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Role of Klotho in Chronic Calcineurin Inhibitor Nephropathy
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Calcineurin inhibitors (CNIs) are the most popular immunosuppressants in organ transplantation, but nephrotoxicity is a major
concern. The common mechanism underlying chronic CNI nephropathy is oxidative stress, and the process of chronic CNI
nephropathy is similar to that of aging. Current studies provide evidence that antiaging Klotho protein plays an important role
in protecting against oxidative stress, and its signaling is a target for preventing oxidative stress-induced aging process. In this
review, we focus on the association between Klotho and oxidative stress and the protective mechanism of action of Klotho
against oxidative stress in chronic CNI nephropathy. In addition, we discuss the delivery strategy for Klotho in CNI-induced
nephropathy.

1. Overview of Klotho in Human Disease

Klotho is an aging-suppressor gene [1, 2], and it encodes a
single-pass transmembrane protein. The extracellular
domain of Klotho protein is cleaved on the cell surface by
membrane-anchored proteases and is released into the blood
[3–5], urine [6–8], and cerebrospinal fluid [4]. Secreted
Klotho proteins have diverse functions, including the regula-
tion of multiple ion channels [6, 8–10] and oxidative stress
[11–13].

Klotho is involved in various pathologies, such as athero-
sclerosis, heart failure, hypertension, acute kidney injury,
chronic kidney disease, diabetes mellitus, and even cancer
[14–17]. Interestingly, Klotho is highly expressed in the kid-
ney [1], and its expression is suppressed under sustained
stress conditions in several animal models [18–22] of kidney
injury and in patients with chronic renal failure [23]. Thus,
the role of Klotho in kidney injury has attracted increasing
attention from researchers.

2. Overview of Chronic CNI Nephropathy

Calcineurin inhibitors (CNIs) are the most popular immuno-
suppressive drugs used for solid organ transplantation, and
two CNIs [cyclosporine (CsA) and tacrolimus (TAC)] are
available in clinical practice [24]. CNI exerts its immunosup-
pressive action by inhibiting calcineurin in T-cells. This inhi-
bition then impairs translocation of the nuclear factor of
activated T-cells [25–27], which regulates IL-2 transcription
and thus T-cell activation [28–30]. Despite the specific inhi-
bition of T-cell activation, long-term treatment with CNIs
causes serious adverse effects, and nephrotoxicity is a major
issue in solid organ transplantation.

Utilizing a well-established animal model, we and others
have demonstrated that CNI causes low-grade ischemic
injury by reducing renal blood follow and activating a com-
plex network of proinflammatory and profibrotic mediators
(for example, osteopontin [31, 32] and transforming growth
factor β1 [33, 34]), along with the renin-angiotensin system
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[35, 36], apoptosis [37, 38], and endothelial dysfunction [39].
The oxidative stress caused by reactive oxygen species (ROS)
is regarded as a common pathway of CNI-induced nephro-
toxicity. Antioxidative agents such as statin, angiotensin II
blockade, or N-acetylcysteine are known to improve CNI-
induced renal injury [40–43].

Chronic CNI nephropathy causes progressive renal fail-
ure [44] which is similar to alterations that occur with aging.
Indeed, telomere shortening and upregulation of senescence-
associated cell cycle inhibitors were reported in CNI-treated
renal tubular cells [45] and in renal transplants with graft
dysfunction [46]. Thus, we proposed that oxidative stress
due to low-grade ischemia accelerates the aging process in
chronic CNI nephropathy and the antiaging protein Klotho
may be involved in this process (Figure 1).

3. Klotho Expression and Oxidative Stress in
Chronic CNI Nephropathy

Using animal model of chronic CNI nephropathy, we firstly
reported that CNI treatment decreased Klotho mRNA and
protein in the mouse kidney in a dose- and time-dependent
manner [43, 47] and Klotho expression was correlated with
activity of renin-angiotensin system, tubulointerstitial fibro-
sis, and marker of oxidative stress (urinary 8-hydroxy-2′
-deoxyguanosine (8-OHdG) excretion) [48]. This finding
suggests that long-term treatment of CNI decreases Klotho
expression in the kidney and Klotho is a useful marker to rep-
resent chronic CNI nephropathy.

A Klotho-deficient mouse aging model is useful to define
the causal relationship between oxidative stress and Klotho.

Kuro-o et al. reported that Klotho deficiency is closely related
to cardiovascular diseases [1] and Klotho is an important
humoral factor involved in oxidative stress regulation, endo-
thelial dysfunction, cell proliferation, and apoptosis [49–51].
Using Klotho +/−mice, we found that Klotho deficiency ren-
ders the kidney more susceptible to TAC-induced injury,
which was closely associated with aggravated TAC-induced
oxidative stress [47]. These findings suggest strong associa-
tions between Klotho and CNI-induced oxidative stress and
provide evidence that Klotho plays an important role in pro-
tecting against CNI-induced oxidative stress.

4. Protective Mechanism of Action of
Klotho against CNI-Induced Oxidative Stress

Klotho is involved in several intracellular signaling pathways
(PKC, FGF23, cAMP, TGF-β, p53/p21, Wnt signaling, and
PDLIM2/NF-κB p65 pathway) [52, 53], and many studies
have reported the interactions among these pathways [54,
55]. In this review, we focus on the antioxidative function
of Klotho via the intracellular phosphatidylinositol 3-kinase
(PI3K)-Akt serine-threonine kinase (AKT) signaling
pathway.

