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Abstract: Automatic visual inspection allows for the identification of surface defects in manufactured
parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a
challenge. This is particularly true when the defect generates topological deformations that are not
shown with strong contrast in the 2D image. In this paper, we present a method for recognizing
surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model
Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier
descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models
that best fit the local surface and their normal vectors are estimated. For each surface model, its
contribution weight to the formation of the surface region is calculated and from the relative difference
between models of the same region a histogram is generated representing the underlying surface
changes. Secondly, through a classification stage, the points on the surface are labeled according to
five types of primitives and the defect is detected. Thirdly, the connected components of primitives
are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a
support vector machine, the defects are recognized. The database used is composed of 3D simulated
surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials,
ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed
method of description is robust to noise and the scale factor, and it is sufficiently discriminative for
detecting some surface defects. The performance evaluation of the proposed method was performed
for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is
higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%.

Keywords: 3D point cloud; 3D inspection; surface quality inspection; defects detection

1. Introduction

Industrial inspection has to date been an exclusively human task. However, maintaining a group
of people detecting surface defects accelerates visual fatigue and misinterpretations. Automatic visual
inspection allows for detection of defects by image analysis. This process improves product quality,
increases the production rate, avoids errors caused by subjectivity, integrates other systems into the
production line, and reduces costs [1–3]. Industrial machine vision applications are classified into four
quality categories according to the characteristics of the inspected product. These categories refer to
dimensional, structural or proper assembly, superficial, and operational features [4]. An estimated 10%
of failures in the manufactured parts are caused by superficial defects [5]. The surface quality inspection
searches for holes, scratches, cracks, wear, finish, roughness, texture, joints, folds, discontinuities, etc. [6].
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Approaches to surface defect detection are summarized in two main research directions. The first
approach uses complex lighting systems to generate contrast changes in the surface defect [7].
These methods detect and recognize the defect from the measurement and characterization of
pattern deformation on the surface of the object. Zhi and Johansson [8] presented a method for
interpreting the deformation of the fringes based on 14 shape features without measuring the depth.
Caulier et al. [9] proposed a set of eight features suited to the problem of surface inspection, combined
with six characteristics that were developed for the classification of defects in interferometry images.
Osten et al. [10] carried out a study of the behavior of the fringes in different defects with the aim of
developing inspection systems based on knowledge. Li et al. [11] proposed an automatic inspection
scheme for fabric defect detection using smart visual sensors. The system consisted of multiple smart
visual sensors working independently. Martínez et al. [12] presented a machine vision system, with
an easily configurable hardware-software structure, for surface quality inspection of transparent parts.
Neogi et al. [6] presented a detailed review of vision-based steel surface inspection systems. Also, a
comparison was made by typology of the defect, extracted features, and detection accuracy between
different defect detection systems. In [13] a machine vision system able to achieve fused image
acquirement and defect inspection for the textured surface with a suitable efficiency and accuracy
was presented. The second direction of investigation focuses on the 3D surface reconstruction of the
object, and from the 3D point cloud features are extracted to detect and classify the defect. Pernkof [14]
proposed an approach for the 3D reconstruction of raw steel blocks in industrial environments using light
sectioning. Ogun et al. [15] proposed a method for identifying conical defects on simple surfaces and
measuring its volume automatically from the 3D reconstruction of the part. Chu and Wang [16] presented
a automated vision-based system for measure the weld bead size and detect defects. Song et al. [17]
proposed a method for fabric defect identification in the textile industry using three-dimensional color
phase shift profilometry. A procedure to extract fundamental quality parameters to assess the quality of
welds was proposed in [18]. They used a structured light system to obtain 3D reconstruction.

The works that interpret the deformation of the illumination on the defects in the 2D image
present some limitations. The 2D image does not provide enough information to enable recognition
between different typologies of defects. When there are variations in the scale and geometry of defects,
determining the appropriate lighting system is a challenge. The geometry and texture of the object
generate brightness and shadows that may be confused with a defect. From the 2D image, it is not
possible to perform precise metrology of the defect. In the literature some approaches have been
reported to detect and recognize defects from the 3D reconstruction of the piece. However, this is in
specific domains of an application where the geometries of surfaces have few variations and only one
type of defect is recognized. Because of the above, the methods of describing the defect are simple,
which limits them to recognition of a set of larger defects.

