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Abstract

Genome sequencing is an increasingly common component of infectious disease outbreak
investigations. However, the relationship between pathogen transmission and observed ge-
netic data is complex, and dependent on several uncertain factors. As such, simulation of
pathogen dynamics is an important tool for interpreting observed genomic data in an infec-
tious disease outbreak setting, in order to test hypotheses and to explore the range of out-
comes consistent with a given set of parameters. We introduce ‘seedy’, an R package for
the simulation of evolutionary and epidemiological dynamics (http://cran.r-project.org/web/
packages/seedy/). Our software implements stochastic models for the accumulation of mu-
tations within hosts, as well as individual-level disease transmission. By allowing variables
such as the transmission bottleneck size, within-host effective population size and popula-
tion mixing rates to be specified by the user, our package offers a flexible framework to in-
vestigate evolutionary dynamics during disease outbreaks. Furthermore, our software
provides theoretical pairwise genetic distance distributions to provide a likelihood of person-
to-person transmission based on genomic observations, and using this framework, imple-
ments transmission route assessment for genomic data collected during an outbreak. Our
open source software provides an accessible platform for users to explore pathogen evolu-
tion and outbreak dynamics via simulation, and offers tools to assess observed genomic
data in this context.

Introduction

Falling costs and technological advances have resulted in whole genome sequencing becoming
increasingly common in the study of disease outbreaks [1-4]. In recent years, several studies
have used such data to investigate both within-host evolutionary dynamics [5] and individual
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level routes of disease transmission [1, 6, 7]. However, the interpretation of observed genomic
data to determine person-to-person transmission is challenging. Several aspects of infectious
disease dynamics, such as the size of both the inoculum and the pathogen population in the
host, are not yet fully understood. As such, many studies of disease transmission routes rely on
restrictive or unrealistic assumptions, such as mutation occurring only at the moment of trans-
mission [8, 9], or that infectious contact involves the transmission of a single genotype [10].
Furthermore, a lack of repeated sampling has resulted in several studies ignoring the potential
for within-host diversity and representing infected cases by a single genotype. Simulation of ge-
nomic data during an outbreak is therefore a valuable way to explore the range of potential out-
comes for given parameter values and sampling strategies, to investigate the accumulation of
mutation both within and between hosts, as well as to test hypotheses about transmission
routes and evolutionary dynamics.

Simulation of sequence data from a disease outbreak presents a challenge, since this repre-
sents sampling from multiple, independently evolving within-host pathogen populations.
While it may suffice to neglect the effect of within-host dynamics when considering evolution-
ary dynamics on a population level [11, 12], it is frequently of interest to study microevolution
in the context of individual level disease transmission [5, 8, 10, 13]. In such a setting, the gener-
ation of diversity within-host, and the stochastic effects of sampling and genotypes transmitted
onward are of much importance. The study of transmission network reconstruction has flour-
ished in recent years [1, 6, 8-10, 14, 15], with the aim of identifying who infected whom in a
small outbreak. Testing the performance of such approaches requires a realistic model of with-
in-host evolution and transmission. While R packages exist to simulate epidemic dynamics
[16] and sequence data [17], as well as genomic data during an epidemic with no within-host
diversity [8], a framework to generate realistic individual-level evolutionary and epidemiologi-
cal data is still lacking.

We developed ‘seedy’ (Simulation of Evolutionary and Epidemiological DYnamics) in order
to provide a set of functions to simulate and visualize these dynamics, allowing flexible specifi-
cation of both pathogen- and host-level variables. Genomic data can be simulated according to
a variety of sampling strategies, with the option of sampling single genomes, or deep-sequence
observations.

In addition, the package contains functions to describe the theoretical distribution of genetic
distances between samples taken during a disease outbreak, under a range of assumptions. This
can allow for the investigation of transmission routes, as well as the specification of a distance
threshold, above which direct transmission between sampled hosts may be ruled out to a given
probability level. Such a threshold is often chosen arbitrarily in studies [13, 18, 19], and a more
formal approach to choosing such values is likely of much interest to outbreak investigation
teams and epidemiologists.

Our software is open-source, and freely available on the cross-platform statistical computing
environment R [20], and can be downloaded from the Comprehensive R Archive Network
(CRAN) [21]. Our software is designed to be accessible to a range of users, with detailed help
files for each function, and no high-level programming skills required. Exporting simulated
data to NEXUS [22] or FASTA formats allows compatibility and subsequent analysis in a
range of R packages, as well as other programs.

Materials and Methods

Our package contains two main simulation functions; simulatepopulation() and simulateout-
break(), upon which many of the other functions depend. The former simulates a single popu-
lation over a specified length of time, potentially undergoing repeated population bottleneck
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events. The latter simulates pathogen evolution during a disease outbreak, in which new, inde-
pendent pathogen populations are created within individuals upon infection, seeded by a ran-
dom sample from their infector. The package (version 1.2) and example code are included in
S1 File.

