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Abstract

Characterising connectivity between geographically separated biological populations is a

common goal in many fields. Recent approaches to understanding connectivity between

malaria parasite populations, with implications for disease control efforts, have used esti-

mates of relatedness based on identity-by-descent (IBD). However, uncertainty around esti-

mated relatedness has not been accounted for. IBD-based relatedness estimates with

uncertainty were computed for pairs of monoclonal Plasmodium falciparum samples col-

lected from five cities on the Colombian-Pacific coast where long-term clonal propagation of

P. falciparum is frequent. The cities include two official ports, Buenaventura and Tumaco,

that are separated geographically but connected by frequent marine traffic. Fractions of

highly-related sample pairs (whose classification using a threshold accounts for uncertainty)

were greater within cities versus between. However, based on both highly-related fractions

and on a threshold-free approach (Wasserstein distances between parasite populations)

connectivity between Buenaventura and Tumaco was disproportionally high. Buenaven-

tura-Tumaco connectivity was consistent with transmission events involving parasites from

five clonal components (groups of statistically indistinguishable parasites identified under a

graph theoretic framework). To conclude, P. falciparum population connectivity on the

Colombian-Pacific coast abides by accessibility not isolation-by-distance, potentially impli-

cating marine traffic in malaria transmission with opportunities for targeted intervention.

Further investigations are required to test this hypothesis. For the first time in malaria epide-

miology (and to our knowledge in ecological and epidemiological studies more generally),

we account for uncertainty around estimated relatedness (an important consideration for

studies that plan to use genotype versus whole genome sequence data to estimate IBD-

based relatedness); we also use threshold-free methods to compare parasite populations
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and identify clonal components. Threshold-free methods are especially important in analy-

ses of malaria parasites and other recombining organisms with mixed mating systems

where thresholds do not have clear interpretation (e.g. due to clonal propagation) and thus

undermine the cross-comparison of studies.

Author summary

In this study we aimed to characterise connectivity between populations of Plasmodium
falciparum malaria parasites sampled from five cities on the Colombian-Pacific coast

where long-term clonal propagation of P. falciparum is frequent. We found that connec-

tivity along the coast is consistent with accessibility not isolation-by-distance, potentially

implicating marine traffic in malaria transmission and thus presenting a possible opportu-

nity for targeted intervention. Our study makes methodological contributions that could

be adapted to analyses of other recombining organisms. Akin to numerous studies in both

epidemiology and ecological, to characterise connectivity, we used genetic data and com-

puted estimates of relatedness based on identity-by-descent (IBD). However, unlike previ-

ous studies, confidence intervals around relatedness estimates were included in our

analyses. This is an important consideration for all studies that plan to use limited genetic

data to estimate IBD-based relatedness. To identify groups of clonal parasites and to com-

pare parasite populations across cities, we used methods that avoid thresholds, e.g. of

highly-related parasite pairs. Threshold-free methods promote cross-comparison in stud-

ies of recombining organisms for which thresholds do not have a clear interpretation (e.g.

for malaria parasites, where the frequency of clonal propagation varies in space and time

and is not fully understood).

Introduction

In many research fields genetic data are used to help characterise connectivity between geo-

graphically distinct biological populations, with numerous applications in conservation, agri-

culture, and public health. Patterns of genetic similarity between pathogen populations help us

understand how the disease spreads. Patterns of relatedness (a measure of genetic similarity)

between malaria parasites sampled from different human populations, for instance, help char-

acterise the connectivity between different malaria parasite populations, thus guide the design

of targeted public health interventions [1].

