH
represent machine learning models. The gradient paths of the electron
density are shown for each atom. The dashed black line shows the
boundary of the machine learning models (see main text) and should
not be confused with a circle marking a cut-off radius. Gradient paths
were visualized using AIMSTUDIO.24
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range environment leading to short-range forces. Unlike more
traditional force fields, in FFLUX there is no need for
harmonic bond or angle potentials and other terms because the
full intra-molecular description is provided by the predicted
PES and its derivatives, giving rise to many-body intra-
molecular energies and forces.
2.2. Long-Range Interactions. The long-range potential

in FFLUX is split into an electrostatic and a van der Waals
term, as shown in eq 3. The point at which the transition from
short-range to long-range interactions occurs is determined by
the boundary of a GPR model. For the case of so-called
monomeric modeling (this is the case shown in Figure 1), the
boundary of a model is synonymous with the boundary of a
molecule. This means that all intra-molecular interactions are
considered short-range and handled by the GPR models. All of
the inter-molecular interactions are then considered long-range
and handled according to eq 3,

E E Elong range electrostatic vdW= + (3)

Monomeric modeling is employed in this paper but it is
possible to extend to dimeric modeling or N-meric modeling in
general where N is the number of molecules. In the case of N-
meric modeling, the intermolecular interactions between a
molecule and its nearest N − 1 neighboring molecules are
handled in the short-range, many-body scheme; only
interactions between molecules that are further apart are
handled by the long-range scheme. Moving to N-meric
modeling equates to expanding the dashed black boundary
line in Figure 1 to include N molecules. This allows the
truncation of the short-range, many-body scheme to be pushed
further back in a systematic manner by moving from
monomeric to dimeric modeling and beyond. In the case of
water it has been shown25 that many-body effects beyond 3-
body (where a body is a molecule) are relatively small. For
example, the 4-body corrections to a water pentamer were only
2.1%. As such we expect that, in due course, at most a trimeric
model will be required to model liquid water.
The problem of going from monomeric to dimeric modeling

reduces to a machine learning problem. Whilst it is by no
means a trivial problem, this treatment confers an important
benefit in terms of computational cost. A dimeric model will be
more expensive to train than a monomeric model because it
will require more training points and each ab initio calculation
is done on a larger system and so will be more expensive.
However, the training is a one-off cost, which may involve a
large and thus costly basis set but this cost has no trace in the
model after training. The scaling of the computational cost of
predicting with the GPR models is independent of the scaling
(e.g., of O(n7) for CCSD(T) where n is a measure of the
system size) of the calculations used to generate the training
data. At the point of use in FFLUX, the predictions scale
linearly with the total number of atoms in the simulation Ntot,
and the number of training points. Note that, while the
number of training points will scale worse than linearly with
the number of atoms described by the machine learning model,
Natom, it is generally the case that Natom ≪ Ntot. Hence,the
overall scaling is still linear with respective to the total number
of atoms. This means that, despite including higher order
many-body effects, the cost of predicting with a dimeric model
scales no worse than with a monomeric model, up to a pre-
factor. Even the worsening of the pre-factor is offset to some
degree by the parallelization of the code. In other words,
increasingly high-order many-body effects can be included with

almost no detrimental effect on the scaling of the DL_FFLUX
code. This applies equally to improving the level of theory used
to compute the training data. These points are crucial to
ensuring the long-term success of FFLUX.
The GPR models for each atom predict atomic multipole

moments from charge (monopole) up to hexadecapole
moments. As mentioned in the Introduction, these multipole
moments come from the same QCT calculations as the short-
range PES. As such, there is an underlying unity between the
short-range electrostatics and the multipole moments that
participate in the long-range electrostatics. These predicted
multipole moments are fed into a classical smooth particle
mesh Ewald (SPME) summation, resulting in long-range
electrostatics that is rooted in quantum mechanics. The
multipole moments, like the predicted energies, change as the
geometry of a molecule changes. Hence they depend explicitly
on atomic positions, that is, there is short-range polarization of
multipole moments. The explicit dependence on position of
multipole moments introduces extra force terms into the
electrostatics. DL_FFLUX implements a modified version of
SPME in order to allow for multipole moments of any rank
that depend explicitly on atomic positions (so-called flexible
multipole moments26). The van der Waals term in eq 3 is
typically a Lennard-Jones or Buckingham potential (Lennard-
Jones in this work).
Whilst the nature of the machine learning models introduces

explicit short-range polarization, there is currently no explicit
long-range polarization in FFLUX. This reveals the weakness
of monomeric modeling, which is that there is only
intramolecular polarization and no intermolecular polarization.
However, given the well-known importance of intermolecular
polarization, an effort is made here to capture this effect during
the training of monomeric models. For each training point
there are two calculations required to turn the input (atomic
coordinates) into outputs (atomic energies and multipole
moments). Firstly, a density functional theory (DFT)
calculation is carried out using GAUSSIAN0927 to compute
the wavefunction of the system. In order to include the effect
of intermolecular polarization, the DFT calculation of the
water monomer involves the addition of an implicit solvent.
The atomic properties are then computed from the wave-
function using the program AIMAll24 that integrates over QCT
atomic basins. The multipole moments learnt by the GPR
model are then already polarized by an implicit solvent
meaning that intermolecular polarization is implicitly
accounted for in a FFLUX simulation.
To summarize, all short-range energies and forces in FFLUX

