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The commonly used Poisson rectangular pulse (PRP) model, employed for simulating high-resolution
residential water consumption patterns (RWCPs), relies on calibration via medium-resolution RWCPs
obtained from practical measurements. This introduces inevitable uncertainty stemming from the
measured RWCPs, which consequently impacts the precision of model simulations. Here we enhance the
accuracy of the PRP model by addressing the uncertainty of RWCPs. We established a critical sampling
size of 2000 household water consumption patterns (HWCPs) with a data logging interval (DLI) of 15 min
to attain dependable RWCPs. Through Genetic Algorithm calibration, the optimal values of the PRP
model's parameters were determined: pulse frequency l ¼ 91 d�1, mean of pulse intensity
E(I) ¼ 0.346 m3 h�1, standard deviation of pulse intensity STD(I) ¼ 0.292 m3 h�1, mean of pulse duration
E(D) ¼ 40 s, and standard deviation of pulse duration STD(D) ¼ 55 s. Furthermore, validation was
conducted at both HWCP and RWCP levels. We recommend a sampling size of �2000 HWCPs and a DLI of
�30 min for PRP model calibration to balance simulation precision and practical implementation. This
study significantly advances the theoretical foundation and real-world application of the PRP model,
enhancing its role in urban water supply system management.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Residential water consumption patterns (RWCPs) play a crucial
role in the efficient management of urban water supply systems
[1e3]. The resolution of RWCP data significantly affects their
applicability [4e6]. Low-resolution RWCPs, characterized by a data
logging interval (DLI) ranging from days to months, focus primarily
on univariate statistics to analyze the socioeconomic effects of
water consumption. In contrast, medium-resolution RWCPs, with a
DLI spanning minutes to hours, reflect diurnal variations in water
consumption and are commonly employed to develop hydraulic
models of water distribution systems [7,8] and detect water leak-
ages [9,10]. On the other hand, high-resolution RWCPs, featuring a
ier B.V. on behalf of Chinese Soci
access article under the CC BY-NC-
DLI at the level of seconds, permit fine flow-signature analysis [6]
and are increasingly employed to develop water quality models
[11]. While lower-resolution RWCPs can generally be aggregated by
higher-resolution ones, but not vice versa, making high-resolution
RWCPs indispensable for comprehensive water consumption
analysis. In addition, the rapid development of smart metering
technology has brought great convenience to water consumption
measurements [12,13]. However, smart water meters have only
been adopted by a subset of residential households so far, leading
water authorities to often rely on medium-resolution RWCPs
considering the costs for data acquisition, transmission, and storage
[14,15]. Under this circumstance, simulation models have been
developed to acquire high-resolution RWCPs more cost-effectively
than direct measurements [16].

The Poisson rectangular pulse (PRP) model stands out as a
prominent choice among simulation models, widely employed to
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represent random water consumption events as equivalent rect-
angular pulse [4,15]. Each pulse is expressed by three attributes:
frequency (l), intensity (I), and duration (D), and multiple pulses
are generated by a time-dependent Poisson Arrival Process
[4,15,17]. The pulse intensities are assumed to follow an exponen-
tial, log-normal, or Weibull distribution [15,18,19], while pulse
durations followan exponential, log-normal, or normal distribution
[15,18,20,21]. Among these distributions, the log-normal distribu-
tion is most commonly adopted for pulse intensity and duration. On
this basis, the PRP model can be expressed by five parameters:
pulse frequency (l), mean and standard deviation of pulse intensity
(E(I) and STD(I)), and mean and standard deviation of pulse dura-
tion (E(D) and STD(D)), each holding explicit physical interpretation
[22].