Several methods are employed to measure genetic similarity and thus characterise connec-

tivity. Phylogenetic methods, in which genetic distances between individuals are measured in

units of mutation [2], are most applicable to rapidly mutating organisms that do not recom-

bine (e.g RNA viruses) [3]. Studies of relatedness, in which relatedness is a measure of proba-

bility of inter-individual identity-by-descent (IBD), are applicable to organisms that do

recombine (e.g. malaria parasites). Population genetic parameters of allelic variation (e.g. FST)

are applicable to all organisms (those that do and do not recombine), but do not generate

measures of genetic distance or similarity on an inter-individual level, thus provide less granu-

larity. Moreover, among recombining organisms, inter-population allelic variation tends to

accumulate more slowly than inter-individual variation in IBD [4]. As such, analyses of relat-

edness sometimes recover evidence of nearby and recent connectivity where analyses of FST do

not [5].
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Malaria parasites are protozoan parasites that undergo an obligate stage of sexual recombi-

nation in the mosquito midgut. Like many organisms (e.g. many plants [6, 7]), malaria para-

sites have a mixed mating system that encompasses both inbreeding and outcrossing. The

extent to which malaria parasites outcross depends on transmission intensity and is not fully

understood [8]. For outcrossing to occur a mosquito must ingest genetically distinct gameto-

cytes. Humans can be infected by multiple genetically distinct parasite clones that are either

co-transmitted via inoculation from a single mosquito, in which case they are likely recombi-

nants so inter-related (unless they derive from different blood meals), or transmitted indepen-

dently by multiple mosquitoes (a mechanisms coined superinfection by George MacDonald,

1950 [9, 10]), in which case the parasite clones are likely unrelated [11, 12]. The latter can

occur in a setting where the entomological inoculation rate is high; recent work suggests co-

transmission is important in both low and high transmission settings [12].

Malaria genomic epidemiology studies of connectivity are increasingly common, especially in

the context of public health and using genotype (versus whole genome sequence) data [5, 13–16].

Using IBD-based relatedness but not FST, evidence of isolation-by-distance among P. falciparum
populations along a 100 km stretch of the Thailand-Myanmar border was found [5]. This study

was based, in part, on analyses of monoclonal P. falciparum samples genotyped at 93 single

nucleotide polymorphisms (SNPs). Based on FST estimated using P. falciparum samples geno-

typed at 250 SNPs, a different study found evidence of departure from isolation-by-distance

among P. falciparum populations along a 500 km stretch of the Colombian-Pacific coast where

transmission is mixed (low but high in some regions) and outcrossing limited [13, 17]. In the

current study, we re-explore this departure from isolation-by-distance with more granularity

using IBD-based relatedness. For the first time in malaria epidemiology (and, to our knowledge,

for the first time in ecological and epidemiological studies more generally), we account for uncer-

tainty in relatedness estimates; we also use threshold-free methods to compare parasite popula-

tions and identify clonal components. The original study [13] is described in more detail below.

Malaria epidemiology in Colombia is associated with a multitude of ecological, evolutionary

and social factors, including human migration due to deforestation, illegal crops, gold mining

[18–22], and the mass emigration of people fleeing the humanitarian crisis in Venezuela [23–

26]. Understanding the interplay between e.g. human migration, parasite population connec-

tivity and the spread of antimalarial resistance is critical [18, 20]. For example, if resistance is

driven by spread (versus de-novo mutation), targeted efforts to eliminate hotspots of transmis-

sion (e.g. in eastern Myanmar [27, 28]) may help to prolong the longevity of compromised

antimalarial therapies. To ensure adequate isolation, thereby prevent re-population, units of

targeted intervention need to account for parasite population connectivity, which relates to

human migration [29–31]. In preparation for studies of resistance, Echeverry et al. genotyped

P. falciparum samples from four provinces on the Colombian-Pacific coast [13]. Clonality,

population structure and linkage disequilibrium (LD) were characterised using a suite of pop-

ulation genetic analyses. The results were highly informative: the vast majority of successfully

genotyped P. falciparum samples were deemed monoclonal (325 of 400) with a strong associa-

tion between incidence and clonality. Among the 325 monoclonal samples, 136 unique haploid

multilocus genotypes (MLGs) were identified using relatedness based on identity-by-state

(IBS), which is a correlate of IBD [32] (and has been used elsewhere to characterise connectiv-

ity between nearby malaria parasite populations [14–16]). Of the 136 MLGs, 44 infected two

or more patients (max. 28 patients), 45 persisted for two or more days (max. 8 years), and 7 of

the 15 most common MLGs were sampled in two or more provinces (max. all four provinces).

