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Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, which has poor
outcome. The present study aimed to investigate the key genes implicated in the progres-
sion and prognosis of HCC. The RNA-sequencing data of HCC was extracted from The
Cancer Genome Atlas (TCGA) database. Using the R package (DESeq), the differentially
expressed genes (DEGs) were analyzed. Based on the Cluepedia plug-in in Cytoscape soft-
ware, enrichment analysis for the protein-coding genes amongst the DEGs was conducted.
Subsequently, protein–protein interaction (PPI) network was built by Cytoscape software.
Using survival package, the genes that could distinguish the survival differences of the
HCC samples were explored. Moreover, quantitative real-time reverse transcription-PCR
(qRT-PCR) experiments were used to detect the expression of key genes. There were 2193
DEGs in HCC samples. For the protein-coding genes amongst the DEGs, multiple func-
tional terms and pathways were enriched. In the PPI network, cyclin-dependent kinase 1
(CDK1), polo-like kinase 1 (PLK1), Fos proto-oncogene, AP-1 transcription factor subunit
(FOS), serum amyloid A1 (SAA1), and lysophosphatidic acid receptor 3 (LPAR3) were hub
nodes. CDK1 interacting with PLK1 and FOS, and LPAR3 interacting with FOS and SAA1
were found in the PPI network. Amongst the 40 network modules, 4 modules were with
scores not less than 10. Survival analysis showed that anterior gradient 2 (AGR2) and RLN3
could differentiate the high- and low-risk groups, which were confirmed by qRT-PCR. CDK1,
PLK1, FOS, SAA1, and LPAR3 might be key genes affecting the progression of HCC. Be-
sides, AGR2 and RLN3 might be implicated in the prognosis of HCC.

Background
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and causes the most deaths in
cirrhosis patients [1]. HCC usually occurs in people with chronic liver inflammation, which is closely re-
lated to virus infection or alcohol and aflatoxin exposure [2]. Epidemiological data show that the main risk
factors for HCC are as follows: (i) Hepatitis B or hepatitis C virus infection. (ii) Aflatoxin. (iii) Drinking
wastewater or pond water containing a large amount of organochlorine compounds and algae toxins. (iv)
Other factors such as family aggregation, selenium deficiency, alcoholic and nutritional cirrhosis [2,3].
The therapeutic schedules of HCC depend on disease stage, operative tolerance, and possibility of liver
transplant [3,4]. The outcome of HCC patients is usually poor, because 80–90% HCCs cannot be resected
completely and leads to death in 3–6 months [5,6]. HCC is amongst the most common tumors and re-
sults in more than 670000 deaths per year globally [7]. Therefore, the mechanisms of HCC needed to be
explored to improve its therapies.
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Figure 1. The pathways enriched for the protein-coding genes amongst the DEGs

A lot of studies indicated that Forkhead box C1 (FoxC1), αB-crystallin, Zinc finger and BTB domain containing
20 (ZBTB20), Dysregulated B-cell translocation gene 1 (BTG1), Homeobox A13b (HOXA13), DEK proto-oncogene
(DEK), Ubiquitin-specific protease 7 (USP7), and Acyl-CoA Ligase 4 (ACSL4) played important roles in the occur-
rence and progression of HCC, and they may serve as novel prognostic factors and therapeutic targets for HCC [8–18].
FoxC1 may facilitate HCC metastasis via inducing epithelial–mesenchymal transition (EMT) and up-regulating neu-
ral precursor cell expressed, developmentally down-regulated 9 (NEDD9) [8,9]. The expression of αB-crystallin has
correlations with the invasion and metastasis of HCC cells [10]. ZBTB20 expression was up-regulated in HCC and
related to adverse prognosis in HCC patients [11,12]. BTG1 may be involved in hepatocarcinogenesis and may be
taken as a biomarker for the carcinogenesis and progression of HCC [13]. HOXA13 may affect angiogenesis, pro-
gression, and outcome of HCC, and serum HOXA13 may be utilized for early diagnosis and prognosis prediction of
HCC patients [14]. DEK is reported to be implicated in hepatocyte differentiation and acts as a candidate marker for
the prognosis and staging of HCC [15,16]. USP7 and ACSL4 are up-regulated in HCC samples, which are related to
a poor survival [17,18]. Despite these findings, the key genes having influences on the progression and prognosis of
HCC patients have not been comprehensively revealed.

Various in silico tools of bioinformatics are widely applied for assessing gene expression levels and screening out-
standing genes from RNA-sequencing data and next-generation sequencing data and their possible implication in
growth of different types of cancer [19]. In the present study, differential expression analysis, enrichment analysis,
network analysis, and survival analysis successively were conducted to find out the key genes that affected the prog-
nosis of HCC. In addition, quantitative real-time reverse transcription-PCR (qRT-PCR) experiments were conducted
to confirm the expression of key genes. The present study might help to predict the outcome of HCC patients and
develop novel therapies.