are the result of a predicted many-body, ab initio PES. Long-
range electrostatics is accomplished with high-rank multipole
moments (in practice typically charges, dipole and quadrupole
moments are used) that are predicted from ab initio
calculations. These multipole moments are explicitly polarized
by their short-range environment during a simulation and, in
the case of monomeric modeling, are already implicitly
polarized by their long-range environment. Both forms of
polarization apply to multipole moments of all ranks.
Polarization of anything beyond dipole moment is relatively
uncommon even among modern force fields. However, we
note that the NEMO potential includes polarization of
quadrupole moments.28 The remaining long-range interactions
are computed by a simple Lennard-Jones or Buckingham
potential.
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3. TECHNICAL DETAILS
The GPR models used for water in this paper are monomeric
models with just 100 training points. Initially, 50 random
training points were used to generate a GPR model. The
remaining points are then added via an iterative active learning
procedure that ensures compact and efficient training sets. Full
details can be found in reference.21 The DFT calculations were
carried out at the B3LYP/aug-cc-pVTZ level of theory. This
level of theory has been shown to perform well29 and was also
chosen because the gas phase molecular dipole moment
computed at this level of theory is 1.869 D, which agrees with
the experimental value30 of 1.855 D within less than 1%. When
combined with the implicit solvent, the molecular dipole
moment is increased to 2.15 D, which is closer to the
experimental value31 for liquid water of 2.9 ± 0.6 D. The
integral equation formalism polarizable continuum model
(IEFPCM) with the solvent set as water was used for the
implicit solvent calculation in GAUSSIAN09.
The GPR model is evaluated prior to being used in a

simulation primarily using S-curves, which are cumulative error
distributions so called because of their characteristic sigmoidal
(“S”) shape. For a test set of 500 points (none of these points
are in the training set), the predicted property is compared to
the true value and an absolute prediction error is obtained.
Figure 2 shows the S-curve of absolute prediction errors of

each of the three atomic energies in kJ mol−1. The y-axis shows
the percentage of the test points that have an error at or below
a given prediction error in kJ mol−1. Almost all of the points
have an error of less than 0.1 kJ mol−1 (80% for O) and all of
the points are predicted to within less than 1 kJ mol−1. The
model predicts to well within chemical accuracy (usually taken
to be 1 kcal mol−1) with just 100 training points.
The charge predictions perform similarly well for this model

as shown in Figure 3. Almost all of the points are predicted to
within 1 millielectron (me) accuracy and the majority are
within 0.1 me. The S-curves for all components of the dipole
and quadrupole moments can be found in the Supporting
Information (SI), Figures S1−S8.
Simulations were performed in the NPT ensemble using the

Nose−́Hoover barostat. The timestep was 1 fs and a cut-off
radius of 8 Å was used for all simulations. Unless stated
otherwise, each run was 2.5 ns in length. At each temperature
10 simulations were run: 4 with a box of 216 molecules, 3 with

a box of 343, and 3 with a box of 512 molecules. However, in
the case of the simulations performed at 320, 330, and 340 K, a
total of five simulations were carried out for a box of 343
molecules. This smaller number of simulations is due to the
fact that the diffusion coefficient was not computed at these
temperatures. Also, at 298 K extra simulations were performed
for a large box of 1728 molecules (4 runs) as well as 3 extra
runs for each of the 343 and 512 molecule boxes. In total,
liquid water was simulated at 11 different temperatures. The
starting configurations for each trajectory were taken from the
endpoint of a 1 ns simulation. The initial velocities were
randomly scaled in order to generate multiple different
trajectories from the same initial configuration. The parameters
for the SPME Ewald sum were determined automatically using
DL_POLY with the keyword “spme precision 1d-7”.
In all simulations monopole, dipole and quadrupole

moments were enabled and all interactions up to and including
quadrupole-quadrupole computed. This is denoted L′ = 2
where the 2 corresponds to the highest rank multipole moment
enabled. Note that in our previous QCT-based simula-
tions32−34 on liquid water, albeit with rigid water geometries
(using the program DL_MULTI35), we used a different type of
multipolar interaction governed by L l l 1A B= + + where
refer to the rank of an atomic multipole moment (e.g., 1= for
a dipole moment). In our previous work L was set to 5, which
means that 3 extra interaction terms were included compared
to L′ = 2: monopole−octupole, monopole−hexadecupole and
dipole−octupole (and the reverse, i.e., octupole−monopole,
etc.). The multipole moments used in DL_FFLUX are traceless
Cartesian moments in the global frame. Either traced or
traceless moments can be used providing the appropriate pre-
factors are included with the moments (this is only a
consideration for quadrupole moments and beyond). The
Lennard-Jones parameters shown in Table 1 were found by

Figure 2. S-curve of absolute IQA energy prediction errors.

Figure 3. S-curve of absolute charge prediction errors.