Panmixia was rejected based on evidence of four sympatric but geographically structured

subpopulations; and, overall, LD decayed at a rate that was faster than expected for South

American P. falciparum populations (compare with e.g. [33]). Echeverry et al. concluded that
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evidence of low genetic diversity, persistent MLGs and population structure is consistent with

low transmission and limited outcrossing, while evidence of a relatively fast rate of LD decay

and of shared MLGs across provinces is consistent with extensive human movement connect-

ing P. falciparum populations.

Although the study by Echeverry et al. features analyses of IBS-based relatedness (i.e. MLGs),

evidence of departure from isolation-by-distance was based on FST alone. To explore isolation-

by-distance in more granularity while accounting for uncertainty, we compute IBD-based relat-

edness estimates and confidence intervals for all pairs of 325 monoclonal parasite samples. Akin

to previous studies (e.g. [5]), highly-related parasites were classified using a threshold; however,

confidence intervals allow uncertainty to be accounted for in this study. For example, in [5] a

parasite pair was considered highly-related if its relatedness estimate exceeded 0.5, whereas here

a parasite pair is considered highly-related if the lower end-point of the 95% confidence interval

around its relatedness estimate exceeds some stated value, which is 0.25 in the main text and 0.5

in sensitivity analyses. This is important because uncertainty can overwhelm relatedness esti-

mated using limited genotype data [32]. Our approach includes two additional contributions.

First, we complement our analysis of highly-related parasites with a threshold-free approach

that uses a metric called the 1-Wasserstein distance, which can be interpreted as the cost of

transporting a distribution of parasite samples from one city to another [18, 34]. Second, we

identify groups of statistically indistinguishable parasites, which we call clonal components,

using the simple concept of components from graph theory and confidence intervals. Confi-

dence intervals circumvent reliance on an arbitrary clonal threshold (i.e. some number of differ-

ences tolerated between parasites samples considered clonal). Graph components circumvent

reliance on unsupervised clustering methods that are sensitive to both the definition of genetic

similarity and algorithmic specification [35, 36]. Overall, our approach could be adapted to

viruses and bacteria that show recombination or reshuffling of segments as well as clonal propa-

gation [37–40], to other protozoans (e.g. Toxoplasma, Cryprosporidium [41–43]), and to the

many fungal pathogens [44], plants [6, 7], and animals with mixed mating systems. Due to our

treatment of uncertainty, it is especially relevant for a growing number of studies that plan to

estimate IBD-based relatedness using genotype (versus sequence) data.

Results

Relatedness estimates between P. falciparum sample pairs

For all 52650 pairwise comparisons of 325 previously published monoclonal P. falciparum
samples with data on 250 biallelic single nucleotide polymorphisms (SNPs) [13], relatedness

was estimated using the hidden Markov model (HMM) described in [32]. Relatedness is thus

defined as the probability that, at any SNP, the two alleles drawn from the paired monoclonal

P. falciparum samples are IBD.

The parasite samples were collected between 1993 and 2007 from symptomatic patients

participating in studies at five cities on the Colombian-Pacific coast (S1 Table). Despite consid-

erable uncertainty, all estimates are informative (Fig 1). That is to say, there are no relatedness

estimates whose 95% confidence intervals span entirely from zero to one. The vast majority of

relatedness estimates were classified unrelated.