The problem of recognizing defects in a 3D surface is similar to the task of recognizing objects in
3D images from partial views. This is not a simple problem, taking into account different variations that
the object/surface may suffer, such as translation, rotation, scaling, noise addition, lack of information,
and in some cases, non-rigid deformations. For this reason it is necessary to create robust descriptors
for different variations suffered by the defect and the surface. In [19] a method for the extraction of
characteristics is proposed, called Point Signature, which creates a signature of each point using the
intersection with the surface of a sphere centered at the point. A disadvantage of this method lies in the
calculation of what the author called signature point, as the intersection of the sphere with the surface
is not easy to calculate and in some cases it is necessary to interpolate points, which leads to a reduced
accuracy of the signature point and increases the computational cost. In addition, the calculation of the
reference vector is sensitive to noise.

Johnson and Hebert [20] proposed Spin Image, which is a point descriptor based on the projection
of the adjacent 3D points on a tangential 2D plane. It obtains a 2D image for that point, which becomes
the characteristic. A disadvantage of Spin Image is its high dependence on the resolution of the
method. Some modifications have been proposed for interpolation, increasing the computational cost.



Sensors 2017, 17, 2262 3 of 20

In Reference [21] a method called the Point Feature Histogram (PFH) is proposed to describe the
surface of the neighborhood of a point by the difference between the normals. Although an advantage
of the method is the simplicity of its calculation, a greater disadvantage lies in the construction of the
histogram for each point from the calculation of the differences between normals of an entire region.
Full connectivity is created, which generates a smoothing effect for small changes in the region. This
also affects the processing times. In Reference [22] a modification to the PFH method improving the
processing time was presented, called the Fast Point Feature Histogram (FPFH). It does not create full
connectivity for the construction of the histogram, at the cost of reducing the discriminant ability of the
method. In Reference [23] the Viewpoint Feature Histogram (VFH) is presented, which is a modification
to the FPFH method to describe an object globally by coding its geometry and point of view.

In the recognition of surface defects of objects on a submillimeter scale, the acquisition conditions
strongly affect the recognition process. Moreover, it is considered that defects are composed of abrupt
changes in the surface, which generate glare and shadows in the 3D reconstruction process and cause
low point density in these defective regions. Therefore, the descriptors used to represent the underlying
surface must be sufficiently stable to conditions of low point density and noise in the data. The PFH,
FPFH and Spin Image, by including the normals in the calculation of the descriptor, are representation
methods that highly depend on the correct estimation of the normals and their support radius, which is
difficult to ensure in the presence of a defect. The PFH uses the difference between all the normals
in the vicinity of a keypoint. As such, in regions with small changes the normals of these points are
averaged with the normals of regions with few changes, hence causing a loss of information when
describing the defect region.

This paper proposes a descriptor that allows discrimination of different regions within a 3D
surface. Our descriptor is based on the estimation of local models on the surface and the difference
between the model’s normals in a local region.

The contributions to this paper can be summarized as follows:

• The new local 3D surface descriptor the Model Point Feature Histogram (MPFH) is presented,
improving robustness and discriminant capabilities of the PFH method.The MPFH descriptor
is constructed from the estimation of models and their weighting to the formation of the
underlying region.

• Furthermore, a methodology for the automatic surface defects inspection is presented. For the
detection of the defect, the local 3D descriptor MPFH is used in 3D reconstructed objects. From the
projection 2D of the detected 3D primitives are extracted 2D features that allow to classification of
the defect.

This paper is organized as follows: Section 2 provides an overview of the methodology.
It emphasizes the calculation of structures, estimation of the normals, and the proposed descriptor.
Section 3 describes the experimental results and, finally, the conclusions are drawn in Section 4.

2. System Overview

Figure 1 illustrates the scheme of the methodology proposed to recognize surface defects.
Our methodology begins with surface 3D reconstruction by projecting structured light patterns (Figure 1a).
As a result, a 3D point cloud is obtained which represents the sampled 3D surface (Figure 1b), followed
by the calculation of the models or planes that fit each region best using the multiple structures estimation
method J-linkage [24] (Figure 1c), and then the normals of the surface models are estimated (Figure 1d).
For each surface model, the model contribution weight to the formation of the surface region (Figure 1e)
is calculated and from the relative difference between two models of the same region a histogram is
generated representing the underlying surface changes (Figure 1f). Each point on the 3D surface is
classified into one of five types of primitives, points belonging to hollow, hollow edge, crest, base crest,
or flat surfaces (Figure 1g). In this work, it is considered that with this set of primitives it is possible to
describe any typology of the defect. For instance, a bump defect will be composed of the base crest, crest,
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and possibly flat primitives; therefore regions with local geometric changes are detected on the surface.
Finally, these regions are extracted 2D features to recognize the defect in a classification stage (Figure 1h).
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Figure 1. The overview of our system. (a) Calibration and 3D reconstruction using structured light;
(b) representation through the point cloud; (c) calculation of multiple structures; (d) estimation of
normal vectors by principal component analysis; (e) calculation of the contribution of each model to
the formation of the region; (f) construction of a histogram as a 3D local descriptor; (g) classification of
the point cloud in primitives; (h) surface defect recognition. MPFH: Model Points Feature Histogram.