Table 1. Lennard-Jones Parameters Used for Liquid Water
Simulations

parameter value

εOO 0.763 kJ mol−1

σOO 3.17 Å
εOH 0.106 kJ mol−1

σOH 1.902 Å
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running on the order of 100 simulations with various
parameters, perturbed from an initial parameter set taken
from previous work,34 and inspecting the density of each
simulation. In particular, the OH parameters are identical while
the OO parameters were taken as a starting guess and ended
up with values quite similar to the ones used in that work. The
parameter combinations were reduced to six promising
candidates that were found to produce densities close to the
experimental value. The diffusion coefficient in the infinite box
size limit was estimated for these six candidates and the set of
parameters that gave the best estimated value was chosen.
Note that DL_FFLUX has recently been parallelized with
domain decomposition MPI. More information on timings is
available in reference.36

4. RESULTS AND DISCUSSION
4.1. Assessment of Electrostatics. Figures 2 and 3,

alongside Figures S1−S8, in the Supporting Information give
an indication of how well the GPR models are predicting.
However, in the case of multipole moments (especially those
of higher rank than monopole) these curves are of limited
utility. It is difficult to have much intuition about, for example,
the error in a given component of a quadrupole moment. As
such, we developed a method to study the errors associated
with the predictions of multipole moments in a manner that
offers more insight. This method assembles the various
interactions between multipole moments into a corresponding
electrostatic energy, the prediction error of which then serves
as a physically meaningful summary for the prediction errors in
the multipole moments themselves.
An in-house program called PROMETHEUS was used to

analyze a 100 ps trajectory from a FFLUX water simulation.
The program collected all pairs of water molecules at every
timestep with an oxygen−oxygen distance of 3.5 Å or less. The
water dimer is a 6-atom system and so requires 12 (=3 × 6 −
6) dimensions in order to fully describe its geometry. Each of
the water molecules is described by 2 O−H bond lengths and
1 H−O−H angle, totaling six dimensions that describe all
intramolecular degrees of freedom. Thus the remaining six
dimensions are used to specify the relative geometries of the
two molecules. One of the water molecules is used to define a
local frame while the relative position and orientation of the
other water is then specified using spherical polar coordinates
for its oxygen and three Euler angles (defined in this local
frame) for its orientation. By analyzing these dimers,
PROMETHEUS generates distributions for each of these 12
dimensions that are then randomly sampled to produce 100
dimers that are a good representation of the dimers seen in a
real simulation. An example of one of the O−H bond length
distributions is shown in Figure 4, which demonstrates that the
100 sample points span almost the full range of bond lengths
seen in a simulation. These 100 dimers are then subjected to a
test to determine how well the electrostatics is performing in
situ.
For each dimer, the GPR models are used to predict the

multipole moments for each atom, which are then used to
compute the electrostatic energy. This is the predicted energy,
which must then be compared against the “true energy”. In
order to obtain this energy, the DFT and then QCT
calculations are carried out on each dimer to get the “true”
multipole moments that are then used to compute electrostatic
energies. Note that, in order to for the true-versus-predicted
test to be a like-for-like comparison, the wavefunction and then

multipole moments of each molecule in the dimer must be
computed separately. This is because the models are
monomeric, and so do not include explicit intermolecular
polarization. Note that the convergence of the multipole
expansion has been studied in considerable detail in the
past.17,18 Performing these tests on the 100 dimers allows us to
produce a new S-curve, shown in Figure 5.

The S-curve shows the test carried out at the levels of the
electrostatics: L′ = 0, 1 and 2. At L′ = 0, only charge−charge
interactions are computed, while at L′ = 1, dipole moments are
switched on, and L′ = 2 is the level used for all simulations in
this work, which utilizes monopole, dipole and quadrupole
moments. For a given dimer geometry, the errors shown in
Figure 5 are computed as follows: the electrostatic interaction
between each of the atom pairs (a total of nine pairs: O1−O4,
O1−H5, ...) is computed with the true and predicted multipole
moments. For each of these nine interactions, the absolute
difference between the true and predicted is taken and then
summed to produce a total electrostatic error for the dimer.

Figure 4. Distribution of O−H bond lengths from a 100 ps liquid
water simulation. The bond lengths in the 100 randomly sampled
dimers are shown by red circles.

Figure 5. S-curves showing the absolute electrostatic errors in the
electrostatics for 100 water dimers.
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This is the error that is then plotted in Figure 5. It is evident
that the success shown in
Figures 2 and 3 is replicated in situ, where it really matters.

Summing the absolute errors makes this test very stringent and
yet, almost all of the dimers have a total error of less than 0.5
kJ mol−1. All levels of the electrostatics perform similarly well,
suggesting that the GPR models are able to predict monopole,
dipole and quadrupole moments with high accuracy. A further
examination of convergence of the electrostatics is given in the
Supporting Information (Figures S9−S11).
4.2. Summary of Bulk Properties. Table 2 summarizes

the bulk properties of liquid water at 298 K that are studied in

this paper. More detail is given about each of the properties in
the relevant section. Properties are also compared to a
selection of four force fields that were mentioned in the
introduction: MB-Pol, HIPPO, SIBFA21 and AMOEBA
+(CF). These were chosen as they provide a good overall
representation of the current state- of-the-art. Where a
property is not shown for a particular force field it is because
it is not given.
4.3. Radial Distribution Functions (RDFs). The FFLUX

RDFs shown in Figure 6 agree very well with experiment in
terms of peak positions. For the oxygen−oxygen and oxygen−
hydrogen RDFs, the positions of the peaks are essentially

Table 2. Summary of Properties of Liquid Water at 298 K for FFLUX and Various Force Fieldsa

property AMOEBA+(CF)b MB-Pol SIBFA21 HIPPOb FFLUX experiment

ρ (kg m−3) 998.4 1007 996.1 996.5 996.7 997.037,38

ρmax (K) 281.15d 263 265d 277 285.9 277.1537,38

D (10−9 m2 s−1) 2.14 2.34 1.47 2.56 1.93 2.3039

ΔHvap (kJ mol−1) 44.35 45.73 49.41 43.81 41.94 43.9338

CP (J mol−1 K−1) 87.45c 117.15 116.98 85.27 129.67 75.3138

α (10−4 K−1) 2.5 3.7 2.75 1.93 2.640

εr 78.8 68.4 79.03 76.9 34.5 78.438

aData for AMOEBA+(CF),7 MB-Pol,29 SIBFA214 and HIPPO5 taken from references given. bData given at 298.15 K. cValue given at 303.15 K.
dThis value is not quoted in the corresponding paper but deduced by ourselves from their tabled data without us fitting their data.