Highly-related P. falciparum sample pair fractions partitioned in space and

time

In our main analysis (Fig 2), highly-related parasite samples were classified using an arbitrary

threshold of 0.25 (Table 1), which corresponds to the expected relatedness between parasites
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separated by two outcrossed generations, but is hard to interpret in the context of frequent

clonal propagation. Despite few highly-related P. falciparum sample pairs overall, there are

three notable observations regarding their fraction partitioned in space and time. First, there is

a greater fraction of highly-related sample pairs among those collected closer together in time

(Fig 2(A)). Second, the fraction of highly-related sample pairs is generally greater within cities

than between, with Guapi having the largest fraction of highly-related pairs and Buenaventura

Fig 1. Estimates of relatedness with 95% confidence intervals. Estimates and confidence intervals are shown for all 325 choose two (52650) P.
falciparum sample pairs and are ordered by increasing relatedness estimate. Confidence intervals are coloured according to classifications based on

lower and upper confidence interval end-points, where τ is an arbitrary threshold used to classify highly-related pairs. For example, a pair is considered

highly-related with τ = 0.25 if the lower end-point of the confidence interval around its relatedness estimate exceeds 0.25. Otherwise stated, if its

relatedness estimate is statistically distinguishable from 0.25.

https://doi.org/10.1371/journal.pgen.1009101.g001
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having the lowest (Fig 2(B)). However, third, the fraction shared between Buenaventura and

Tumaco is greater than expected given inter-city distance (Fig 2(B)). These observations are

largely robust to different high-relatedness thresholds (S1 Fig). Spatial trends evaluated using a

threshold-free approach are also consistent: they show a general increase in 1-Wasserstein dis-

tance with inter-city distance besides Buenaventura and Tumaco (Fig 3). The 1-Wasserstein

distance can be interpreted as the total cost required to transport a distribution of parasite

samples from one city to another [18, 34], where the cost of transporting a single parasite to

another is equal to one minus relatedness. The small 1-Wasserstein distance between Buena-

ventura and Tumaco is thus consistent with elevated gene flow between P. falciparum popula-

tions sampled from these cities.

Fig 4 shows the inter-city P. falciparum population connectivity of Fig 2(B) projected

onto a map of the Colombian-Pacific coast. Buenaventura and Tumaco are the two largest

official ports on the Colombian-Pacific coast (Buenaventura is the largest) and are con-

nected by frequent marine traffic (www.marinetraffic.com). Although Tumaco is connected

to Buenaventura via the Pan-American highway, which connects all sites but Guapi, pri-

mary access to Tumaco is via the port due to difficult and unsafe country roads in Nariño.

Fig 2. Fractions of highly-related sample pairs partitioned in time and space. (A) Partitioned by time between collection dates. (B) Partitioned by

collection city, where the inter-city great-circle distance is the distance in kilometres (km) between city pairs on the Earth’s surface.

https://doi.org/10.1371/journal.pgen.1009101.g002

Table 1. Classification of parasite sample pairs. Classification is based on the lower and upper end-points (LCI and UCI, respectively) of the 95% confidence interval

around each relatedness estimate, r̂ , where � is an arbitrarily small number to identify LCI� 0 and UCI� 1 given that LCI and UCI 2 (0, 1) not [0, 1]; and τ is an arbitrary

threshold used to classify highly-related pairs. We use � = 0.01 throughout, τ = 0.25 (main analysis) and τ 2 {0.25, 0.50} (sensitivity analysis).

Classification Interpretation Definition

Unrelated r̂ statistically indistinguishable from zero LCI < �

Related r̂ statistically distinguishable from zero LCI > �

Highly-related r̂ statistically distinguishable from a specified threshold LCI > τ
Clonal r̂ statistically indistinguishable from one UCI > 1 − �

https://doi.org/10.1371/journal.pgen.1009101.t001
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Guapi, which is effectively unreachable by road and not an official port, is connected by

marine traffic but with less frequency (www.marinetraffic.com). Consistent with its isola-

tion, the fraction of highly-related parasite pairs is relatively large within Guapi (Fig 2(B)),

and very small between Guapi and the two inland cities, Quibdó and Tadó (Figs 2(B) and 4).