Prior to its practical implementation, a PRP model needs to be
established, which involves calibrating and validating its parame-
ters. The calibration of model parameters often entails minimizing
the differences in certain variables (e.g., the flow rate in each time
slot (slot width ¼ DLI) (Qi), daily water consumption volume (V))
between the measured and simulated RWCPs. Validation is per-
formed using a goodness-of-fit test for cumulative frequency dis-
tributions (CFDs) of these characteristic variables [23,24]. In
addition, the uncertainty of a measured RWCP depends on both
sampling size and DLI. For example, a single-household RWCP
presents discrete rectangular pulses with strong stochasticity
[7,24], while a residential-community RWCP presents a bimodal
curve with dominant periodicity [5,12,25]. Therefore, to improve
the simulation accuracy of a PRP model, the RWCP uncertainty
analysis is an inevitable prerequisite.

This study aimed to establish an accurate PRP model, intended
for simulating high-resolution RWCPs, from practically measured
medium-resolution RWCPs. The RWCP uncertainty was first
analyzed by considering different sampling sizes and DLIs. To
calibrate the PRP model, Genetic Algorithm (GA) was employed to
minimize the sum of squared differences of Qi between the
measured and simulated RWCPs. Model validation was performed
through a goodness-of-fit test for the CFDs of four characteristic
variables: maximum flow rate (max (Qi)), V, Qi, and flow rate dif-
ference between adjacent time slots (DQi ¼ Qiþ1 � Qi) over a day. In
brief, the study will substantially improve the theoretical under-
pinning and real-world application of the PRP model from the data
perspective, thereby enhancing the management of urban water
supply systems.
Fig. 1. Flow chart for PRP model establishment.
2. Materials and methods

2.1. PRP model establishment procedures

The PRP model was established through a series of sequential
steps: (1) measuring the data pertinent to household water con-
sumption patterns (HWCPs) with a pre-selected DLI (e.g., 15 min);
(2) constructing the medium-resolution RWCPs through super-
imposing a certain number of HWCPs (defined as the sampling size)
randomly selected for each RWCP; (3) analyzing the uncertainty of
the constructed medium-resolution RWCPs; (4) calibrating the PRP
model parameters; and (5) validating the PRP model simulation
accuracy (Fig. 1). In this study, HWCPs represented the water con-
sumption pattern of an individual household over a day, whereas
RWCPs represented the water consumption pattern of an entire
residential community over a day. Once established, the PRP model
allowed for the simulation of high-resolution RWCPs, offering a
valuable tool to better manage urban water supply systems.
2

2.2. Residential water consumption data collection

This study focused on measuring water consumption in two
urban residential communities in Beijing, China. The selected
communities consisted of 830 and 776 households, each equipped
with smart water meters. For each household, water consumption
data were measured continuously for five weekdays with a DLI of
15 min. Theoretically, a total of 8030 [i.e., (830 þ 776) � 5] HWCPs
could be obtained. After eliminating invalid patterns caused by
malfunctions of water meters or transmission devices, 7650
useable HWCPs were finally acquired. These HWCPs were then
randomly divided into a training set (4000 HWCPs) and a validation
set (3650 HWCPs) for further analysis (Fig. 1).

2.3. RWCP uncertainty analysis

As shown in Fig. 1, a certain number of HWCPs (i.e., sampling
size) were randomly selected from the training set and then
superimposed into one RWCP. The process was repeated 100 times
at a fixed sampling size to generate 100 RWCPs, and their fluctua-
tion range for each time slot was determined as the RWCP uncer-
tainty interval. The investigation encompassed the evaluation of 30
sampling scales, spanning from 50 to 3000 HWCPs.

To make the RWCPs comparable among different sampling
scales, a normalized water consumption coefficient for the ith time
slot of an RWCP (ai) is defined as follows:

ai ¼
Qi

1
N
PN
i¼1

Qi

(1)

where Qi is the flow rate for the ith time slot of an RWCP (i.e., the
sum of all flow rates of a certain number of HWCPs); and N is the
number of time slots over a day (e.g., N ¼ 96 at DLI ¼ 15 min).