Single population simulation

The simulatepopulation() function allows the simulation of pathogen evolutionary dynamics
in a single population under a discrete-time stochastic growth model. Pathogen population size
is by default assumed to grow from an initial size of 1 to a specified equilibrium level, N,, with
a per-generation death probability at time ¢ of N(t) / 2N,,, where N(t) is the current population
size. The next generation population of each particular genotype N,(t + 1) is thus drawn from a
Bin(Ny(#), N(t - 1) / (2N,,)) distribution. While population extinction is unlikely for large N,g,
this possibility is prevented by selecting one genotype at random to persist if Ny(t + 1) = 0 for
all genotypes g. By default, N, is constant over time, however, a user-defined function may be
input as the ‘shape’ argument to allow for alternative within-host population growth models.
Under this model, the effective population size N, at time ¢ will be N() / 2.

Neutral mutations are introduced at rate 4, and a nucleotide position is selected uniformly
at random for mutation under a Jukes-Cantor model. Backwards mutation is possible, al-
though this is highly unlikely unless a short genome length is specified. Population bottlenecks
may be implemented at specified times, in which a random sample of Ny pathogens are select-
ed and continue to grow and mutate in future generations.

Sampling times may be specified, at which one or more isolates are sampled from the popu-
lation at random. By specifying ‘full’ sampling in simulatepopulation(), a list of all unique ex-
tant genotypes, along with their frequencies, is recorded at each specified sampling time.

Epidemic simulation

The function simulateoutbreak() can simulate the above pathogen dynamics together with a
stochastic susceptible-infectious-removed (SIR) epidemic model [23], independently simulat-
ing the pathogen populations within each host. This works on the same discrete time scale as
within-host dynamics, allowing epidemic dynamics to update at the same intervals as pathogen
generation times. Outbreaks are initiated with the introduction of a single infectious individual,
by default infected with a single genotype, into a completely susceptible population. The trans-
mission rate to each susceptible individual at time ¢ is given by SI(t), where 3 is the rate of
transmission, and I(t) is the number of infectious individuals present at time ¢. If a susceptible
individual becomes infected, an infection source is chosen at random from the I(¢) currently in-
fected people, and the new infection is initiated with an inoculum of size N, chosen at random
from the pathogen population within the source. Infected individuals recover at rate y, with the
infectious period drawn from a Poisson distribution. The outbreak terminates when no in-
fected individuals remain. A minimum outbreak size can be specified, such that outbreaks are
repeatedly simulated until one reaches the required size.

By default, individuals in the population are assumed to mix homogenously, but heteroge-
neous mixing may be specified in the simulateoutbreak() function using the ‘nmat’ argument.
This is a contact matrix, giving the relative rate at which each individual contacts each other in-
dividual in the population. This allows the specification of a range of scenarios, such as multi-
ple subpopulations with low between-group mixing, or the incorporation of superspreaders,
individuals with a contact rate much higher than the rest of the population. Since homoge-
neous mixing is often an unrealistic assumption [24], this feature allows greater complexity to
be incorporated into a simulated population structure. In this setting, the hazard for a
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particular susceptible individual i to become infected at time ¢ is given by

q(t) = ﬁz Wik

keCy

where w; ;. gives the relative rate at which individual i comes into contact with individual k, and
C; is the set of infected individuals at time ¢.

Various sampling strategies can be employed to generate genomic observations from the
population. The argument ‘samp.schedule’ can be set to ‘calendar’, ‘individual’, or ‘random’. If
‘calendar’ is specified, one can further specify (with the argument ‘samp.freq’) the regular inter-
val at which samples are collected, such that all infected individuals present at each sampling
time are sampled. The ‘individual’ sampling schedule generates samples from infected individ-
uals at regular intervals after their infection time. Finally, ‘random’ sampling allows each indi-
vidual to have a single sampling time drawn at random from their infectious period.The
simfixoutbreak() function can be used to simulation evolutionary dynamics on a fixed trans-
mission tree. This allows investigators who are interested in more complex epidemic models to
generate genomic samples on top of their own simulated transmission trees, by passing infec-
tion and removal times, and routes of infection, to the function. The specified transmission
tree need not be fully connected-that is, cases from outside the community may be imported.
The genotype assigned to imported individuals is generated by introducing x ~ Pois(4) SNPs
relative to the reference genome assigned to the initial community case, with A specified in call-
ing the function.