Moreover and importantly regarding the elevated fraction of highly-related samples pairs

within both Guapi and Tadó (Fig 2(B)), all samples from Guapi and Tadó were collected

within a single year (S1 Table). The low fraction of highly-related parasite sample pairs

within Buenaventura (Fig 2(B)) is in part consistent with it having contributed samples over

many years (S1 Table) and with it being the most important port on the Pacific coast (www.

marinetraffic.com), i.e. a hub through which human traffic and thus potential parasite mix-

ing is high [13].

The apparent association between P. falciparum population connectivity and the frequency

of marine traffic raises questions about the latter’s role in malaria transmission. However,

other scenarios could lead to these relationships, for example high connectivity could result

from a single travel event between Buenaventura and Tumaco, followed by expansion of

Fig 3. P. falciparum population connectivity assessed using a threshold-free approach. 1-Wasserstein distance between parasite

populations from different cities versus inter-city great-circle distance in kilometres (km).

https://doi.org/10.1371/journal.pgen.1009101.g003
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highly-related and clonal parasites. To further explore the genetic signal that supports this

association we next consider clonal components.

Clonal components

We define clonal components as groups of statistically indistinguishable parasite samples iden-

tified under a graph theoretic framework: consider a graph whose vertices are parasite samples

Fig 4. P. falciparum population connectivity based on fractions of highly-related sample pairs. The width of each

inter-city edge is proportional to the fraction of highly-related sample pairs across cities plotted in Fig 2(B). Note that

the edges between Guapi and Quibdó and Guapi and Tadó are plotted but too thin to visually discern.

https://doi.org/10.1371/journal.pgen.1009101.g004
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and whose edges are weighted by relatedness estimates, a clonal component is a sub-graph

whose vertices are all connected to one another via edges whose weights are statistically indis-

tinguishable from one (i.e. clonally related, Table 1). In total, 46 distinct clonal components

were detected, ranging in size from 2 to 28 statistically indistinguishable parasite samples (Fig

5). They are spatially clustered. Ten of the 46 contain parasite samples collected from two or

more cities. Each clonal component besides one (clonal component four) is on average related

to at least one other (Fig 5). The unrelated clonal component is almost certainly an artefactual

contaminant: it accords with MLG 036 reported in [13], where contamination during in vitro
adaptation or DNA manipulation was suspected (MLG 036 contained “two culture-adapted

samples from Quibdó and Tadó that were indistinguishable from the Dd2 reference strain

from Southeast Asia”—the Dd2 reference strain was included as a control when the data were

originally generated [13]).

Fig 5. Clonal components and the average relatedness between them. Vertices depict clonal components, which are

groups of two or more statistically indistinguishable parasite samples. CC vertices are plotted using the Fruchterman-

Reingold layout algorithm [45], thereby clustering inter-related CCs. The size of each CC vertex is proportional to the

number of parasite samples per CC, ranging from 2 to 28 statistically indistinguishable parasite samples. CCs are

named in order of the collection date of the earliest parasite sample per CC (S2 Table). CCs with parasite samples

collected from two or more cities are depicted as pie charts. Colour denotes the city of parasite sample collection. Edge

transparency and weight is proportional to average relatedness, ranging from 0.003 to 0.840. Relatedness estimates that

are indistinguishable from zero were set to zero. Edges whose average relatedness is zero are not plotted. Each CC

besides CC4 is related to at least one other. CC4 contains two samples (one from Tadó, another from Quibdó). It is

likely a contaminant; see main text.

https://doi.org/10.1371/journal.pgen.1009101.g005
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Clonal parasite samples detected in both Buenaventura and Tumaco belong to five distinct

clonal components (1, 12, 14, 20 and 40, Fig 5). We thus dismiss a single travel event connect-

ing Buenaventura and Tumaco involving a single parasite clone. We cannot dismiss a single

travel event involving multiple parasite clones, however. Based on the proportions of multiclo-

nal infections in the original data from Buenaventura and Tumaco (14% and 19% respectively)