The RWCP uncertainty interval for the ith time slot and the jth
sampling scale (UIi,j) and the average uncertainty interval over a day
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for the jth sampling scale (UIj) can be calculated respectively by
equations (2) and (3) as follows:

UIi;j ¼max
�
ai;j

��min
�
ai;j

�
(2)

UIj ¼
1
N

XN
i¼1

UIi;j (3)

where i2½1; N�， j2½1;30�; and max (ai,j) and min (ai,j) are the
maximum and minimum coefficients for the ith time slot and the
jth sampling scale among the 100 RWCPs.

To reflect how fast the UIj changes with the sampling size, a
change rate (r) is defined as follows:

rjþ1 ¼
UIjþ1 � UIj

NHWCPjþ1 � NHWCPj
(4)

where NHWCPjþ1 and NHWCPj are the number of HWCPs for the
(jþ1)th and jth sampling scale, respectively.
2.4. PRP model description

In a PRP model, the water consumption events of a household
over a day are represented equivalently by rectangular pulses
generated by the Poisson arrival process. The probability P of hav-
ing k pulses per day is calculated by equation (5) [26]:

PðkÞ ¼ e�ll
k

k!
(5)

where k is a nonnegative integer; and l is the pulse frequency.
The pulse can be simulated using a block function B as follows

[26]:

BðI;D; tÞ¼
�
I; T2½t; tþ D�
0; T < t or T > tþ D

(6)

where T is any time point, and t is the occurrence time point of a
water consumption event.

In the block function B, both I and D are assumed to follow a log-
normal distribution [15]:

f ðIÞ¼ 1ffiffiffiffiffiffiffi
2p

p
sI I

e
� 1

2sI
2½lnðIÞ�mI �2 (7)

f ðDÞ¼ 1ffiffiffiffiffiffiffi
2p

p
sDD

e
� 1

2sD
2½lnðDÞ�mD�2 (8)

where f ðIÞ and f ðDÞ are probability density functions of I and D,
respectively; mI and sI are the mean and standard deviation of ln(I),
respectively, which can be calculated from E(I) and STD(I) by
equations (9) and (10); and mD and sD are the mean and standard
deviation of ln(D), respectively, which can be calculated from E(D)
and STD(D) by equations (11) and (12) [27]:

mI ¼ ln½EðIÞ� � 1
2
ln

"
1þ STDðIÞ2

EðIÞ2
#

(9)

sI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

"
1þ STDðIÞ2

EðIÞ2
#vuut (10)
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mD ¼ ln½EðDÞ� � 1
2
ln

"
1þ STDðDÞ2

EðDÞ2
#

(11)

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

"
1þ STDðDÞ2

EðDÞ2
#vuut (12)

Equations (7) and (8) are used to generate random k sets of I and
D (i.e., k pulses). For each pulse in the ith time slot, its occurrence
probability is proportional to Qi, while its occurrence time point is
generated randomly. Then, the k pulses generated are super-
imposed to form an HWCP [19,28]. Consequently, at any time point,
the flow rate can be calculated as the sum of the intensities of all
pulses occurring.

2.5. PRP model establishment

The PRP model was established after calibration and validation
with themedium-resolution RWCPsmeasured (Fig.1). According to
the DLI for water consumption data measurement in this study (i.e.,
15 min), the initial PRP model (uncalibrated, Section 2.4) was used
to simulate a desired number of HWCPs, and then RWCPs were
formed by superimposing different sets of HWCPs (Section 2.3). For
model calibration, an objective function (F), which sums the
squared differences of the maximum, mean, and minimum flow
rates between the measured and simulated RWCPs (each 100), was
minimized to obtain the five parameters (l, E(I), STD(I), E(D), and
STD(D)) by using GA [29]:

F ¼
XN
i¼1

��
Qi

max � SQi
max�2 þ �

Qi
mean � SQi

mean�2
þ
�
Qi

min � SQi
min

�2 	 (13)

where Qi
max, Qi

mean, and Qi
min are the maximum, mean, and mini-

mum flow rates for the ith time slot of measured RWCPs, respec-
tively; and SQi

max, SQi
mean, and SQi

min are the maximum, mean, and
minimum flow rates for the ith time slot of simulated RWCPs,
respectively.