Data formatting

Our package requires the generation and storage of whole genome sequence data, which in-
volves the manipulation of large data objects. In order to minimize data storage and improve
simulation efficiency, full genome sequences are not retained. Instead, at any given time in the
simulation, the pathogen population within each host is represented by a vector of genome IDs
and their frequencies. The genome ID corresponds to an entry in a library object, which lists
the position and type of single nucleotide polymorphisms, relative to an initial reference ge-
nome (Fig 1). As such, each genotype is defined by a vector of SNP positions, and the nucleo-
tides at those positions. Only genotypes which are currently present, and those that have been
previously sampled, are retained, all other entries are removed upon extinction. Output from

Raw sequence data

O —HNMIINO N0
OO DO =00 ON

Ref: ACGGTACGTAAGGGGTCA
ID1: ACGGTAGGTAAGGGGTCA
ID2: ACGGTAGGTACAGGGTCA
ID3: ATGGTAGGTACAGGGTCA

Stored data

libr[[1]] {7} nuc[[1]] {G}
Lol (211 {7,11,12% nuc[[2]] {G,C,A}
L1311 42,7,11,12) nuc[[3]] {T,G,C,A}

Fig 1. Raw sequence data and its storage in seedy. The ‘libr’ object stores the position of the mutant
nucleotide, while the ‘nuc’ object lists the type of mutation.

doi:10.1371/journal.pone.0129745.g001
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the simulation functions contains a library object together with a corresponding vector of ge-
notype IDs, which is sufficient to calculate pairwise genetic distances. Output may be converted
back to full sequences using the librtoDNA() function, which allows sampled genomes to be re-
turned as a character vector or matrix, or to be saved to a NEXUS or FASTA file for use in
other programs or packages (eg. BEAST [25], PAUP [26], ape [27]).

Theoretical distributions

Under neutral evolution, the genetic distance between two haploid isolates with a most recent
common ancestor is approximated by a Pois(2u(#; + t,)) distribution, where 4 is the per-se-
quence mutation rate, t; and ¢, are the times from the ancestor to isolate observations. Typical-
ly, however, the time of the most recent common ancestor is unknown. It can be shown that
the genetic distance distribution can be approximated by a geometric-Poisson mixture distri-
bution, with the geometric component describing the diversity accumulating since the lineage
divergence under the assumption of constant coalescent rate [28]. Fig 2 depicts an example
transmission chain, with two sampled pathogen isolates. The total number of mutations accu-
mulating in the time period ¢, + t, follows a Pois(u(t, + t,)) distribution, while the number of
SNPs arising prior to lineage divergence D(x, y) follows a Geom(1 / (1 + 2Ny)) distribution,
where N is the effective population size, assumed to be constant [29].

tX
E . g
—— :
\E
B
w
t

| | i i
A(x,y) D(x,y) s s

Time
Fig 2. Disease transmission and pathogen lineages. Each rectangle represents an infected host over
time, from infection to recovery, while arrows indicate transmission. Two pathogen isolates, marked as blue
and red circles, are sampled at times s, and s,,, and share a most recent common ancestor A(x, y), marked as
apurple circle. Lineages diverge at time D(x, y), after which they exist independently in different hosts. With a
transmission bottleneck of size 1, the most recent common ancestor must be found within the host
highlighted in bold, however in general, multiple lineages may be passed between hosts. The time from
coalescence to lineage divergence, w, is exponentially distributed, assuming a constant effective population
size. The number of mutations arising during this unknown period follows a geometric distribution, while the
total occurring after lineage divergence D(x, y) follows a Poisson distribution.

doi:10.1371/journal.pone.0129745.9002
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Fig 3. Genomic diversity in a population undergoing bottlenecks. Expected diversity within a population
undergoing bottlenecks of size 2 at times 1000 and 2000. A total of 100 populations were simulated over
3000 generations, starting with a single genotype. The black line indicates the mean diversity of the
simulations, with the shaded blue area representing the central 95% quantile. Figure plotted using the
diversity.range() function.

doi:10.1371/journal.pone.0129745.g003

Results
Simulation visualization

Output from the two simulation functions described in the methods can be visualized with var-
ious tools in the software package. Fig 3 shows the simulated mean diversity of an example
population undergoing two bottlenecks. Diversity is measured as the expected number of single
nucleotide polymorphisms (SNPs) between two randomly sampled isolates. A genetic distance
matrix for a set of sampled isolates can be calculated with the gd() function, and visualized
with plotdistmat().

Fig 4 shows a simulated outbreak occurring in an example population with heterogeneous
mixing, visualized with the plotoutbreak() and plotnetwork() functions. Real epidemiological
and genomic data may also be visualized with these functions.