Figure 6. Radial distribution functions (computed using VMD42). Top left: oxygen−oxygen, top right: oxygen−hydrogen and bottom: hydrogen−
hydrogen. Experimental data taken from Soper.43 Note that the simulated radial distribution functions include intramolecular contributions
whereas the experimental data do not.
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perfect and for the hydrogen−hydrogen RDF, there is a slight
shift to the left. In all cases, the peak heights are larger than
experiment. The RDFs for the other force fields are not shown
here but can be found in the relevant references. In general, all
four force fields predict the RDFs very well. However, just as
for FFLUX, all of the other force fields exhibit varying degrees
of overpredictions of the peak heights. MB-Pol attributes this
in part to a lack of NQE41 whereas AMOEBA+1 suggests that
using a Buckingham potential rather than a Lennard-Jones
could improve the RDFs. Consistent with previous work,32 we
found that the radial distribution functions are sensitive to the
electrostatics. For simulations with point charges only, the
RDFs were hugely overstructured (i.e., peaks are far too large).
We also found that, when a model was used that had been
trained without implicit solvation, there was essentially no
structure in the radial distribution functions. We therefore
conclude that some degree of polarization is necessary to
recover the correct structure of liquid water. This finding
complements previous work32 simulating liquid water with
fixed QCT multipole moments (i.e., no polarization). In that
work it was found that there was little structure in the RDFs
unless octopole and hexadecapole moments were included (up
to charge−hexadecapole interactions). That observation, taken
together with the findings in this work, suggests that including
multipole moments beyond quadrupole can offset some of the
detrimental effects of not accounting for polarization.
4.4. Diffusion Coefficient. The diffusion coefficient can

be computed from the Einstein relation,

D
t

tr r
1
6

lim ( ) (0)
t

= | |
(4)

where r(t) and r(0) are position vectors at time t and t = 0,
respectively. The diffusion coefficient is known to depend on
the size of simulation performed44 and it is now the standard
to take this into account. As such, at each of the three box sizes
(216, 343 and 512 molecules), an ensemble average over
trajectories was carried out in order to obtain a value for the
size-dependent diffusion coefficient, D(L). Each D(L) was
then corrected using eq 5 in order to retrieve the diffusion
coefficient in the infinite size limit,44

D D L
K T

L
( )

6
B= +

(5)

where D∞ is the diffusion coefficient in the infinite size limit, η
is the viscosity (the experimental viscosity was used here) and
ξ = 2.837297 for a cubic box with side length L. Note that
there was some variability in the infinite size limit diffusion
coefficient predicted by each of the box sizes. At each
temperature, the average of the D∞ computed at each of the
box sizes was taken. This is the value plotted for each point in
Figure 7. The uncertainty in the diffusion coefficient (reported
in Table S1) is calculated as the root mean square deviation
between the average diffusion coefficient and the values for
each of the box sizes.
In order to investigate the validity of eq 5, an additional four

2.5 ns simulations were conducted at 298 K for a much larger
box containing 1728 water molecules. This enabled an
alternate method of computing D∞. A plot of D(L) vs 1/L
was made and fitted to a straight line. The y-intercept of the fit
is then the infinite size limit diffusion coefficient (see Figure
S12). The diffusion coefficient computed in this way was 1.91
× 10−9 m2 s−1,which is very close to the value of 1.93 × 10−9

m2 s−1 computed using eq 5. The excellent agreement (within
1%) between the two methods validates the application of eq
5.
The FFLUX diffusion coefficient curve in Figure 7 is

consistently below the experimental curve by a constant
amount over the whole temperature interval calculated. Unlike
the AMOEBA+(CF) profile the DL_FFLUX profile is shifted,
which means that the latter’s slope is the same as the
experimental one. The diffusion coefficient is well known to be
impacted by nuclear quantum effects (NQE). The inclusion of
NQE has been shown45 to increase the value of the diffusion
coefficient by 15−53%. The fact that the trend in Figure 7
matches experiment well is encouraging as it suggests that the
underprediction will be alleviated by accounting for NEQ.
Conversely, force fields that already overpredict (such as
HIPPO) the diffusion coefficient will not be helped by
including NQE.
4.5. Liquid Density. The density curve was fitted to a third

order polynomial and analytically differentiated in order to find
the maximum density. Figure S13 shows this fit, which makes
clear that there is indeed a maximum between 280 and 290 K,
which does not visually appear in Figure 8. This figure shows
how the density of liquid water varies with temperature as
predicted by FFLUX, simply by linking the data points rather
than fitting them to a polynomial. We find that the maximum
appears at 285.9 K (based on 10 2.5 ns simulations), which
overpredicts the experimental value (of 277.15 K) by 8.75 K.
Note that MB-Pol underpredicts this value by 14.15 K while
HIPPO predicts it spot on. The convergence of the ensemble
averaging was examined using leave-one-out cross-validation.
The total average was compared to the average when one
trajectory is removed from the ensemble. This was done for all
trajectories and the root mean square of these deviations taken
as the uncertainty. A well converged property will change very
little when one trajectory is removed from the average.
Conversely, a poorly converged property will change
considerably. Note that the error bars are too small to be
seen in Figure 8 but the values are given in Table S2 in the
Supporting Information.
Figure 8 shows the dependence of the liquid’s density on

temperature. The FFLUX density curve generally agrees well
with experiment. Significant deviation from experiment only