Thereafter, the PRP model was validated at both HWCP and
RWCP levels by four characteristic variables (max(Qi), V, Qi, and
DQi). Specifically, a goodness-of-fit test was performed for the CFDs
of these characteristic variables between the measured and simu-
lated HWCPs (each 1000) or RWCPs (each 100) through compre-
hensive consideration of the mean error (ME), the root of mean
square error (RMSE) and coefficient of determination (R2). To
compare the results at different sampling sizes, ME and RMSE were
expressed as relative values to the average measured characteristic
variables (Text S1).

3. Results

3.1. RWCP uncertainty analysis

Six out of all 30 sampling scales, in correspondence to the six
representative sampling sizes of 50, 200, 500,1000, 2000, and 3000
HWCPs, were selected to investigate the daily variations of ai, as
shown in Fig. 2. As mentioned above, the RWCP uncertainty in-
terval (UI) was referred to the vertical fluctuation range of ai, rep-
resenting the vertical distance between the upper and lower
envelop curves. Results indicate that the UI value exhibited greater
values during morning and night peak hours but decreased at
midnight. Moreover, as the sampling size increased, the UI



Fig. 2. Variations of ai over a day at representative sampling sizes: a, 50; b, 200; c, 500;
d, 1000; e, 2000; f, 3000 HWCPs.

Fig. 3. Variations of UI and r with sampling size.

J. Zhang, D. Savic, Q. Xu et al. Environmental Science and Ecotechnology 18 (2024) 100317
gradually diminished. For example, the UI fluctuated largely from
0.53 (at 2:30) to 3.01 (at 22:00) at 50 HWCPs, but slightly from 0.03
(at 3:00) to 0.21 (at 22:00) at 3000 HWCPs. In addition, the “single”
ai curve (black) deviated drastically from the “mean” ai curve (red)
at 50 HWCPs, while the two curves nearly converged at 3000
HWCPs. These observations highlight that increasing the sampling
size effectively reduced the RWCP uncertainty.

To investigate the relationship between sampling size and the
rate of UI change, the variations of both UI and r are presented in
Fig. 3. Results indicate that UI decreasedmonotonically from 1.60 to
0.10 as the sampling size increased from 50 to 3000 HWCPs.
Meanwhile, the absolute value of r (jrj) decreased from 0.960% to
0.007% correspondingly. To minimize the negative impact of the
measured RWCPs’ uncertainty on the calibration of the PRP model
to be established, the thresholds for a dependable RWCP were thus
proposed as follows: UI < 0.2 and jrj < 0.01%, as a trade-off between
model simulation accuracy and data acquisition cost. As depicted in
Fig. 3, a critical sampling size of 2000 HWCPs and a DLI of 15 min
were required to meet the above thresholds.
3.2. PRP model calibration

The procedures for PRP model calibration are described in
Fig. S1. The objective function (F) at the critical sampling (or
simulating) size (i.e., 2000 HWCPs) wasminimized by using the GA.
After our computational trials, the population size in each gener-
ation of the GAwas set to ten individuals. Each individual contained
five genes corresponding to the five model parameters (l, E(I),
STD(I), E(D), and STD(D)), and each gene was represented by a bi-
nary string. The selection, crossover, and mutation probabilities of
the GA were set as 0.8, 0.7, and 0.01, respectively [30].
4

To ensure efficient convergence of the GA, the initial range of
each parameter should be set appropriately. By referring to litera-
ture reported values (12 sets), the maximum and minimum values
of each parameter were selected as its initial range boundaries: l
(d�1) 2 [47, 121], E(I) (m3 h�1) 2 [0.248, 0.544], STD(I) (m3

h�1)2 [0.194, 0.378], E(D) (s)2 [36, 64], and STD(D) (s)2 [49, 115]
(Table S1). The GAwas terminated if the residual error of F (i.e., Fi e
Fiþ1) of the best individual was less than 10�4 for 20 consecutive
generations or the total number of generations reached 500. In this
study, an optimal solution was generally achieved within 60 gen-
erations, and the optimal parameters were determined as follows:
l ¼ 91 d�1, E(I) ¼ 0.346 m3 h�1, STD(I) ¼ 0.292 m3 h�1, E(D) ¼ 40 s,
and STD(D) ¼ 55 s.