Theoretical distributions

The theoretical distributions described in the Methods are implemented in seedy. The expsnps
() function provides the theoretical distribution for the pairwise number of SNPs between two
samples, given a mutation rate, time from lineage divergence to observation, and coalescent
rate prior to lineage divergence. The time to coalescence can be approximated using the est-
coaltime() function, under the assumption that the population size is constant with the excep-
tion of bottleneck times, at which the population size is reduced for one generation to Ng. The
coalescent rate can be estimated as the reciprocal of the time to coalescence (assuming a con-
stant population size), which can then be input into the previous function. Fig 5 shows the
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Fig 4. Simulated epidemic and genomic sampling in a heterogeneously-mixing population. (A) The contact network of the population, individuals
represented by nodes, and contacts by directed edges. (B) Simulated routes of transmission (directed edges) in this population, where the disease is initially
introduced in individual 1. (C) The outbreak and genomic sampling over time. Infected individuals are represented by gray rectangles spanning the time from
infection to recovery, arrows denote routes of transmission. Every 250 time steps, ten genomes were sampled at random from each infected individual’s
hosted pathogen population. Genomes are represented by colored circles, colored according to genetic distance from the first sampled genome in individual
1; red denotes an identical genotype, while colors closer to the blue end of the spectrum denote an increasing genetic distance from this reference genome.

doi:10.1371/journal.pone.0129745.g004

theoretical distributions calculated with this approach, compared to the empirical distribu-
tions, derived from repeated simulation.

These functions can be useful to test hypotheses of person-to-person transmission by com-
paring true genetic distance observations to their theoretical distributions. We considered indi-
viduals in the simulated outbreak shown in Fig 4. Taking a single sample from cases 2 and 8,
we observe a genetic distance of 8 SNPs. This may then be compared to the theoretical distribu-
tion-samples taken in this setting would be expected to follow the distribution shown in S1
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Fig 5. Theoretical and empirical distribution of the genetic distance between sampled isolates. The plots show the genetic distance distribution
between two isolates sampled from a simulated population at time 20000 (left) and between isolates sampled at times 10000 and 20000. Empirical
distributions were calculated from twenty simulated populations, and 500 sampled isolates at each sampling time, under population size 2500 and mutation

rate 0.0005.
doi:10.1371/journal.pone.0129745.9005

Fig, in the absence of selective pressure. Since the observed distance falls within the 5% extreme
tail of this distribution, we can reject the possibility of direct transmission at this probability
level.

Transmission route identification

Based on the theoretical genetic distance distributions, one can assess the likelihood of direct
transmission between any pair of individuals based on observed genomic data. All possible
transmission pairs can be assessed, and the posterior probability for each potential transmis-
sion link can be calculated. The function transroutes() provides the likelihood and posterior
probability of transmission between each pair of individuals, as well as the maximum posterior
probability source for each individual.

Using genomic data generated from the simulated outbreak shown in Fig 4, we attempted to
reconstruct the true transmission network using this approach. The maximum posterior estimates
identified 77% of the true infection routes (S2 Fig), performing better than selecting the host with
the closest genotype as source. While this method requires knowledge of infection times and a
specified model of within-host dynamics, previous work has demonstrated that using this ap-
proach could identify transmission routes more successfully than other existing approaches [28].

Ruling out all possible sampled hosts as potential sources of infection can suggest the impor-
tation of the disease from outside the community, or unsampled intermediate transmission
links. We simulated evolutionary dynamics on top of a pre-specified transmission tree, includ-
ing importations, using the simfixoutbreak() function (Fig 6A). While a large degree of uncer-
tainty was evident among members of each connected transmission tree, all between-tree
transmission links were rejected at the 95% confidence level (Fig 6B), clearly identifying the
group structure.

SNP frequency vs. error

While it is of interest to estimate the amount of diversity accumulating in a particular popula-
tion, of practical importance is the number of mutations which are likely to be detected in a
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Fig 6. Evolutionary dynamics and estimated routes of infection on a disconnected transmission tree. We simulated evolutionary dynamics on top of a
pre-specified transmission tree, in which three cases are imported to the community under observation. (A) Genomes are represented by colored circles,
colored according to genetic distance from the first sampled genome in individual 1; red denotes an identical genotype, while colors closer to the blue end of
the spectrum denote an increasing genetic distance from this reference genome. The expected genetic distance between imported cases was 12 SNPs. (B)
Estimated routes of infection. We assumed that recovery times were not observed, such that any previously infected host could be the source of infection at
the time of transmission. Routes with posterior probability < 0.05 are not shown. This network diagram was plotted using the igraph package [32].