Figure 7. Diffusion coefficient computed at various temperatures with
FFLUX and other force fields. Experimental data taken from
reference.39
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starts to occur at temperatures below 290 K. The most likely
explanation for this deviation is that the Lennard-Jones
parameters were optimized for the correct density of liquid
water at 298 K. As the water cools and crystallizes, these
parameters are no longer suitable. This is a clear limitation of
monomeric modeling although we note that FFLUX is not
alone in performing worse at lower temperatures, as shown in
Figure 8. Here we see that MB-Pol’s value is the furthest
removed from the experimental one, which the authors claim
results from the absence of NQE. At the highest temperatures,
only SIBFA21 follows experiment very well while the other
force fields start underpredicting.
4.6. Thermal Expansion Coefficient. The thermal

expansion coefficient α can be computed according to the
following equation,

i
k
jjj y
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zzzV

V
T

1

P
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(6)

where V is volume. Note that α can be negative when either dT
is positive and dV is negative (i.e., increasing temperature
decreases the volume), or dT is negative and dV is positive
(i.e., decreasing temperature increases the volume). The
density data from Figure 8 were turned into a V(T) curve,
which was then fitted to a third order polynomial. This
polynomial was then analytically differentiated in order to
produce the curve α(T)shown in Figure 9. The FFLUX curve
is steeper than the experimental curve, which suggests that the
volume responds more than it should to a change in
temperature, i.e., heating the water leads to a larger than
expected increase in volume. This is an indication that the
FFLUX liquid water behaves more like a gas than the true
liquid. This trend is consistent with what we see later with the
enthalpy of vaporization and is most likely a result of the
limitations of monomeric modeling. Indeed, despite the
inclusion of implicit solvation, monomeric modeling is still
rooted in the gas phase.
The comparison between force fields is shown in Figure 9,

where HIPPO follows experiment almost spot on below about
300 K. MB-Pol overpredicts more than any other force field
below about 310 K but is then joined by the other force fields
in terms of overprediction above 310 K.

4.7. Enthalpy of Vaporization. The enthalpy of vapor-
ization, ΔHvap, is the difference between the gas and liquid
phase enthalpy as per eq 7,

H H Hvap gas liquid= (7)

The gas phase enthalpy was computed from 250 ps
simulations of water monomers at various temperatures. In
absolute terms, the FFLUX enthalpy of vaporization curve in
Figure 10 is relatively close to experiment with a maximum

deviation of less than 1 kcal mol−1. However, the FFLUX curve
is consistently below the experimental curve, i.e., the difference
in enthalpy between the gas and the liquid phase is smaller
than it should be. This means that it is easier than it should be
to turn FFLUX’s liquid water into a gas. This is unsurprising
given the limitations of monomeric modeling. The effects that
are missing in the case of monomeric modeling are stabilizing
effects. Without them, it is natural that the resulting liquid is
closer to a gas than the real liquid. This also explains why the
FFLUX curve decreases more quickly than it should as
temperature increases. Indeed, as temperature increases, the
liquid water approaches the gas phase more quickly than it
should, i.e., FFLUX liquid would likely boil at a lower

Figure 8. Density of liquid water computed at various temperatures
with FFLUX and other force fields. Experimental data taken from
references.37,38

Figure 9. Thermal expansion coefficient computed at various
temperatures with FFLUX and other force fields. Experimental data
from reference.40

Figure 10. Comparison of enthalpy of vaporization curves computed
with various force fields. Experimental data taken from reference.38
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temperature than real liquid water. This has a knock-on effect
on the isobaric heat capacity as seen in the next section. The
steeper gradient of the curve in Figure 10 is driven by a larger
increase in the liquid enthalpy as temperature increases, which
results in an overprediction of the heat capacity.
4.8. Isobaric Heat Capacity. The isobaric heat capacity is

computed by fitting the liquid enthalpy vs temperature curve to
a second order polynomial and then differentiating with
respect to temperature per eq 8,

i
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(8)

where H is the liquid enthalpy. Figure 11 shows that FFLUX
considerably over predicts the isobaric heat capacity. Nuclear

quantum effects are known to reduce CP. However, as
discussed in the previous section, this overprediction is also
a consequence of the fact that the enthalpy versus temperature
curve is steeper than it should be regardless of NQE. As such
the FFLUX overprediction is a result of a combination of a lack
of NQE and the limitations of monomeric modeling.
4.9. Infrared Spectrum. The infrared (IR) spectrum is

computed by taking the Fourier transform of the autocorre-
lation function of the total system dipole moment,
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where ω is a frequency and M is the total system dipole
moment vector and β = 1/KBT. The expression in angular
brackets in eq 9 denotes the autocorrelation function. The total
system dipole moment is the sum of molecular dipole
moments μ, which themselves are comprised of atomic dipole
moments and charge transfer dipole moments. Note that it is
necessary to multiply eq 9 by a quantum correction factor.46 It
has been reported that this choice is somewhat arbitrary.47 In
this work we have chosen the factor that gives the best IR
spectrum although we found that all of the choices performed
essentially identically (see the Supporting Information for
more information). Note that dipole data were printed every
timestep (every 1 fs). Printing intervals of 0.5 fs were tried but
there was no appreciable difference in the IR spectrum.