Materials and methods
Microarray data
The RNA-sequencing data of HCC was obtained from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.
gov/) database, which was based on the platform of llumina HiSeq 2000 RNA Sequencing. The TCGA dataset con-
tained 419 samples, including 369 HCC samples and 50 normal control samples [20]. Meanwhile, the corresponding
clinical data of the HCC samples were downloaded from the TCGA database.

Data preprocessing and differential expression analysis
The genes with counts per million (cpm) < 1 in more than 10% samples were taken as low expressed genes and
removed. According to the annotation files in GENCODE database (version 22) [21], ensemble gene IDs (EN-
SGs) were mapped to gene symbols and gene types (coding genes or non-coding genes). Using the R package DE-
Seq (http://www.bioconductor.org/packages/release/bioc/html/DESeq.html) [22], the differentially expressed genes
(DEGs) between HCC samples and normal samples were analyzed. The thresholds for differential expression analysis
were set as |log fold-change (FC)| ≥ 2 and false discovery rate (FDR) < 0.01.

Functional and pathway enrichment analyses
Gene Ontology (GO) database introduces the biological process (BP), cellular component (CC), and molecular func-
tion (MF) for proteins [23]. Kyoto Encyclopedia of Genes and Genomes (KEGG) database included the functions
of genes and can be utilized for the functional prediction of gene lists [24]. Using Cluepedia plug-in (http://apps.
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Figure 2. PPI network analysis

The module 1 (A), module 2 (B), module 3 (C), and module 4 (D) identified from the PPI network. Red and green circles represent

up-regulated and down-regulated genes, respectively.

cytoscape.org/apps/cluepedia) [25] in Cytoscape software, the protein-coding genes amongst the DEGs were per-
formed with GO and KEGG enrichment analyses. The terms with FDR < 0.05 were significant results. Besides, the sig-
nificant KEGG pathways were presented by the R package pathview (http://r-forge.r-project.org/projects/pathview/)
[26].

Protein–protein interaction network analysis
Protein–protein interaction (PPI) pairs were predicted for the protein-coding genes amongst the DEGs using the
STRING (http://www.string-db.org/) [27] database, with the combined score set as 700. Afterward, the PPI network
was visualized using Cytoscape software (http://www.cytoscape.org) [28]. Moreover, the MCODE plug-in (http://
apps.cytoscape.org/apps/MCODE) [29] in Cytoscape software was used for identifying the significant modules in
PPI network.

Patient samples
Clinical samples were collected from 26 HCC patients who underwent surgery at the Central South University Xi-
angya School of Medicine Affiliated Haikou Hospital from 2013 to 2017. Meanwhile the adjacent non-tumor liver
tissues from the HCC patients were obtained as the normal controls. None of the patients accepted radiation therapy
and/or chemotherapy before surgery and all of them have signed the informed consent. Ethical approval for the study
was provided by the ethics committee of Central South University Xiangya School of Medicine Affiliated Haikou
Hospital, and the research has been carried out in accordance with the World Medical Association Declaration of
Helsinki.

qRT-PCR analysis
The total RNAs of the samples were extracted using TRIzol (Thermo Fisher Scientific, Waltham, MA, U.S.A.),
detected by UV absorbance (A260/280) and agarose gel. qRT-PCR was carried out in the ABI Prism 7500 PCR
system (Applied Biosystems, Foster City, CA, U.S.A.) following the standard instructions. GADPH acted as the
internal criterion for the targetted genes. 2−��c

t method was taken to calculate the relative expressions of the
targetted genes. The primers’ sequences for GADPH were (F) 5′-GCACCGTCAAGGCTGAGAAC-3′ and (R)
5′-GCCTTCTCCATGGTGGTGAA-3′. PCR was performed in three parallel holes.
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Figure 3. Survival analysis

The KM survival curves for AGR2 (A), CRISP2 (B), IL31RA (C), KCNC2 (D), LINC01477 (E), LOC105372556 (F), PLVAP (G), RLN3

(H), SOX14 (I), TEDDM1 (J), VWA5B2 (K), and ZNF280A (L). Red and blue separately represent high- and low-risk groups.

Survival analysis
Based on univariate COX regression analysis [30], the correlations between the DEG and overall survival (OS) were
analyzed. Combined with the R package survival (https://CRAN.R-project.org/view=Survival) [31], the HCC samples
were divided into high- and low-risk groups and then the OS differences between the two groups were analyzed using
Kaplan–Meier (KM) method [32]. Student’s t tests and one-way ANOVAs were used in either two or multiple groups
for statistical significance, with P<0.05 considered significant.