doi:10.1371/journal.pone.0129745.9006

deep sequencing project. Low coverage can mean that low frequency SNPs will not be detected,
while sequencing errors can result in false positives. The plotobservedsnps() function displays
the expected frequency of the most polymorphic sites under a proposed deep sequencing proj-
ect with a given coverage and per-site error level (Fig 7). This can indicate the expected number
of SNPs of intermediate frequency (iSNPs), the number of mutations which have reached fixa-
tion in the population, as well as the baseline of polymorphic sites created by sequencing error.
Computational performance. The time required to simulate an outbreak depends on the
size of the initial susceptible population, the pathogen mutation rate and the within-host path-
ogen population dynamics. We timed outbreak simulations under a range of different parame-
ter settings (S3 Fig). Since generating the exact dynamics of multiple independent pathogen
populations is extremely computationally intensive, outbreak simulation can be time-consum-
ing in large, well-connected populations. Simulating outbreaks in a population of 100 could
take approximately 10 minutes with a high mutation rate, considerably longer than an equiva-
lent outbreak simulation in the R package outbreaker [8], which simulates such outbreaks in
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Fig 7. Frequency of polymorphic sites over time from simulated data. A population of equilibrium size 10,000 with a 100kb genome was generated over
15,000 generations using the simulatepopulation() function. The top row of plots, generated with the plotobservedsnps() function, show the expected
frequency of polymorphisms under a deep sequencing project with an average 50x coverage and 0.1% per site error rate. All polymorphisms present at each
time point are ordered by frequency, and plotted, together with 95% confidence intervals. The red line represents binomially-distributed polymorphisms
observed via sequencing error. Polymorphisms with intermediate frequency (iISNPs) can be seen to move towards fixation of the time course, with one
polymorphism reaching fixation before time 10,000. The bottom row shows the number of polymorphisms at each frequency level, generated using the
plotsnpfreq() function.

doi:10.1371/journal.pone.0129745.9007

less than a minute (See S1 Table for a comparison between seedy and outbreaker). However,
unlike outbreaker, our software accounts for within-host pathogen population dynamics, al-
lowing carriage of multiple genotypes, and various sampling strategies, and can generate multi-
ple samples for each host.

Conclusions

Our software represents the first highly accessible and flexible framework to simulate within-
and between-host pathogen evolution during a communicable disease outbreak. While we are
not aware of any existing software which performs comparable simulation and analysis, the R
package outbreaker [8], while created primarily for the purpose of transmission network infer-
ence, does share some similarities. We compare the main features of seedy and outbreaker in S1
Table. Our package offers considerably greater flexibility for data simulation by allowing with-
in-host diversity, flexible sampling strategies, variable transmission bottleneck size, generation
of deep-sequence samples and specification of arbitrary transmission trees. The seedy package
contains functions to calculate the distribution of genetic distance between any two isolates,
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and to assess transmission hypotheses, given a set of genomic samples. The simulation of indi-
vidual-level evolutionary dynamics is computationally intensive, and large outbreaks with high
mutation rates may take a number of minutes to simulate in seedy. Small outbreaks (<100) are
currently-and are likely to remain-the most common setting for investigations into person-to-
person transmission using densely sampled genomic data. As the outbreak under consideration
becomes larger, near-complete sampling is more challenging to obtain, and interest typically
shifts to population-level rather than individual-level dynamics (eg. geographic spread between
communities), at which point, within-host diversity becomes less significant. For such studies,
population-level simulation methods (eg. [11]) provide a suitable and less computationally
intensive alternative.

There are several directions in which the package could be extended in the future. Non-neu-
tral evolution could be modeled by assigning mutations a selection coefficient. Recombination
is an important source of bacterial diversification, and could be incorporated in the simulation
of evolutionary dynamics. However, in the relative short-term, such as the duration of a single
outbreak, this effect may only be of minor importance. The model of pathogen birth/death
used in simulations is more suited to bacteria, rather than viruses, and incorporation of viral
burst dynamics cannot currently be implemented. However, with the option to specify a
growth model, one can at least match the expected pathogen population to known viral load
curves if required. It would also be possible to include more complex mutation scenarios, such
as indels and mutations accumulating at different frequencies in different portions of the ge-
nome. While outbreaks may currently be simulated under SIR dynamics in a heterogeneously
mixing population, and transmission trees generated under more complex models may be im-
ported, it would be possible for future versions of seedy to simulate alternative epidemic mod-
els. This could include incorporating a non-infectious stage of infection (SEIR model), or a
return to susceptibility after recovery (SIRS model).