The intensity in both the simulated and experimental data is
normalized such that the maximum is 1. This is to allow easier
comparison of peak heights. The IR spectrum in Figure 12 is

generally in good agreement with experiment. However, there
are two key features of the IR spectrum that FFLUX gets
wrong. Firstly, the peak at roughly 200 cm−1 that corresponds
to collective intermolecular vibrations is missing in the FFLUX
spectrum. This is known to be a peak that only emerges with
the inclusion of many-body polarization effects (where body
here corresponds to a molecule).8,49 Secondly, the OH
stretching peak is shifted to higher frequencies. This is an
effect that has been studied in recent work with the MB-Pol
potential,8 which shows that in order to remove this shift, one
must include many-body effects as well as NQE. We note that
the AMOEBA+(CF) force field sees a shift of this peak to the
correct place relative to the AMOEBA+ force field. However,
this shift is due to a tweaked force constant designed for
exactly this purpose.
4.10. Relative Permittivity. The relative permittivity is

computed according to the following equation,

M
VK T

M M
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where the brackets denote ensemble averages and ε0 is the
permittivity of free space. Over a long enough time, the average
of the total system dipole moment vector, ⟨M⟩ will go to zero
and eq 10 reduces to eq 11. In our own calculations the
contribution from this term was close enough to zero such as
to be ignored. The relative permittivity was computed from
three 2.5 ns trajectories of a box of 216 water molecules. The
data to compute the total system dipole were printed every 10
timesteps (every 10 fs).
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FFLUX predicts a value for the relative permittivity of 34.5
at 298 K, which is a large underprediction relative to the
experimental value of 78.4. This is also considerably worse
than any of the other force fields shown in Table 2. The
relative permittivity is the property that most highlights the
shortcomings of monomeric modeling. The lack of inter-

Figure 11. Comparison of isobaric heat capacity curves computed
with various force fields. Experimental data taken from reference.38

Figure 12. Comparison of the FFLUX and experimental infrared
spectra. Experimental data taken from reference.48
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molecular polarization with monomeric modeling means that
the molecular dipole moments in FFLUX are on average only
2.15 D. This is higher than the gas phase but, according to
previous work,50 is only at about the level expected from a
water molecule positioned in a trimer. This is considerably less
than the experimental value of 2.9 ± 0.6 D for liquid water,
which leads to the low value for εr. Importantly, the
aforementioned previous work shows that a water molecule
placed in a large enough cluster (see Figure 3 in ref 50) will
have a molecular dipole moment of 2.3−2.5 D, which is closer
to the experimental value. This shows that QCT does in fact
attain the correct molecular dipole moment if intermolecular
polarization is accounted for.
In order to assess our explanation of the underprediction of

the relative permittivity, a test was carried out. At every
timestep, the raw molecular dipole moment vectors were
scaled by a constant factor in order to make the average
magnitude ∼2.5 D. Note this was done in post-processing, not
during a simulation. This scaling led to a calculated relative
permittivity of 57.0. This test confirms that the relative
permittivity is highly sensitive to the magnitude of the
molecular dipole moments. However, this is only half the
story because the relative alignments of the molecular dipole
moments matter when computing the total system dipole
moment. A proper treatment of intermolecular polarization
would lead not only to larger magnitudes of molecular dipole
moments but also to moments that are better aligned, further
increasing the magnitude of the total system dipole moment
and thus the relative permittivity.

5. CONCLUSIONS
As water is the most studied liquid it is not surprising that, over
several decades, dozens of potentials have been developed for
it by many groups. If one can loosely speak of generations of
potentials then a first generation would be confined to point
charges and without polarization, such as the popular SPC and
TiPnP (n = 3, 4, or 5) family. The majority of these potentials
restrict water to be rigid but flexibility can be added by
harmonic bonded potentials. Second generation potentials,
such as AMOEBA, SIBFA, MB-Pol and HIPPO, would then
include atomic multipole moments (for improved electro-
statics) and polarizabilities. FFLUX shares the idea of atomic
multipole moments but is not rooted in intermolecular
perturbation theory. Instead, FFLUX starts from the atomic
partitioning of matter, both for energies and moments, where
the piece of matter can be a single molecule or a cluster
thereof. FFLUX uses a quantum topological energy partition-
ing that starts from the electron density and reduced density
matrices. As such FFLUX “sees the electrons” and is aware of
the internal energy of an atom. FFLUX uses machine learning
(Gaussian process regression) to learn the relation between an
atom’s energy and the geometry of all the other atoms in the
system. FFLUX thus recovers flexibility in a natural way and
accounts for all electronic effects in a molecule. In the case of
water this ability accounts for H···H interactions (unusually)
but in more complex molecules it captures all effects, no matter
how subtle and no matter their absence in earlier generation
force fields. The architecture of FFLUX thus introduces atoms
that interact with each other without a distinction between
being bonded or non-bonded. FFLUX is generally applicable
beyond water and maintains the strategy of using only ab initio
data for as long as possible. It may be argued that some of the
above features start shaping a third generation of force fields.