2.1. Image Acquisition

The 3D point cloud is acquired from a 3D reconstruction system. The technique of projecting
structured light patterns was used. Specifically, sinusoidal phase shift patterns were projected.
A complementary metal-oxide semiconductor (CMOS) camera (Point Grey FL3-U3-88S2C-C,
Richmond, BC, Canada) was used to capture the images and a digital light projector (DLP) was
used to synchronously project the sinusoidal patterns on the object [25]. The acquisition scheme is
shown in Figure 2. The specifications of the camera and the projector are shown in Table 1. Our 3D
reconstruction system had an RMS measurement error of 0.053 mm in x, 0.039 mm in y and 0.10 mm
in z, for a measurement area of 60 mm × 60 mm.

Figure 2. Scheme of the 3D reconstruction system.
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Table 1. Camera and digital light projector specifications.

Device Specifications

Camera Point Grey FL3-U3-88S2C-C
Sensor size 1.55 µm × 1.55 µm

Image resolution 4096× 2160 pixels
Lenses Edmund Optics f 8.5 mm

Digital light projector (DLP) DLP LightCrafter 4500
DLP resolution 912× 1140 pixels

Synchronization circuit freescale FRDM-K20D50M
Software Visual C++ + OpenCV3.0 + PCL1.8

2.2. Calculation of Structures

Superficial defects generate deformations on the object’s surface; this causes the normals and
curvature in a defective region to change with respect to the neighborhood region. Therefore, if the
representation method includes the normal or curvature in the construction of the descriptor,
its adequate estimation influences the description of the region. Given a point cloud of the sample 3D
surface called S, let Pi ∈ S be point on the surface; the k closest adjacent points around Pi are denoted
by Rk. The problem of choosing k is known as the correct scale factor and it affects the estimation of the
normal vectors. The parameter k is also related to the minimum defect size that our system is capable
of detecting. To estimate the normal to a point Pi on the surface, a least squares local plane is fitted to
Rk and its normal vector becomes normal to the point Pi [26]. However, the normals of the planes that
are adjusted to points Rk, with very big k or belonging to edges or corners, undergo a smoothing effect
leading to misdirection, which influences the description of that region. The normals shown in red in
Figure 3a present these effects.

(a) (b) (c)

Figure 3. (a) Comparison of calculation of normals in edge and corner using the estimation of one
and multiple structures; (b) calculation of normals for a cube using J-linkage for estimating multiple
structures; (c) estimated model centers on a defective surface.

A structure is defined as a set of points that adjusts to a plane. We call these structures “models” as
they represent the surface changes in a simple manner. The region Rk around the corner is composed of
three structures or models with different normal vectors (Figure 3a). Thus, our methodology proposes
using a method to estimate the multiple structures Mj in a region Rk and then calculate their normal
vectors. A model is denoted by Mj = {pi}i=1:τ,τ≤k. Moreover, it associates the normal vector of the
model Mj to each point Pi ∈ Mj, which makes it not strictly necessary to calculate the normals for
each point of the surface, but rather ensures that the joining of the points that belong to the generated
models is equal to the surface S. This is shown in Equation (1), where n represents the total number of
models found on the surface. Figure 3b shows the normal vectors on the surface using the proposed
methodology, where is possible observe the correct directing of the normals for points belonging to
edges and corners. The number of Mj models in a region Rk depends on its topology, so that if the
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region has few variations, the number of found models is low compared to a region presenting many
topological changes. Figure 3c represents this concept, where the red dots indicate the center of each
estimated model on a defective surface.

S =
n⋃

j=1

Mj (1)

The nature of the problem described above is comprised of a set of data that belongs to multiple
structures and outliers. The challenge is to estimate the different structures in the presence of noise
and geometric changes in the point cloud.