3.3. PRP model validation

3.3.1. HWCP level
The CFDs of max (Qi), V, Qi, and DQi between the measured and

simulated HWCPs (each 1000) are compared in Fig. 4. Note that
these HWCPs were not superimposed into one or more RWCPs;
rather, the examination was carried out exclusively at the HWCP
level. Results indicate that the measured and simulated HWCPs
agreed well for max (Qi), Qi, and DQi, but a relatively larger devia-
tion was observed for V.

For max (Qi), the measured values ranged from 0 to 0.72 m3 h�1,
most of which (94%) fell between 0.04 and 0.40 m3 h�1; and the
simulated values ranged from 0.04 to 0.80 m3 h�1. For Qi, the
measured and simulated curves almost overlapped; the measured
values had the same range as those of max (Qi), with 98.3% of which
below 0.12 m3 h�1 and 61.8% of which being zero (i.e., no water
use); the simulated values had a slightly broader range (i.e.,
0�0.80m3 h�1), with 43.7% of which being zero. For DQi, which was
simply derived from Qi, the measured and simulated curves also
overlapped as expected; the simulated values had a slightly broader
range (i.e., from�0.72 to 0.72 m3 h�1) than the measured ones (i.e.,
from�0.64 to 0.60m3 h�1). For V, themeasured values ranged from
0 to 0.73m3, with only a small portion of which (0.2%) was zero (i.e.,
vacant homes); the simulated values ranged from 0.15 to 0.62 m3.
For max (Qi), Qi, and DQi, the simulated curves all had a slightly
broader range than the measured ones, while for V, the simulated
curve had a notably narrower range than the measured one.

The goodness-of-fit test results for the CFDs of these charac-
teristic variables between the measured and simulated HWCPs are



Fig. 4. Comparisons of CFDs of max (Qi), V, Qi, and DQi between measured and
simulated HWCPs (1000 HWCPs each).

Table 1
Goodness-of-fit test for CFDs of max (Qi), V, Qi, and DQi between measured and
simulated HWCPs (1000 HWCPs each).

Characteristic variable ME (%) RMSE (%) R2

max (Qi) (m3 h�1) �1.44 4.99 0.99
V (m3) �3.45 26.32 0.88
Qi (m3 h�1) 0.06 0.74 0.98
DQi (m3 h�1) 0.26 2.67 1.00

Fig. 5. Variations of Qi over a day at representative simulating sizes of calibrated PRP
model: a, 50; b, 200; c, 500; d, 1000; e, 2000; f, 3000 HWCPs.
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listed in Table 1. For max (Qi), Qi, and DQi, the calibrated PRP model
showed good performance in simulation (jMEj � 1.44%, RMSE
�4.99%, R2 � 0.98); while for V, the simulation error was compar-
atively larger (jMEj ¼ 3.45%, RMSE ¼ 26.32%, R2 ¼ 0.88). This was
also commonly observed in previous studies [22,26]. Overall, after
being calibrated with the measured RWCPs (sampling size ¼ 2000
HWCPs and DLI ¼ 15 min), the PRP model could be validated at the
HWCP level with acceptable simulation accuracies for the charac-
teristic variables.
3.3.2. RWCP level
The daily variations of Qi at six representative simulating sizes