[13], the probability that these five clones could be distributed across infections in four or

fewer individuals is approximately 0.6. Indeed, three of the five clonal components are inter-

related on average (S3 Table). As such, they could derive from co-transmitted recombinant

parasites transported in a single individual with a multiclonal infection. On the contrary, the

remaining two clonal components have relatedness estimates that are not statistically distin-

guishable from zero. As such, they could derive from a single superinfected individual, or from

different individuals with independent monoclonal infections. Unfortunately, the data

required to further evaluate these scenarios (data on the multiplicity of multiclonal infections,

and on relatedness within multiclonal infections, e.g. [12]) are not available. Given dates and

cities of first detection (S2 Table), it is tempting to suggest some clonal components predate

others and originate in specific locations. For example, it is possible that parasite samples from

clonal components 1 and 20 in Buenaventura and Tumaco emanated from Guapi, creating a

spurious link between Buenaventura and Tumaco. However, because these data are from

sparsely sampled symptomatic cases in a setting where clonal propagation is frequent, sample

collection chronology is not necessarily representative of the chronology of transmission chain

events (S2 Fig).

Regarding transmission chain events, we note that clonal component 20 relates to the three

inter-related clonal components (1, 12 and 14) via an intermediate clonal component detected

in Tumaco only (clonal component 15) as well as an intermediate parasite sample from

Quibdó that does not belong to a clonal component (S3 Fig). These intermediates likely derive

from recombination between parasites related to the clonal components they connect. Several

connections consistent with recombinants can be found among the relatedness graphs (Fig 5

and S3 Fig). As such, it seems it may be at least theoretically possible to construct approximate

P. falciparum transmission chains given more dense sampling of malaria infections on the

Colombian-Pacific coast.

Discussion

Here we show that estimates of IBD-based relatedness and their associated uncertainty can be

used to uncover evidence of epidemiologically meaningful connectivity between P. falciparum
populations on a relatively local spatial scale: along the Colombian-Pacific coast where clonal

propagation is frequent [13], extending southward to Ecuador [46, 47]. While our approach

largely confirms a previous report based on FST [13], estimates of relatedness provide more

granularity while their confidence intervals account for uncertainty thus provide more statisti-

cal rigor, e.g. when highly-related parasite sample pairs are classified. Our approach includes

two additional contributions: 1-Wasserstein distances are used to compare parasite popula-

tions in an entirely threshold-free manner; and clonal components are identified using

graph components and confidence intervals, thereby circumventing reliance on an arbitrary

clonal threshold. Threshold-free methods are especially important in analyses where thresh-

olds do not have clear interpretations (e.g. 0.5 may correspond to the expected relatedness of

siblings in an outcrossed population, but its interpretation is unclear in a population where

inbreeding and clonal propagation is common) and thus undermine the cross-comparison of

studies. Standardisation will accelerate the maturation of malaria genomic epidemiology and

facilitate the translation of research into actionable insight for policy makers [1]. Our overall
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approach could also be adapted for analyses of other recombining organisms with mixed mat-

ing systems.

IBD-based relatedness estimates recovered 1) a large fraction of highly-related parasite sam-

ple pairs within Guapi, a city on the Colombian-Pacific coast that is relatively isolated besides

infrequent marine traffic; 2) a low fraction of highly-related parasite sample pairs within Bue-

naventura, the most important port on the Colombian-Pacific coast and thus the least isolated

city in this study; and 3) a disproportionally large fraction of highly-related parasite pairs

between Buenaventura and Tumaco (departure from isolation-by-distance), where Tumaco

is the second largest port on the Colombian-Pacific coast. These observations accord with sev-

eral published previously: 1) elevated LD in a P. falciparum subpopulation (identified using

STRUCTURE [35, 48]) predominant in Guapi; 2) rapid LD decay in a P. falciparum subpopu-

lation predominant in Buenaventura; and 3) lowest genetic differentiation (based on FST

estimates) between provinces Valle (Buenaventura) and Nariño (Tumaco) [13]. LD, STRUC-

TURE and FST analyses all rely on allelic variation. The concordance between results based on

relatedness and allelic variation suggests that P. falciparum outbreeding on the Colombian-

Pacific coast is infrequent enough that both types of analyses generate insight on approxi-

mately the same time scale.