The PI3K-AKT signaling pathway regulates forkhead box
protein O (FoxO) through phosphorylation. The AKT-
mediated phosphorylation of FoxO inhibits FoxO activity by
promoting its interaction with 14-3-3 proteins and nuclear
exportation and also by inducing its proteasomal degradation
[56]. FoxO3a can upregulate manganese superoxide dis-
mutase (MnSOD) expression [2, 57, 58]. Thus, FoxO3a func-
tions as a negative regulator ofmitochondrial ROSproduction
[59] and thereby closely associates with resistance to oxidative
stress. In an experimental model of TAC-induced nephro-
pathy, we found that concomitant Klotho treatment inhibits
the PI3K/AKT-mediated phosphorylation of FoxO3a and
enhances FoxO3a binding to the MnSOD promoter. Thus,
Klotho increases MnSOD mRNA and protein expression in
mitochondria and reduces TAC-induced mitochondrial dys-
function and ROS production [60]. Taken together, Klotho
protects TAC-induced oxidative stress by negatively regu-
lating the PI3K/AKT pathway and subsequently enhances
FoxO3a-mediated MnSOD expression.

5. Role of Klotho in CNI-Induced Cell Death

Endoplasmic reticulum (ER) stress, a common cellular stress,
is a potent trigger for autophagy, which is an important pro-
tective mechanism against various cellular stresses, including
nutrient deprivation, hypoxia, and growth factor deprivation
[61, 62]. Thus, the balance between ER stresses and autoph-
agy is important to maintain cell viability, and excessive ER
stress or impaired autophagy may cause apoptotic cell death.
Recent reports showed that Klotho plays an important role in
modulating ER signaling crosstalk between autophagy and
apoptosis [49–51] and Klotho treatment alleviates ER stress
in unilateral ureteral obstruction or attenuates oxidant-
induced alveolar epithelial cell apoptosis [63]. In addition,
the association between Klotho and autophagy has been
reported in various diseases, such as Alzheimer’s disease,
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Figure 1: The concept of chronic CNI nephropathy as aging
process. Low-grade ischemic injury by long-term CNI treatment
decreases antiaging Klotho protein. Thus, renal tubular cells lost
its ability to resistance to oxidative stress and subsequent cell
death occurs.
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acute kidney injury, chronic obstructive pulmonary disease,
and lung cancer [64–67].

CNI-induced renal injury involves induction of the ER
stress response and apoptosis [68, 69]. Kidneys treated with
CNI for a short time adapt well to such stress by synthesizing
molecular chaperones and activating autophagy process.
However, prolonged ER stress by CNI exposure may cause
apoptosis by depleting molecular chaperones and overloaded
autophagosome [70, 71]. We recently reported that chronic
CNI nephropathy is a state of excessive accumulation of
autophagosome and impaired autophagy clearance [72] and
Klotho treatment reduces the burden of autophagy vacuoles
by improving autophagy clearance via activation of lyso-
somal function in CNI-induced nephrotoxicity [73]. We
summarized the mechanism of protective effect of Klotho
on CNI-induced autophagy cell death in Figure 2.

6. Delivering Strategy for Klotho

We and other researchers studied how to preserve Klotho
against oxidative stress in kidney, and we reported that
angiotensin II blockade, statin, and N-acetylcysteine are

effective in preserving Klotho in experimental model of
chronic CNI nephropathy [40, 42, 43]. However, it is not cer-
tain whether preservation of Klotho by these drugs is casually
related to the antioxidant effect.

Accumulating evidence indicates that administration of
exogenous Klotho is a rational strategy for the treatment of
acute/chronic kidney diseases [74]. However, the half-life of
recombinant Klotho is so short (7.2 h) that frequent injection
(every day or every alternative day) is needed to achieve
therapeutic efficacy [60, 75–77]. To overcome this limitation,
we developed minicircle (MC) vector encoding Klotho
protein. Using MC delivery, we can detect MC-Klotho until
30 days and MC-mediated Klotho protein until 10 days after
single injection via the tail vein and at significantly higher
levels than that of conventional vectors [78] (Figure 3). Thus,
the MC-mediated vector encoding Klotho provides more
long-term and stable Klotho expression than recombinant
Klotho protein. We observed the effect of MC in an animal
model of ischemia-reperfusion injury and obstructive
nephropathy [78]. We expect that MC-mediated Klotho
protein production may offer a new approach to Klotho
delivery in clinical practice.
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Figure 2: The protective mechanism of Klotho in CNI-induced autophagic cell death. Klotho induces nuclear translocation of transcription
factor EB (TFEB), a master regulator for lysosomal biogenesis, through inhibition of phosphorylation of glycogen synthase kinase 3β
(GSK3β). Improved lysosomal function by Klotho increases clearance of autophagosome and resulted in decrease of autophagic cell death.

3Oxidative Medicine and Cellular Longevity



7. Conclusions

Klotho plays an important role in protecting against CNI-
induced oxidative stress. Klotho and its signaling is an impor-
tant target ofpreventingoxidative stress-inducedorgan injury.
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Figure 3: Strategy of Klotho delivery using minicircle vector system. (a) Production of in vivo Klotho using minicircle vector system. (b)
Representative pictures of mice with Klotho protein derived from minicircles in vivo, each day after injection of saline or MC-Klotho
using in vivo imaging system. Note that red fluorescence protein signal can be observed at day 30. (c) The plasma level of Klotho by
ELISA. Saline-treated group was used as a negative control. pp: parental plasmid DNA; MC: minicircle plasmid DNA. #P < 0:05 vs. the
other group. ∗P < 0:05 vs. corresponding pp-Klotho. Scale bar = 100 μm.
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