We use the approach proposed in [24], the J-linkage method, to estimate the multiple structures
on a local region of points Rk, which is composed of the k-nearest neighbors of a point Pi. As in
Random Sample Consensus (RANSAC) [27], J-linkage generates a random set of M hypothesis models
called a minimum sampling set. Then the consensus set (CS) of each model is determined as the set of
points that is at a smaller distance than a threshold ε for this particular model. From the CS of the M
hypothesis models, a 1×M vector is built, representing the set of models to which Pi belongs, where 1
in the column j of the vector represents the belonging of that point to the Mj model and 0 represents
that the point does not belonging to the model. This vector is called the preference set (PS) of a point Pi,
which becomes a conceptual representation of this point, so that points within the same structure will
have similar representations. They will be grouped together as in [24], in a conceptual space {0, 1}M.
To measure this similarity, the Jaccard distance is used (Equation (2)). A and B are two PSs different to
� and dJ takes on values between 0 and 1, for identical and different sets, consecutively.

dJ (A, B) =
A ∪ B − A ∩ B

A ∪ B
(2)

J-linkage has been used to determine the multiple flat structures in a scene for segmentation
purposes from point clouds [28,29], where the difference between the functions of the flat structures is
high and the amount of structures is low compared to the density of points. This difference does not
arise with point clouds belonging to 3D reconstructions of surface defects, where noise can easily be
an inlier of structures and generate a very large number of structures. Therefore, we first generated
local regions Rk throughout the point cloud, and then the models of each Rk region were determined
using J-linkage. As a result, the estimated models represent local changes in the surface.

A model of a plane can be represented from up to three points. However, we found experimentally
that accepting models with fewer than five points increases false models due the noisy data. Increasing
the number of points results in that in defective regions, where the point density is low, the models
are rejected.

2.3. Normal Estimation

After obtaining the M models belonging to a neighborhood Rk of Pi, the normal vector to the
model is determined from the analysis of the eigenvalues λ and eigenvectors

→
v of the covariance

matrix C, as described in Equation (3).

C =
1
τ ∑τ

i=1(Pi − P) · (Pi − P)T (3)

The eigenvector
→
v0 of the smallest eigenvalue λ0 corresponds to the approximation of the normal

→
N, if the condition λ2 ≥ λ1 ≥ λ0 ≥ 0 is fulfilled [30].

Using models to determine the normal vectors to a surface of a region solves to a large extent the
problem of the right scale factor when calculating the normals (see Section 3.2). The problem of the
scale factor is associated with the selected support radii to estimate the normals. If the scale factor
(k or r search) is big, the region will undergo a smoothing effect and the normal vector will not capture
its details. Algorithm 1 shows the pseudo-code for determining the models and their associated normal
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vectors and Figure 4 shows the result of the estimation of the normal vectors on a surface sampled
containing a hole defect.

Figure 4. Normal estimation on hole defect by the proposed methodology.

Algorithm 1: Normals estimation
Output: list of Models Mj and Normal Vectors Arrays nM(j)

1 ∀Pi, determinate by the k nearest neighbor Rk using kdtree
2 for i← 1 to N do

// N total points on the 3D surface
3 if n(i) = null then

// if the Pi’s normal vector has not been calculated
4 foreach Pi and its associated Rk do estimate the models

{
Mj
}
(j=1,. . . ,l) and the Pi ∈ Mj

using J-linkage
5

6 for j← 1 to l do
7 τ ← ∑ Pi ∈ Mj
8 if τ ≥ 5 then
9 Calculate the normal vector

→
v of Mj model using the Equation ( 3).

10 acumM← acumM + 1

11 nM(j)←→v
12 vM(acumM)← Pi, ∀Pi ∈ Mj // it is stored the point belonging each

model
13

14 return nM(j),vM(acumM)

2.4. Model Points Feature Histogram (MPFH)

After obtaining the models and its normal vectors, it is necessary to calculate a representation for
each point Pi of the surface sampled S. For this, we propose calculating a histogram of characteristics
similar to that proposed in [31].

The calculated feature is the relative difference between the normal vectors of each two models
belonging to the region Rk in a Darboux coordinate system. This coordinate system generates a 4D
feature that is invariant to the translation and rotation, which has the advantage of reducing the number
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of parameters from 12 to 4 parameters. This reduction is composed of the coordinates P (x, y, z) and
normal vectors N (x, y, z) of the two points.

The pair (P, N) is known as surflet. The origin will be P1, if Equation (4) is met, otherwise it will
be P2 and the indexes 1 y 2 in the equations must be exchanged. This is to achieve homogeneity in the
choice of the origin of the coordinate system.

Let · denote the scalar product between two vectors and × the cross product of the two vectors.

|N1 · (P2 − P1)| ≤ |N2 · (P2 − P1)| (4)

The axes of the coordinate system are expressed in Equations (5)–(7), and the features indicating
the differences between two surflets are described in Equations (8)–(11), [31]. Figure 5 shows the
relationship between the coordinate systems and the features obtained.