(50, 200, 500, 1000, 2000, and 3000 HWCPs) of the calibrated PRP
model are shown in Fig. 5. For comparison, the maxmea, meanmea,
and minmea represented the upper envelope, mean, and lower en-
velope curves of the measured RWCPs (100), respectively; and the
meansim and randomsim represent the mean curve and the random
distribution region of the simulated RWCPs (100), respectively.
Results indicate that the simulated mean curve agreed well with
the measured one at each simulating size. Furthermore, the
goodness-of-fit test for the CFDs of the upper envelope, mean, and
lower envelope curves showed good agreement between the
measured and simulated RWCPs (jMEj � 8.89%, RMSE �10.85%,
R2 � 0.94) (Table S2).

Fig. 5 Moreover, the CFDs of max (Qi), V, Qi, and DQi between the
measured and simulated RWCPs (each 100) are compared in Fig. S2.
For max (Qi), the simulated curve almost overlapped with the
measured one at 50 or 200 HWCPs, and slightly shifted to the right
at other simulating sizes; for Qi and DQi, the measured and simu-
lated curves overlapped at each simulating size; and for V, the
simulated curve had a notably narrower range than the measured
one. This result (at the RWCP level) is similar to that shown in Fig. 4
(at the HWCP level).

The goodness-of-fit test results for the CFDs of these charac-
teristic variables between the measured and simulated RWCPs are
listed in Table S3. Formax (Qi), Qi, and DQi, the calibrated PRPmodel
showed quite good performance in simulation (jMEj � 17.53%,
RMSE �21.31%, R2 � 0.89); while for V, the simulation error was
comparatively larger (jMEj ¼ 29.14%, RMSE ¼ 52.02%, R2 ¼ 0.72),
5

similar to that observed in a previous study [31]. Overall, the cali-
brated PRP model could also be validated at the RWCP level,
although with a certain decrease in the simulation accuracy
compared to that at the HWCP level.

It should be noted that Beijing has a considerably higher resi-
dential density (i.e., a residential community usually containing
500e3000 households) than most cities worldwide. Hence, the PRP
model established in this study purposely considered larger simu-
lating sizes (e.g., 3000 households) than those established in other
countries (�500 households) [22,23,26]. Table S3 shows that the PRP
model calibrated at the sampling size of 2000 HWCPs could well
simulate the RWCPswith a simulating size of�2000 HWCPs, but the
simulation error increased to some extent for the RWCP with a
higher simulating size (i.e., 3000 HWCPs) in terms of max (Qi) and V.
4. Discussion

4.1. Impact of DLI on RWCP uncertainty

Apart from the widely adopted 15-min time interval for DLI,
water authorities also employ other DLIs, such as 30 and 60 min, to
measure the RWCP. Therefore, the impact of DLI on RWCP uncer-
tainty was investigated, as shown in Fig. S3. Results indicate at a
fixed sampling size, the UI and jrj values decreased with an
increasing DLI. For example, themaximum UI values were 1.60,1.31,
and 1.08 at the DLIs of 15, 30, and 60 min at the sampling size of 50
HWCPs, respectively. As the sampling size increased, the difference
of UI between different DLIs gradually decreased. Due to the
“leveling effect”, prolonging the DLI could reduce the RWCP un-
certainty, but at the cost of a decreased resolution of the RWCPs.



Table 2
PRP model parameters calibrated with water consumption data at different DLIs.

DLI (min) l (d�1) E(I) (m3 h�1) STD(I) (m3 h�1) E(D) (s) STD(D) (s)

15 91 0.346 0.292 40 55
30 85 0.364 0.324 36 56
60 77 0.248 0.220 56 92
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Based on the desired thresholds (UI < 0.2 and jrj < 0.01%) for
dependable RWCPs as aforementioned (Section 3.1), the critical
sampling sizes were 2000, 1800, and 1600 HWCPs in correspon-
dence to the DLIs of 15, 30, and 60 min, respectively (Fig. S3). The
relationship between the DLI and the sampling size could guide
water authorities for field measurements of dependable RWCPs
while avoiding excessive data collection.
4.2. Comparison of PRP model parameters calibrated at different
DLIs