Results
Differential expression analysis
Relative to normal samples, a total of 2193 DEGs (including 1964 up-regulated genes and 229 down-regulated genes)
in HCC samples were screened. Amongst these DEGs, there were 1800 protein-coding genes and 232 long non-coding
RNAs (lncRNAs).

Functional and pathway enrichment analyses
Enrichment analysis showed that multiple GO terms and 17 KEGG pathways were enriched for the protein-coding
genes amongst the DEGs. The obtained GO terms mainly were multicellular organismal development (GO BP, FDR
= 1.09E-20), neurone part (GO CC, FDR = 1.19E-08), and ion channel activity (GO MF, FDR = 1.25E-10) (Table 1).
Besides, the enriched pathways mainly included neuroactive ligand–receptor interaction (FDR = 7.13E-14), nicotine
addiction (FDR = 2.62E-06), and cell cycle (FDR = 4.10E-05) (Figure 1).

PPI network analysis
The PPI network for the protein-coding genes amongst the DEGs was constructed, which had 926 nodes and 3748
edges. The degrees of network nodes obeyed exponential distribution (r-squared = 0.849), therefore, the PPI network

4 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

https://CRAN.R-project.org/view=Survival


Bioscience Reports (2019) 39 BSR20181845
https://doi.org/10.1042/BSR20181845

Table 1 The top five GO terms enriched for the protein-coding genes amongst the DEGs

Category Description Count FDR

GO BP Multicellular organismal development 645 1.09E-20

GO BP System development 581 1.29E-19

GO BP Cell–cell signaling 217 2.10E-16

GO BP Organ development 431 2.27E-16

GO BP Synaptic transmission 145 5.63E-15

GO CC Neurone part 189 1.19E-08

GO CC Ion channel complex 62 1.87E-08

GO CC Extracellular space 203 2.22E-08

GO CC Integral component of plasma membrane 228 7.65E-08

GO CC Transmembrane transporter complex 65 9.23E-08

GO MF Ion channel activity 83 1.25E-10

GO MF Sequence-specific DNA binding 167 1.38E-10

GO MF Gated channel activity 71 1.43E-10

GO MF Substrate-specific channel activity 86 1.45E-10

GO MF Channel activity 89 1.45E-10

Table 2 The 12 genes that could differentiate the survival differences of HCC samples

Gene P-value

AGR2 0.024

CRISP2 0.04

IL31RA 0.0044

KCNC2 0.026

LINC01477 0.013

LOC105372556 0.023

PLVAP 0.011

RLN3 0.043

SOX14 0.011

TEDDM1 0.023

VWA5B2 0.048

ZNF280A 0.016

Abbreviations: AGR2, anterior gradient 2; CRISP2, cysteine-rich secretory protein 2; IL31RA, interleukin 31 receptor A; KCNC2, potassium voltage-gated
channel subfamily C member 2; LINC01477, long intergenic non-protein coding RNA 1477; PLVAP, plasmalemma vesicle-associated protein; SOX14,
SRY-box 14; TEDDM1, transmembrane epididymal protein 1; VWA5B2, von Willebrand factor A domain containing 5B2.

was a scale-free network and some network nodes had higher degrees. According to node degrees, cyclin-dependent
kinase 1 (CDK1, degree = 76), polo-like kinase 1 (PLK1, degree = 72), Fos proto-oncogene, AP-1 transcription factor
subunit (FOS, degree = 63), serum amyloid A1 (SAA1, degree = 59), and lysophosphatidic acid receptor 3 (LPAR3,
degree = 59) were the top five nodes. Especially, CDK1 had interactions with both PLK1 and FOS, and LPAR3 could
interact with FOS and SAA1 in the PPI network. Besides, FOS also had interaction with relaxin 3 (RLN3) in the
network. Furthermore, a total of 40 network modules were identified. The modules with scores no less than 10 were
presented in Figure 2, including module 1 (score = 32.036, involving 56 nodes and 881 edges), module 2 (score =
26, involving 26 nodes and 325 edges), module 3 (score = 10.571, involving 22 nodes and 111 edges), and module 4
(score = 10, involving 10 nodes and 45 edges) (Table 2).