(a)

(b)

Figure 5. Darboux features. (a) Darboux coordinate system. (b) Procedure for the construction of the
MPFH descriptor.

u = N1 (5)

v =
(P2 − P1)× u
‖(P2 − P1)× u‖ (6)

w = u× v (7)

θ = arctan (w · N1, u · N2) (8)

α = v · N2 (9)

φ = u · (P2 − P1)

‖(P2 − P1)‖
(10)

d = ‖(P2 − P1)‖ (11)

To calculate the descriptor of a point Pi, the closest points Pk are searched in a neighborhood k2

which we call region Rk2. Then, the models Mj and their centroids to which belong to the region Rk2 are
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determined. Hence, a vector with the set of models and another with the level of participation ρ of the
model in the representation of the region Rk2 are computed. ρ represents the ratio between the number
of points that form a model Mj ∈ Rk and the totality of the points Mj, described in Equation (12).
ρ ranges from (0, 1]; ρ = 0 is not present, because Rk2 ∩Mj 6= 0. Figure 5 illustrates the Mj models
belonging to the Rk2 region and the difference between them.

ρi =
Rk2 ∩Mi

Mi
(12)

The PFH method [21] uses the histogram of characteristics proposed in [31], where the features
(θ, α, φ, d) are found between each pair of surflets belonging to the region Rk2. It generates a set
of k2

(
k2−1

2

)
quadruplets of features with complete connectivity without weighting. As a result,

it averages the differences between surflets and smoothes local details of the region. On the other hand,
our method is based on the relationship between the normal vectors of the models belonging to the
region Rk. In addition, our proposal adds the parameter ρ, which represents the participation of each
model to the formation of the region. This speeds up the calculation of the representation and leads
to a better capture of the geometric information of the underlying 3D surface. This also reduces the
computational complexity.

To calculate the MPFH representation of each point Pi, a histogram is generated from the
quadruplets of the region Rk2 using the first three Darboux features and adding the weighting of the
model to the formation of the region (θ, α, φ, ρ). Therefore, a histogram H with 4 × b bins is generated,
where the first b bins corresponds to the quantization of the feature φ, the following to α, then to θ,
and finally the last corresponds to ρ. Figure 6a shows the MPFH representation for a point belonging
to a flat region and Figure 6b for a point belonging to a hole-like defect, given b equals 11 as in the
FPFH method.
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Figure 6. Procedure for the construction of the MPFH descriptor of a point belonging to a flat region
and of a point belonging to a hole-like defect.

2.5. Primitives 2D Projection

The identification of primitives allows for detection of defects on surface but not their classification.
Our proposal is to project each connected component of primitives on a plane forming a 2D image.
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Then, 2D geometrical features are extracted for recognition of the defect. Figure 7 shows the
methodological scheme proposed.

Cluster in Connected 
Components

Determine the Plane 
Primitive Point Nearest

Project the Connected 
Component on Plane Convert to 2D Image

Defect Recognition
SVM

2D Feature Extraction

Primitives Identification
SVM

Figure 7. Scheme recognition. SVM: Support vector machine.

First, the primitives are clustered in connected components, using Euclidean distance.
The threshold distance dt is selected according to resolution of the point cloud. Then, for each
connected component Ci, the centroid Oci is calculated, and with the flat primitive P f

i nearest to this,
the projection plane Πi is set. All primitives Pci are projected orthogonally to the plane Πi as described
in Equations (13)–(15). Figure 8a,b illustrates the procedure.

q =
∣∣∣Oci − P f

i

∣∣∣ (13)

D =
∣∣∣q · N f

i

∣∣∣ (14)

Pproj = Pci − D ∗ N f
i (15)

N f
i is the normal vector associated to P f

i .
A affine transformation is applied to the plane Πi, so that it is parallel to the z = 0 plane with

normal vector nz=0(0, 0, 1). Equations (16)–(18) show the calculate of axis and angle rotation, and
Equation (19) obtains the matrix Euler-Rodriguez formula.

RotAxis = N f
i × nz=0 (16)

uax =
RotAxis

‖RotAxis‖
(17)

RotAngle = θg = N f
i · nz=0 (18)

R = cos θg I + sin θg [uax]× +
(
1− cos θg

)
uax ⊗ uax (19)

[uax]× denotes the cross-product matrix of uax, ⊗ is the tensor product, and I is the identity
matrix. Figure 6b illustrates the result of this procedure.

The 2D image is formed by the conversion of the plane Πi in mm to pixels. For that, we calculate
the factor sx = 1

dx

pix
mm , where dx is the closest distance between Oci projected at Πiz=0 and other point.