Our package is a useful resource for those aiming to investigate disease transmission and
pathogen evolution during an outbreak, and may also provide a useful teaching tool. Sampling
and sequencing is typically limited by financial restraints and resource capacity, making the
choice of sampling strategy crucial. Datasets can be simulated using our package under plausi-
ble parameter values, which may be used to assess the viability of the intended analysis, and to
determine the level of sampling required to adequately measure the expected within- and be-
tween-host diversity. Simulations can indicate the extent of unobserved diversity likely to exist
within-host, which is often overlooked in studies. Several studies consider only a single sample
from infected hosts, effectively ignoring within-host diversity. Furthermore, simulating out-
breaks may be useful to test hypotheses on pathogen carriage and transmission—for instance, it
is commonly assumed for many communicable diseases that a single genotype is transmitted at
the point of infection [8, 10], although recent experience from genome sequencing studies sug-
gest that this is often not the case [2, 30, 31]. Simulating within- and between-host diversity
under a larger transmission bottleneck can demonstrate whether similar patterns can emerge
under alternate hypotheses. Also, simulation can distinguish whether within-host variants re-
sulted from growth from a single recent common ancestor or were more likely the result of su-
perinfection with one or more strains of the same species. Our package offers a flexible
framework in which to explore evolutionary and epidemic dynamics.

Supporting Information

S1 Fig. Probability distribution for the genetic distance between samples taken from pa-
tients 2 and 8, as depicted in Fig 2, under the assumption that direct transmission occurred.
Simulated genomic samples differed by 8 SNPs, falling into the 5% extreme tail of this
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distribution (shown in grey), allowing direct transmission to be ruled out to this probability
level.
(TIF)

S2 Fig. The true transmission network (top left), corresponding to the outbreak shown in
Fig 2. The network was estimated based on simulated genomic samples using the transroutes()
function, and the estimated network weighted by posterior probability (top right) and the max-
imum likelihood transmission routes (bottom left) are shown. For comparison, the network es-
timated under the assumption that the host carrying the closest genotype is the source of
infection is also shown (bottom right).

(TTF)

S3 Fig. Computational times for simulating an outbreak under a variety of parameter set-
tings (initial number susceptible population, mutation rate) using the function simula-
teoutbreak(). Computer specifications: 2.7 GHz Intel Core i5, memory 8GB.

(TIF)

S1 File. Zipped file containing seedy v1.2, the version of the package at the time of compos-
ing the manuscript. The latest version is available to download from CRAN [21]. Additionally,
examples.r, an R script used to generate the figures in this manuscript.

(Z1P)

S1 Table. Comparison of features in seedy and outbreaker. Both R packages are publicly
available on CRAN, and offer simulation of genomic and epidemiological data during infec-
tious disease outbreaks, as well as functions to infer transmission routes.

(DOC)

Acknowledgments

We wish to thank Dr. M. Lipsitch and Dr. W. P. Hanage for constructive and valuable input
during software development and manuscript preparation.

Author Contributions

Performed the experiments: CJW. Wrote the paper: CJ'W TDR. Conceived and designed the
software package: CJW. Wrote and tested code: CJW TDR.

References

1. Didelot X, Gardy J, Colijn C. Bayesian analysis of infectious disease transmission from whole genome
sequence data. Mol Biol Evol. 2014; 31(7):1869-79. doi: 10.1093/molbev/msui121 PMID: 24714079

2. Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, et al. Genomic surveillance eluci-
dates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014; 345(6202):1369—
72. doi: 10.1126/science.1259657 PMID: 25214632

3. Reuter S, Harrison TG, Késer CU, Ellington MJ, Smith GP, Parkhill J, et al. A pilot study of rapid whole-
genome sequencing for the investigation of a Legionella outbreak. BMJ Open. 2013; 3(1):e002175. doi:
10.1136/bmjopen-2012-002175 PMID: 23306006

4. Torok ME, Reuter S, Bryant JM, Késer CU, Stinchcombe SV, Nazareth B, et al. Rapid whole-genome
sequencing for investigation of a suspected Tuberculosis outbreak. J Clin Microbiol. 2013; 51(2):611—
4. doi: 10.1128/JCM.02279-12 PMID: 23175259

5. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, et al. Tracking the in vivo
evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl
Acad Sci USA. 2007; 104(22):9451-6. PMID: 17517606

6. Cottam EM, Thébaud G, Wadsworth J, Gloster J, Mansley L, Paton DJ, et al. Integrating genetic and
epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc R Soc
B. 2008; 275(1637):887—-95. doi: 10.1098/rspb.2007.1442 PMID: 18230598

PLOS ONE | DOI:10.1371/journal.pone.0129745 June 15,2015 12/14


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129745.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129745.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129745.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129745.s005
http://dx.doi.org/10.1093/molbev/msu121
http://www.ncbi.nlm.nih.gov/pubmed/24714079
http://dx.doi.org/10.1126/science.1259657
http://www.ncbi.nlm.nih.gov/pubmed/25214632
http://dx.doi.org/10.1136/bmjopen-2012-002175
http://www.ncbi.nlm.nih.gov/pubmed/23306006
http://dx.doi.org/10.1128/JCM.02279-12
http://www.ncbi.nlm.nih.gov/pubmed/23175259
http://www.ncbi.nlm.nih.gov/pubmed/17517606
http://dx.doi.org/10.1098/rspb.2007.1442
http://www.ncbi.nlm.nih.gov/pubmed/18230598

@’PLOS ‘ ONE

Simulation of Evolutionary and Epidemiological Dynamics in R

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24,

25.