The PRP model parameters were also calibrated at the DLIs of 30
and 60min, as listed in Table 2. Results indicate that the parameters
calibrated at a DLI of 15 min closely resembled those at a DLI of
30 min, but deviated more from those at a DLI of 60 min. Specif-
ically, the calibration at a DLI of 60 min yielded a smaller l and E(I)
but larger E(D) than those at the other two DLIs. Consequently, the
PRP model calibrated at a longer DLI would generate water con-
sumption events with a lower frequency and intensity but a longer
duration. However, thewater consumption volumes represented by
the pulses (E(I) � E(D)) were similar at the three different DLIs (i.e.,
3.84, 3.64, and 3.86 L, respectively), which is consistent with the
actual situation of a household.

For the measurement of RWCPs, a short DLI leads to a high
resolution but at a high cost for data collection and analysis [6],
while a long DLI leads to a lower resolution and sometimes even
Fig. 6. Variations of ME and RMSE for CFDs of max (Qi), Qi, and DQi with simulatin
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distortion. Therefore, considering the practical circumstance, a DLI
of �30 min is recommended to calibrate the PRP model.
4.3. Comparison of simulation accuracies of PRP model calibrated at
different sampling sizes

To further investigate the impact of RWCP uncertainty on model
simulation accuracy, the PRP model was calibrated at four addi-
tional sampling sizes (50, 500, 1000, and 3000 HWCPs). Fig. 6
shows the variations of ME and RMSE for the CFDs of max (Qi), V,
and Qi at representative simulating sizes (i.e., 1, 50, 200, 500, 1000,
2000, and 3000 HWCPs). The goodness-of-fit test results clearly
demonstrate that the PRP model calibrated at a smaller sampling
size would induce a larger simulation error, and the error was
amplified with increasing simulating size.

The PRP model, calibrated at the sampling size of 2000 HWCPs
in this study, exhibited good accuracy for all the representative
simulating sizes. In addition, it was found that the PRP model
calibrated at a certain sampling size (e.g., 100 HWCPs) performed
well in simulating RWCPs with an equal or lower size (i.e., �100
HWCPs) but was less effective in simulating RWCPs with a higher
size (i.e., >100 HWCPs). Therefore, it is recommended that the PRP
model, once calibrated, should better be applied “downwards”.
5. Conclusions

The primary aim of this research was to establish the PRP model
more accurately based on the uncertainty analysis of RWCPs
practically measured. Based on the outcomes of the analysis,
several key findings can be summarized as follows.

� The reduction of RWCP uncertainty can be effectively attained
by increasing the sampling size or DLI. To establish a RWCP with
high confidence, the study proposed the adoption of the
g size of PRP model calibrated separately with representative sampling sizes.
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following threshold criteria: UI < 0.2 and jrj < 0.01%. On this
basis, the critical sampling sizes were determined as 2000,1800,
and 1600 HWCPs in correspondence to the DLIs of 15, 30, and
60 min, respectively.

� Through PRP model calibration, we identified the optimal pa-
rameters at a DLI of 15 min. The calibrated values for the pa-
rameters were as follows: l ¼ 91 d�1, E(I) ¼ 0.346 m3 h�1,
STD(I) ¼ 0.292 m3 h�1, E(D) ¼ 40 s, and STD(D) ¼ 55 s. Notably,
these optimized parameters showed a resemblance to those
obtained at a DLI of 30 min, whereas they exhibited more sub-
stantial deviations from those at a DLI of 60 min. Hence, a DLI of
�30 min is recommended to calibrate the PRP model.

� To ensure the simulation accuracy, a sampling size of �2000
HWCPs is recommended to calibrate the PRP model. Once cali-
brated at a certain sampling size, the PRPmodel should be better
applied “downwards” to simulate RWCPs with an equal or
smaller size.
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