Then, the bounding box of Πiz=0 is calculated with the goal of translating it the coordinate origin.
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Figure 8c shows the 2D image result and Figure 8d,e shows 2D projections of different typologies of
defects on the objects of experimentation.

oci

Pi
f

πi

Ci

(a)

(b)

(c)

(d)

(e)

Figure 8. A 2D image of the defect. (a) Estimation of projection plane; (b) primitive projection; (c) a
2D image of primitives; (d) a 2D projection of a defect on an artificial tooth; (e) a 2D projection of a
defect on a simulated surface.

According to [32], the characteristics of a surface imperfection are represented in the length, width,
depth, height, and area of imperfection. Hence, it is possible to combine 3D and 2D descriptors to
recognize an imperfection. As explained in Section 2.4, the 3D information of the curvature of the
surface is embedded in the local 3D descriptor MPFH. However, it is necessary to obtain 2D geometric
information that allows recognition of the defect. We proposed to group each set of primitives from its
2D projection and then extract a set of characteristics from each region of primitives belonging to the
defect. Finally, in a classification stage the defect region is recognized.

The set of characteristics was chosen from a process of selection of characteristics using a Fisher
discriminant [33] through the Balu toolbox Matlab [34]. The most relevant features for each type
of primitives were the Hu [H1, H2, H7] moments, the Fourier descriptors [F3, F4, F5, F7 and F11],
the eccentricity [Exc], and the number Euler [En].

3. Results

In this section, we developed two types of evaluation. First, we proved the discriminative power
of the proposed 3D local descriptor compared with five methods of description commonly used. Also,
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invariance of descriptors to noise and support radius was addressed. Second, we tested the performance
of the proposed defects recognition methodology in a database with different objects and defect typology.

3.1. Database

According to our review, to date there have not been any public databases of 3D images with surface
defects. Therefore, the database used in these experiments was constructed from 3D reconstructions
of defects in welding, artificial teeth; indentations in materials, ceramics, models of artificial defects,
and simulations. Figure 9 shows an example of the objects used in the database. Our database contains
480 three-dimensional images with more than 2000 regions with surface defects. There are four types
labeled in the database: holes, bumps, cracks and without defect.

In order to understand how difficult it is to detect and recognize a micro-metric defect on an
object, Figure 10a–c shows an indentation with a test of Vickers hardness on a sample of aluminum.
In Figure 10d–f a material detachment defect in an artificial tooth can be observed.(a) (c)(f) (d) (e) (b)

Figure 9. Examples from the database in: (a) defect in welding; (b) indentations in materials;
(c) artificial teeth; (d) models of artificial cracks; (e) ceramics; (f) simulations.

(a) (b) (c)

1mm

0.01mm

(d) (e) (f)

Figure 10. Surface defects. (a) A 2D image of an indentation with a test of Vickers hardness; (b) a
scanning electron microscope (SEM) image of an indentation; (c) a 3D reconstruction of an indentation;
(d) a 2D image of a detachment defect in an artificial tooth; (e) an SEM image of an artificial tooth; (f) a
3D reconstruction of an artificial tooth.
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3.2. Evaluation of the Estimation of the Normals from Multiple Structures

In this section, we evaluate how the computation of the normal vector on a surface is affected
when simple or multiple structure estimation methodologies are used. In Figure 11, the result of
evaluating the change of a normal at a critical point, where abrupt geometrical changes take place, is
shown. The number of k-neighbors, which supports the parameter to estimate the models, was varied
between 15 and 250 points. As Figure 11 shows, the scaling factor does not significantly influence
the normal vectors calculated by estimating multiple structures. In contrast to using a unique
structure, the normal vector in that region changes with the variation of support radius. This means
that through the proposed methodology, better-oriented normal vectors at critical points such as
edges and corners are obtained. Consequently, this will increase the discriminating capabilities of
our descriptor.

Figure 11. Comparison of adjustment of normal using one or multiple structures varying the number
of k-neighbors.

3.3. Robustness to Noise in the Estimation of the Normal Vectors

In order to evaluate the robustness to noise in the estimation of models for calculating the
normal vectors, in Table 2 we show a comparison of the results of calculating the normal vectors
using the adjustment of multiple- structure J-linkage versus the adjustment of a single structure on
a cube. In a simple structure like a cube that has three types of regions (planes, edges, and corners),
normal estimation methods based on a single structure fail at edges and corners. The defects, being
more complex structures, require greater precision in the estimation of the normal, which can be
achieved if the estimation of normal multiples is used. The regions chosen for the evaluation were:
points in planes, near edges, and on corners. Gaussian noise with a standard deviation of 5% is
also added. The calculation of the normal vectors is compared with the theoretical normal vector.
The spaces in the “One Structure” column are due to the fact that, regardless of the topological
complexity of a region, the methods based on the estimation of unique structures will always find
only one normal vector. However, for example for a cube-type region, there are three theoretical
normal vectors which match the results using multiple structures. The mean square error between the
calculation of the normal vectors using the estimation of multiple structures with respect to the normal
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theoretical vector was 0.00854, whereas with a single structure this value was 0.01117. In summary,
these results show that is more stable to calculate the normal vectors using the estimation of multiple
structures versus single structure, even with the presence of noise.