26.

27.

28.

29.

Ypma RJF, Bataille AMA, Stegeman A, Koch G, Wallinga J, van Ballegooijen WM. Unravelling trans-
mission trees of infectious diseases by combining genetic and epidemiological data. Proc R Soc B.
2012; 279:444-50. doi: 10.1098/rspb.2011.0913 PMID: 21733899

Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. Bayesian Reconstruction of Dis-
ease Outbreaks by Combining Epidemiologic and Genomic Data. PLoS Comp Biol. 2014; 10(1):
e€1003457. doi: 10.1371/journal.pcbi.1003457 PMID: 24465202

Morelli MJ, Thébaud G, Chadceuf J, King DP, Haydon DT, Soubeyrand S. A Bayesian Inference
Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data PLoS Comp
Biol. 2012; 8(11):1002768. doi: 10.1371/journal.pcbi.1002768 PMID: 23166481

Ypma RJF, van Ballegooijen WM, Wallinga J. Relating phylogenetic trees to transmission trees of infec-
tious disease outbreaks. Genetics. 2013; 195(3):1055-62. doi: 10.1534/genetics.113.154856 PMID:
24037268

Koelle K, Khatri P, Kamradt M, Kepler TB. A two-tiered model for simulating the ecological and evolu-
tionary dynamics of rapidly evolving viruses, with an application to influenza. J R Soc Interface. 2010; 7
(50):1257-74. doi: 10.1098/rsif.2010.0007 PMID: 20335193

Koelle K, Rasmussen DA. Rates of coalescence for common epidemiological models at equilibrium. J
R Soc Interface. 2012; 9(70):997-1007. doi: 10.1098/rsif.2011.0495 PMID: 21920961

Golubchik T, Batty EM, Miller RR, Farr H, Young BC, Larner-Svensson H, et al. Within-Host Evolution
of Staphylococcus aureus during Asymptomatic Carriage. PLoS One. 2013; 8(5):e61319. doi: 10.1371/
journal.pone.0061319 PMID: 23658690

Robinson K, Fyson N, Cohen T, Fraser C, Colijn C. How the dynamics and structure of sexual contact
networks shape pathogen phylogenies. PLoS Comp Biol. 2013; 9(6):e1003105. doi: 10.1371/journal.
pcbi.1003105 PMID: 23818840

Leventhal GE, Kouyos R, Stadler T, von Wyl V, Yerly S, Boni J, et al. Inferring Epidemic Contact Struc-
ture from Phylogenetic Trees. PLoS Comp Biol. 2012; 8(3):e1002413. doi: 10.1371/journal.pcbi.
1002413 PMID: 22412361

Jenness SM, Goodreau SM, Morris M. EpiModel: Mathematical Modeling of Infectious Disease. The
StatNet Project. Available: http://www.statnet.org/. 2014.

Schliep KP. phangorn: Phylogenetic analysis in R. Bioinformatics. 2011; 27(4):592—3. doi: 10.1093/
bioinformatics/btq706 PMID: 21169378

Long SW, Beres SB, Olsen RJ, Musser JM. Absence of Patient-to-Patient Intrahospital Transmission of
Staphylococcus aureus as Determined by Whole-Genome Sequencing mBio. 2014; 5(5):e01692—-14.
doi: 10.1128/mBi0.01692-14 PMID: 25293757

Price J, Golubchik T, Cole K, Wilson D, Crook D, Thwaites G, et al. Whole-genome sequencing shows
that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in anin-
tensive care unit. Clin Infect Dis. 2014; 58(5):609-18. doi: 10.1093/cid/cit807 PMID: 24336829

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. Available: http://www.r-project.org. 2014.

CRAN. CRAN—Package seedy http://cran.r-project.org/web/packages/seedy/2015. Available: http://
cran.r-project.org/web/packages/seedy/. Accessed 15 April 2015.

Maddison DR, Swofford DL, Maddison WP. NEXUS: An extensible file format for systematic informa-
tion. Syst Biol. 1997; 46(4):590-621. PMID: 11975335

Kermack WO, McKendrick AG. A Contribution to the Mathematical Theory of Epidemics. Proceedings
of the Royal Society. 1927; 115(772):700-21.

Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: homogeneous and network
models in epidemiology. J R Soc Interface. 2007; 4(16):879-91. PMID: 17640863

Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu C- H, Xie D, et al. BEAST 2: A Software Platform for
Bayesian Evolutionary Analysis. PLoS Comp Biol. 2014; 10(4):e1003537. doi: 10.1371/journal.pcbi.
1003537 PMID: 24722319

Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony. Sinauer Associates, Sunderland, MA;
2003.

Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioin-
formatics. 2004; 20(2):289-90. PMID: 14734327

Worby CJ, Chang H- H, Hanage WP, Lipsitch M. The distribution of pairwise genetic distances: a tool
for investigating disease transmission. Genetics. 2014; 198(4):1395-404. doi: 10.1534/genetics.114.
171538 PMID: 25313129

Watterson GA. On the number of segregating sites in genetic models without recombination. Theor
Popul Biol. 1975; 7(2):256-76. PMID: 1145509

PLOS ONE | DOI:10.1371/journal.pone.0129745 June 15,2015 13/14


http://dx.doi.org/10.1098/rspb.2011.0913
http://www.ncbi.nlm.nih.gov/pubmed/21733899
http://dx.doi.org/10.1371/journal.pcbi.1003457
http://www.ncbi.nlm.nih.gov/pubmed/24465202
http://dx.doi.org/10.1371/journal.pcbi.1002768
http://www.ncbi.nlm.nih.gov/pubmed/23166481
http://dx.doi.org/10.1534/genetics.113.154856
http://www.ncbi.nlm.nih.gov/pubmed/24037268
http://dx.doi.org/10.1098/rsif.2010.0007
http://www.ncbi.nlm.nih.gov/pubmed/20335193
http://dx.doi.org/10.1098/rsif.2011.0495
http://www.ncbi.nlm.nih.gov/pubmed/21920961
http://dx.doi.org/10.1371/journal.pone.0061319
http://dx.doi.org/10.1371/journal.pone.0061319
http://www.ncbi.nlm.nih.gov/pubmed/23658690
http://dx.doi.org/10.1371/journal.pcbi.1003105
http://dx.doi.org/10.1371/journal.pcbi.1003105
http://www.ncbi.nlm.nih.gov/pubmed/23818840
http://dx.doi.org/10.1371/journal.pcbi.1002413
http://dx.doi.org/10.1371/journal.pcbi.1002413
http://www.ncbi.nlm.nih.gov/pubmed/22412361
http://www.statnet.org/
http://dx.doi.org/10.1093/bioinformatics/btq706
http://dx.doi.org/10.1093/bioinformatics/btq706
http://www.ncbi.nlm.nih.gov/pubmed/21169378
http://dx.doi.org/10.1128/mBio.01692-14
http://www.ncbi.nlm.nih.gov/pubmed/25293757
http://dx.doi.org/10.1093/cid/cit807
http://www.ncbi.nlm.nih.gov/pubmed/24336829
http://www.r-project.org
http://cran.r-project.org/web/packages/seedy/2015
http://cran.r-project.org/web/packages/seedy/
http://cran.r-project.org/web/packages/seedy/
http://www.ncbi.nlm.nih.gov/pubmed/11975335
http://www.ncbi.nlm.nih.gov/pubmed/17640863
http://dx.doi.org/10.1371/journal.pcbi.1003537
http://dx.doi.org/10.1371/journal.pcbi.1003537
http://www.ncbi.nlm.nih.gov/pubmed/24722319
http://www.ncbi.nlm.nih.gov/pubmed/14734327
http://dx.doi.org/10.1534/genetics.114.171538
http://dx.doi.org/10.1534/genetics.114.171538
http://www.ncbi.nlm.nih.gov/pubmed/25313129
http://www.ncbi.nlm.nih.gov/pubmed/1145509

el e
@ ' PLOS ‘ ONE Simulation of Evolutionary and Epidemiological Dynamics in R

30. Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ, Chang A, et al. Hypervirulent Chlamydia
trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D line-
ages. mBio. 2011; 2(3):e00042—11. doi: 10.1128/mBio.00042-11 PMID: 21610121

31.  AgrenJ, Finn M, Bengtsson B, Segerman B. Microevolution during an Anthrax Outbreak Leading to
Clonal Heterogeneity and Penicillin Resistance PLoS One. 2014; 9(2):e89112. doi: 10.1371/journal.
pone.0089112 PMID: 24551231

32. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;
Complex Systems:1695.

PLOS ONE | DOI:10.1371/journal.pone.0129745 June 15,2015 14/14


http://dx.doi.org/10.1128/mBio.00042-11
http://www.ncbi.nlm.nih.gov/pubmed/21610121
http://dx.doi.org/10.1371/journal.pone.0089112
http://dx.doi.org/10.1371/journal.pone.0089112
http://www.ncbi.nlm.nih.gov/pubmed/24551231