Survival analysis
Based on univariate COX regression analysis, a total of 116 DEGs were found to be correlated with the OS of HCC
samples (P-value <0.05). According to the median value of gene expression, the HCC samples were divided into high-
and low-risk groups. Subsequently, the OS differences between the two groups were analyzed. KM survival curves
showed that 12 genes (including anterior gradient 2, AGR2; cysteine-rich secretory protein 2, CRISP2; interleukin
31 receptor A, IL31RA; long intergenic non-protein coding RNA 1477, LINC01477; RLN3; SRY-box 14, SOX14;
transmembrane epididymal protein 1, TEDDM1; von Willebrand factor A domain containing 5B2, VWA5B2; zinc
finger protein 280A, ZNF280A; potassium voltage-gated channel subfamily C member 2, KCNC2; LOC105372556;
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Figure 4. Expressions of genes differentiated the survival differences in HCC in clinical samples

The expressions of AGR2 (A), CRISP2 (B), IL31RA (C), KCNC2 (D), LINC01477 (E), LOC105372556 (F), PLVAP (G), RLN3 (H), SOX14

(I), TEDDM1 (J), VWA5B2 (K), and ZNF280A (L) in HCC tissues and adjacent normal tissues. Data were shown as mean +− S.D.,

n=26. *P<0.05 and **P<0.01.

and plasmalemma vesicle-associated protein, PLVAP) could divide the HCC samples into two groups that had OS
differences (P-value <0.05) (Figure 3).

Expressions of genes differentiated the survival differences in HCC in
clinical samples
We, then, examined the expressions of genes differentiating the survival differences of HCC in HCC tissues and
adjacent normal tissues by qRT-PCR. As shown in Figure 4, the expressions of AGR2, CRISP2, IL31RA, LINC01477,
RLN3, SOX14, TEDDM1, VWA5B2, and ZNF280A were significantly increased in HCC tissues compared with the
normal tissues (P-value <0.05) (Figure 4), which were consistent with the results of differential expression analysis.

Discussion
In the present study, a total of 2193 DEGs (including 1800 protein-coding genes and 232 lncRNAs) in HCC samples
were identified. For the protein-coding genes amongst the DEGs, functional and pathway enrichment analyses were
carried out. In the PPI network, CDK1 (degree = 76), PLK1 (degree = 72), FOS (degree = 63), SAA1 (degree = 59),
and LPAR3 (degree = 59) were key nodes. A total of 40 network modules were identified, amongst which 4 modules
were with scores no less than 10. Survival analysis suggested that 12 genes (including AGR2 and RLN3) could divide
the HCC samples into high- and low-risk groups. Furthermore, the expressions of nine genes (including AGR2 and
RLN3) were confirmed by qRT-PCR experiments.

CDK1 interacts with apoptin during HCC tumorigenesis, and their link may play a role in mediating tumor cell
apoptosis [33]. Via directly suppressing CDK1 and v-akt murine thymoma viral oncogene homolog 3 (AKT3) ex-
pression and indirectly inhibiting cyclinD1 expression; miR-582-5p functions in the development and progression of
HCC [34]. PLK1 expression is significantly up-regulated in HCC tissues, therefore, PLK1 may be a potential marker
for the prognosis of HCC and targetting PLK1 may be applied for the diagnosis and therapy of the disease [35,36].
PLK1 is overexpressed in HCC samples relative to normal controls, and its knockdown can induce apoptosis of tumor
cells via the endonuclease-G pathway [37]. FOS expression is inhibited by miR-139 down-expression in HCC cells
with high metastatic potency, which promotes the metastasis in HCC [38]. Through suppressing the expression of
the oncogene FOS, dysregulated miR-101 is implicated in the pathogenesis of HCC [39]. CDK1 had interactions with
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both PLK1 and FOS in the PPI network, suggesting that CDK1 might be involved in the development and progression
of HCC through interacting with PLK1 and FOS.

The preoperative serum level of SAA is closely correlated with tumor size and tumor stage, implicating that SAA
overexpression can serve as a promising prognostic factor for HCC patients [40,41]. The LPAR1/LPAR3 expression
is increased in hepatoma cell line SKHep1, and the LPA-LPAR3 signaling may play an essential role in tumor in-
vasiveness/expansion [42]. Several LPAR subtypes are detected in HCC samples, and the suppression of LPA-LPAR
signaling represses the motility and proliferation of HCC cells [43]. LPAR3 could also interact with FOS and SAA1 in
the PPI network, indicating that LPAR3 might function in pathogenesis of HCC via interacting with FOS and SAA1.

High AGR2 expression level contributes to the metastasis of HCC cells through acting on mitogen-activated pro-
tein kinase (MAPK) and Caspase pathway, which results in the unfavorable prognosis of HCC patients [44]. AGR2
overexpression is found in various tumors including fibrolamellar HCC, and the dysregulated AGR2 is a phenotypic
characteristic of cholangiocytes [45,46]. RLN2 expression is found to be up-regulated in HCC tissues, which can
be taken as a predictor for tumor progression and adverse prognosis [47]. Therefore, AGR2 and RLN3 might be
correlated to the prognosis of HCC patients.

Conclusion
In conclusion, a total of 2193 DEGs in HCC samples were identified. Besides, CDK1, PLK1, FOS, SAA1, LPAR3,
AGR2, and RLN3 might play important roles in the progression and prognosis of HCC. Nevertheless, lacking exper-
iments was main limitation of the present study and more experiments should be designed to support our results.
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