Table 2. Normal vectors in corners, edges, and planes of a cube, using single (standard methods) and
multiple structures (method used).

Region Theoretical Normal Vector One-Structure Theoretical Multiple-Structure J-linkage
Nx/Ny/Nz (Standard Methods) Nx/Ny/Nz Theoretical (Method Used) Nx/Ny/Nz

Corner
0.0/−1.0/0.0 −0.5350/−0.5350/0.6538 0.0/−1.0/0.0
−1.0/0.0/0.0 — −1.0/0.0/0.0
0.0/0.0/1.0 — 0.0/0.0/1.0

Corner 5% noise
0.0/−1.0/0.0 −0.5438/−0.5888/0.5979 −0.0010/−0.9997/0.0215
−1.0/0.0/0.0 — −0.9993/0.0234/0.02866
0.0/0.0/1.0 — 0.0711/0.0478/0.9963

Edge 0.0/0.0/1.0 0.0/−0.7071/0.7071 0.0/0.0/1.0
0.0/−1.0/0.0 — 0.0/−1.0/0.0

Edge 5% noise 0.0/0.0/1.0 0.0027/−0.5286/0.8488 0.0765/−0.0416/0.9962
0.0/−1.0/0.0 — 0.0159/−0.9953/−0.0952

Plane 0.0/0.0/1.0 0.0/0.0/1.0 0.0/0.0/1.0

Plane 5% noise 0.0/0.0/1.0 0.0191/−0.0116/0.9998 0.01271/−0.0114/0.9998

3.4. Evaluation of the Discriminating Properties

In order to evaluate the discriminating capabilities of the MPFH method, it is compared with the
PFH and FPFH descriptor with different k neighborhood support. The measure of similarity used for
the histogram was the intersection between the descriptors for seven different regions: the point in a
plane, cylinder, sphere, a point on the vertices of a triangular pyramid, square pyramid, pentagonal
pyramid, and hexagonal pyramid. When the number of sides of the polygon of the base of the pyramid
increases, the curvature of the vertex is close to the curvature of a sphere. These regions were chosen
because they present a small change between them in the curvature.

Figure 12 presents a similarity matrix. The intensity level represents the quantification of similarity
between objects row and column. The rows correspond to the similarity measure for the PFH, FPFH,
and MPFH descriptors consecutively, and the columns represent the similarity with different k1 and k2

neighborhood support. An ideal similarity matrix for a classification process would have a diagonal
with black and the rest white.

It can be seen in the gray levels from Figure 12g–i that there is a lower probability of confusion
of the MPFH method between different classes with respect to the PFH (Figure 12a–c) and FPFH
(Figure 12d–f). These results suggest that the description made by the MPFH method facilitates a
correct classification of the underlying region.

(a) (b) (c)

Figure 12. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 12. Measurement of distances between feature vectors of points in different regions and with
different k1 and k2 neighborhood support. (a) PFH con k1 = 15, k2 = 45; (b) PFH k1 = 30, k2 = 60;
(c) PFH k1 = 45, k2 = 75; (d) FPFH k1 = 15, k2 = 45; (e) FPFH k1 = 30, k2 = 60; (f) FPFH k1 = 45,
k2 = 75; (g) MPFH k1 = 15, k2 = 45; (g) MPFH k1 = 30, k2 = 60 and (i) MPFH k1 = 45, k2 = 75.

3.5. Comparison with Some 3D Local Descriptors

In this section, the descriptor MPFH proposed is compared with some of the descriptors more
often used in the literature like PFH, FPFH, spin image, radius-based surface (RSD), and signature of
histograms of orientations (SHOT). From the database we carefully selected 2800 points belonging
to different 3D surfaces regions. These points were categorized into five classes: hollow, crest, edge
hollow, base crest and planar surfaces. Descriptors were evaluated in a classification task varying
Gaussian noise, adding 0%, 5% and 10%.

Figure 13a compares the accuracy obtained between the descriptors. It can be seen that the
accuracy of the descriptor MPFH is higher, even with the addition of noise, and although accuracy
decreases with increasing the percentage of noise, it provides less of a slope than the PFH, FPFH, spin
image and the radius-based surface descriptor (RSD).