As far as current testing goes, FFLUX is able to successfully
predict atomic energies and multipole moments, in a single
coherent scheme, for molecules of up to 30 atoms and allowing
for generous molecular distortions. In this work we present the
first simulation of a box of such predictive (Gaussian process)
models, in which the multipolar electrostatics works alongside
energy fluctuations both within the atoms, as between the
atoms of a monomer. This monomer modeling (of water)
forces the non-electrostatic intermolecular energy to be
modeled by a temporary but most familiar device: a four-
parameter Lennard Jones potential. Incidentally, in currently
ongoing work, the same FFLUX technology is being used to
model a formamide crystal, using non-bonded parameters.
Future work will eliminate externally added non-bonded
potentials by N-meric modeling where the machine learning
takes care of the non-electrostatic intermolecular energy in a
more sophisticated, fully integrated and unified way.
With monomeric modeling we looked at the maximum

liquid density as a function of temperature, the (self)-diffusion
coefficient, the vaporization enthalpy, the isobaric heat
capacity, the thermal expansion coefficient, the relative
permittivity and the IR spectrum. Where FFLUX is wrong
one can argue that it is wrong for the right reasons. In other
words, issues like the missing low frequency peak in the IR
spectrum and the underpredicted relative permittivity are
direct consequences of the approximate nature of monomeric
modeling. These approximations are well understood and there
is a clear path forward to improving these approximations by
moving to dimeric and eventually N-meric modeling. Crucially,
the architecture of FFLUX allows this transition to higher
accuracy to happen without a need to overhaul the force field
and without introducing worse computational scaling. Still, as
the comparison currently stands we believe that the force field
FFLUX finds a place amongst the other state-of-the-art force
fields for liquid water simulations. Moreover, as is, the FFLUX
methodology can also be used for modeling aqueous solvation
of small to medium-sized molecules.
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D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.
Gaussian 09, Revision E.01, Wallingford CT, 2009.
(28) Holt, A.; Boström, J.; Karlström, G.; Lindh, R. A NEMO
potential that includes the dipole−quadrupole and quadrupole−
quadrupole polarizability. J. Comput. Chem. 2010, 31, 1583−1591.
(29) Zapata, J. C.; McKemmish, L. K. Computation of Dipole
Moments: A Recommendation on the Choice of the Basis Set and the
Level of Theory. J. Phys. Chem. A 2020, 124, 7538−7548.
(30) Clough, S. A.; Beers, Y.; Klein, G. P.; Rothman, L. S. Dipole-
Moment of Water from Stark Measurements of H2O, HDO, and
D2O. J. Chem. Phys. 1973, 59, 2254−2259.
(31) Badyal, Y. S.; Saboungi, M.-L.; Price, D. L.; Shastri, S. D.;
Haeffner, D. R.; Soper, A. K. Electron distribution in water. J. Chem.
Phys. 2000, 112, 9206−9208.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00311
J. Chem. Theory Comput. 2022, 18, 5577−5588

5587

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+C.+B.+Symons"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00311?ref=pdf
https://doi.org/10.1021/acs.jctc.9b00261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400863t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400863t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400863t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500079y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500079y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500079y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00628?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00628?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5004115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5004115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5004115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b03489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b03489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5006480
https://doi.org/10.1063/1.5006480
https://doi.org/10.1063/1.5006480
https://doi.org/10.1021/acs.jctc.9b00478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.2837299
https://doi.org/10.1063/1.2837299
https://doi.org/10.1063/1.2837299
https://doi.org/10.1063/1.2837299
https://doi.org/10.1021/acs.jctc.9b00819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500050p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500050p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/BF00549096
https://doi.org/10.1007/BF00549096
https://doi.org/10.1039/b812691g
https://doi.org/10.1039/b812691g
https://doi.org/10.1063/1.2186993
https://doi.org/10.1063/1.2186993
https://doi.org/10.1002/jcc.23469
https://doi.org/10.1002/jcc.23469
https://doi.org/10.1002/jcc.23469
https://doi.org/10.1080/08927022.2018.1431837
https://doi.org/10.1080/08927022.2018.1431837
https://doi.org/10.1002/jcc.26111
https://doi.org/10.1002/jcc.26111
https://doi.org/10.1063/5.0017887
https://doi.org/10.1063/5.0017887
https://doi.org/10.1063/5.0017887
https://doi.org/10.1002/jcc.26438
https://doi.org/10.1002/jcc.26438
https://doi.org/10.1002/jcc.26438
https://doi.org/10.1021/ct0501093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct0501093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct0501093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://aim.tkgristmill.com
https://doi.org/10.1063/1.466846
https://doi.org/10.1063/1.466846
https://doi.org/10.1063/5.0095581
https://doi.org/10.1063/5.0095581
https://doi.org/10.1002/jcc.21502
https://doi.org/10.1002/jcc.21502
https://doi.org/10.1002/jcc.21502
https://doi.org/10.1021/acs.jpca.0c06736?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c06736?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c06736?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1680328
https://doi.org/10.1063/1.1680328
https://doi.org/10.1063/1.1680328
https://doi.org/10.1063/1.481541
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00311?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(32) Liem, S. Y.; Popelier, P. L. A.; Leslie, M. Simulation of liquid
water using a high rank quantum topological electrostatic potential.
Int. J. Quantum Chem. 2004, 99, 685−694.
(33) Liem, S. Y.; Popelier, P. L. A. Properties and 3D structure of
liquid water: a perspective from a high-rank multipolar electrostatic
potential. J. Chem. Theory Comput. 2008, 4, 353−365.
(34) Shaik, M. S.; Liem, S. Y.; Popelier, P. L. A. Properties of Liquid
Water from a Systematic Refinement of a High-rank Multipolar
Electrostatic Potential. J. Chem. Phys. 2010, 132, 174504.
(35) Leslie, M. DL_MULTI - A molecular dynamics program to use
distributed multipole electrostatic models to simulate the dynamics of
organic crystals. Mol. Phys. 2008, 106, 1567−1578.
(36) Symons, B. C. B.; Bane, M. K.; Popelier, P. L. A. DL_FFLUX:
A Parallel, Quantum Chemical Topology Force Field. J. Chem. Theory
Comput. 2021, 17, 7043−7055.
(37) Speedy, R. J. Thermodynamic Properties of Supercooled Water
at 1 atm. J. Phys. Chem. A 1987, 91, 3354−3358.
(38) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the
Thermodynamic Properties of Ordinary Water Substance for General
and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387−535.
(39) Holz, M.; Heil, S. R.; Sacco, A. Temperature-dependent self-
diffusion coefficients of water and six selected molecular liquids for
calibration in accurate 1H NMR PFG measurements. Phys. Chem.
Chem. Phys. 2000, 2, 4740−4742.
(40) Kell, G. S. Density, Thermal Expansivity, and Compressibility
of Liquid Water from 0 to 150 °C: Correlations and Tables for
Atmospheric Pressure and Saturation Reviewed and Expressed on
1968 Temperature Scale. J. Chem. Eng. Data 1975, 20, 97−105.
(41) Reddy, S. K.; Straight, S. C.; Bajaj, P.; Pham, C. H.; Riera, M.;
Moberg, D. R.; Morales, M. A.; Knight, C.; Gotz, A. W.; Paesani, F.
On the accuracy of the MB-pol many-body potential for water:
interaction energies, vibrational frequencies, and classical thermody-
namic and dynamical properties from clusters to liquid water and ice.
J. Chem. Phys. 2016, 145, 194504.
(42) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular
Dynamics. J. Mol. Graphics 1996, 14, 33−38.
(43) Soper, A. K. The Radial Distribution Functions of Water and
Ice from 220 to 673 K at Pressures up to 400 MPa. Chem. Phys. 2000,
258, 121.
(44) Yeh, I.-C.; Hummer, G. System-Size Dependence of Diffusion
Coefficients and Viscosities from Molecular Dynamics Simulations
with Periodic Boundary Conditions. J. Phys. Chem. B 2004, 108,
15873−15879.
(45) Habershon, S.; Markland, T. E.; Manolopoulos, D. E.
Competing quantum effects in the dynamics of a flexible water
model. J. Chem. Phys. 2009, 131, 024501−024511.
(46) Borysow, J.; Moraldi, M.; Frommhold, L. The collision induced
spectroscopies. Mol. Phys. 1985, 56, 913−922.
(47) Gaigeot, M.-P.; Sprik, M. Ab Initio Molecular Dynamics
Computation of the Infrared Spectrum of Aqueous Uracil. J. Phys.
Chem. B 2003, 107, 10344−10358.
(48) Maréchal, Y. The molecular structure of liquid water delivered
by absorption spectroscopy in the whole IR region completed with
thermodynamics data. J. Mol. Struct. 2011, 1004, 146−155.
(49) Demerdash, O.; Wang, L.-P.; Head-Gordon, T. Advanced
models for water simulations. Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2018, 8, No. e1355.
(50) Handley, C. M.; Popelier, P. L. A. The Asymptotic Behavior of
the Dipole and Quadrupole Moment of a Single Water Molecule from
Gas Phase to Large Clusters: a QCT Analysis. Synth. React. Inorg.,
Met.-Org., Nano-Met. Chem. 2008, 38, 91−100.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00311
J. Chem. Theory Comput. 2022, 18, 5577−5588

5588

https://doi.org/10.1002/qua.20025
https://doi.org/10.1002/qua.20025
https://doi.org/10.1021/ct700266n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700266n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700266n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3409563
https://doi.org/10.1063/1.3409563
https://doi.org/10.1063/1.3409563
https://doi.org/10.1080/00268970802175308
https://doi.org/10.1080/00268970802175308
https://doi.org/10.1080/00268970802175308
https://doi.org/10.1021/acs.jctc.1c00595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100296a049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100296a049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1461829
https://doi.org/10.1063/1.1461829
https://doi.org/10.1063/1.1461829
https://doi.org/10.1039/b005319h
https://doi.org/10.1039/b005319h
https://doi.org/10.1039/b005319h
https://doi.org/10.1021/je60064a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je60064a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je60064a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je60064a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4967719
https://doi.org/10.1063/1.4967719
https://doi.org/10.1063/1.4967719
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/S0301-0104(00)00179-8
https://doi.org/10.1016/S0301-0104(00)00179-8
https://doi.org/10.1021/jp0477147?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0477147?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0477147?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3167790
https://doi.org/10.1063/1.3167790
https://doi.org/10.1080/00268978500102801
https://doi.org/10.1080/00268978500102801
https://doi.org/10.1021/jp034788u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp034788u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.molstruc.2011.07.054
https://doi.org/10.1016/j.molstruc.2011.07.054
https://doi.org/10.1016/j.molstruc.2011.07.054
https://doi.org/10.1002/wcms.1355
https://doi.org/10.1002/wcms.1355
https://doi.org/10.1080/15533170701854189
https://doi.org/10.1080/15533170701854189
https://doi.org/10.1080/15533170701854189
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00311?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