In Figure 13b, the classification results varying the r2 support radius for the calculation of the
descriptors are displayed. We can also observe that while decreasing the classification accuracy with
the variation in radius r2 support, our method still has the greatest accuracy between descriptors.
In Figure 13b, the qualitative results taking the 3D sampled surface of the artificial tooth, welding defect,
and simulated defects models with added noise as test data are shown.
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(a)

(b)

Figure 13. MPFH Descriptor. (a) Comparing different descriptors adding Gaussian noise; (b) comparison
of different descriptors varying the r2 support radius.

3.6. Performance Evaluation for Defects Recognition

This section evaluates the full methodology of surface defect recognition proposed in this paper.
The set of training and test images consisted of 2160 regions labeled as holes, bumps, cracks and
without defect.

In the detection stage, the points of the surface are classified into five primitives, the points
belonging to a hollow (red), hollow edge (yellow), crest (magenta), base crest (blue), and flat (green)
surfaces. The capacity of the local descriptor to represent and classify the regions of the surface can be
seen in Figure 14, . However, it is also observed that misclassified primitives appear, which will affect
the classification process.
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(a) (b)

(d)(c)

Figure 14. Classification of primitives on different objects. (a) artificial teeth; (b) ceramics; (c) models of
artificial defects; (d) defects in welding.

The recognition stage was evaluated with the classification techniques: k-nearest neighbors (knn),
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), multilayer perceptron,
support vector machine (SVM) with radial basis function kernel (rbf), SVM with polynomial kernel
function (poly), and SVM with a quadratic kernel (quad). In the evaluation process, we used 10-fold
cross-validation. Table 3 shows the performance of each classifier. The performance was measured
using the accuracy factor (Equation (20)).

AverageAccuracy =
∑l

i=1
tpi+tni

tpi+ f ni+ f pi+tni

l
(20)

The parameters (tpi) are the true positive for class Ci, the elements ( f pi) are false positives, ( f ni)
are false negatives, and finally, the the parameters (tni) are the true negatives. The factor l is the
class number.

Table 3. Results of classification of surface defects. LDA: linear discriminant analysis; knn: k-nearest
neighbors; QDA: quadratic discriminant analysis; SVM (rbf): SVM with radial basis function kernel;
SVM (poly): SVM with polynomial kernel function; SVM (quad): SVM with a quadratic kernel.

Classifier knn (k = 10) LDA QDA Multilayer Perceptron SVM (rbf) SVM (poly) SVM (quad)

Accuracy 90.09% 86.22% 66.89% 93.95% 94.17% 87.72% 93.05%

Figure 15 shows the result of the classification for different images in the database. It can be seen
from images that the recognition stage is able to correctly classify the defect. However, can be seen
that in defective regions close to the edges of the object, our method erroneously classifies the region
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as without defect (Figure 15d). The misclassification could be attributed to the very low density of
points in this regions, which causes a misclassification in primitives, affecting the recognition.

(a) (b)

(c) (d)

Figure 15. Qualitative results for the recognition of defects in (a) Indentation with a test of Vickers
hardness; (b) Models of artificial defects; (c) Welding; (d) Artificial teeth. The orange region represents
crack-type defects, the green region represents bumps-type defects, the purple region represents
hole-type defects, and the gray color represents the regions without defects.

The average processing time of the automated inspection system is composed of the acquisition
step, which is delayed 0.3 s, the processing and description step with 1.1 s for a region with 1817
points and three defects, and the classification step with 0.2 s. According to the above, the automated
inspection system could detect defects on a surface in 1.6 s.

4. Conclusions

In this paper, we have presented a new local 3D surface descriptor that improves the robustness
and discriminating capabilities of the PFH method. We have demonstrated its applicability for surface
quality inspection in the detection of defects on different objects. The proposed MPFH method was
evaluated and compared to some of the most used state-of-the-art descriptors under a classification
task. The obtained results show that our method has higher discriminating capabilities, because we
tried to capture the geometric information of the underlying 3D surface more precisely by estimating
the normals from the models that are adjusted to the surface and including these in the construction
of the descriptor. From the identification of primitives, we propose a method of description that
projects each connected component of primitives on a plane forming the 2D image. Then, 2D geometric
features are extracted to recognize the defect. With this method, three types of defects (holes, bumps,
and cracks), with an accuracy of 94.17%, are recognized using an SVM. In the MPFH descriptor
calculation, the models that best fit the surface are estimated through an estimation technique of
multiple structures or models. In this paper the models are flat surfaces, however, we believe that if
models can be fitted to polynomial surfaces or splines, this would help to estimate the normal vectors
more correctly and the local region would be more accurately represented.
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