The aforementioned results generate hypotheses around the frequency of marine traffic

and malaria transmission on the Colombian-Pacific coast. Notwithstanding long-range wind-

borne dispersal, which may be critical for malaria transmission in Africa [49], anopheline

flight range is generally small (around 3.5 km [50]). As such, long-range malaria parasite dis-

persal on the Colombian-Pacific coast is almost certainly human-mediated. A recent study of

P. vivax proposed that human movement across a “malaria corridor” stretching from the

northwest to the south of the Colombian-Pacific Coast likely promotes P. vivax gene flow, and

that mining activities may provide transmission “contact zones” [51], similarly proposed for P.
falciparum [22]. P. falciparum population connectivity is consistent with the human “malaria

corridor” hypothesis, especially since it correlates with accessibility, not isolation-by-distance.

Both infected humans and mosquitoes are compatible with this hypothesis, i.e. checks for

infected Anopheles spp. on boats may be merited [52, 53]. However, relatively high differentia-

tion between populations of An. albimanus (one of the three primary vectors of malaria in

Colombia [54]) from Buenaventura and Tumaco [55] points towards human carriage.

The Colombian-Pacific coast has long been associated with international trade, but until

recently human migration in the region was largely domestic. The flow of Venezuelan

migrants infected with Plasmodium spp. has increased in recent years: of 965, 1774 and 2288

non-domestic malaria cases reported in Colombia in 2017, 2018 and 2019, respectively, 882

(91.4%), 1684 (94.9%), and 2190 (95.7%) were from Venezuela [56–58]. Other non-domestic

sources of malaria in Colombia include countries elsewhere in South America (e.g. Peru, Pan-

ama, French Guyana, Ecuador, Brazil) and several African countries (e.g. Uganda, Republic of

the Congo, Nigeria, Ivory Coast, Cameroon, Angola) [58]. Some of the infected Venezuelan

nationals are migrating southward to Ecuador and Peru [24]. Other non-domestic cases may

be associated with the traffic of people who arrive at Colombian ports with a view towards

northward travel e.g. to the USA via Central America and Panama [59]. Genetic surveillance

of “international parasites” may help malaria control efforts in Colombia.

The evidence we find of connectivity between P. falciparum populations may be unique to

the period of time over which the data were collected (1993-2007). This was a period of histori-

cally high malaria case counts in Colombia [17], as well as social instability in the South Pacific

region. Contemporary data on more densely sampled cases and on mosquito and human

movement are required to characterise extant connectivity, its reach beyond Colombia

(see e.g. [47]), and to rule out alternative hypotheses. Regarding alternative hypotheses,
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heterogeneous vectorial capacity and antimalarial drug pressure could selectively enhance par-

asite survival in such a way that generates apparent connectivity between Buenaventura and

Tumaco, e.g. if parasites are adapted to local vectors whose distributions are more similar

between Buenaventura and Tumaco than elsewhere. Although adult An. albimanus B and An.
neivai s.l. have been detected in the vicinities of both cities [55, 60], the species distributions

in the vicinities of Buenaventura and Tumaco differ more than those in the vicinities of

Tumaco and Guapi [60]. As such, heterogeneous vectorial capacity seems an unlikely alterna-

tive hypothesis. Similarly, relatedness may be greater among parasites with comparable anti-

malarial resistance: a recent study of South East Asian P. falciparum parasites found greater

relatedness in the recent past among parasites with artemisinin resistance mutations versus

without [61]. This study used size-stratified IBD segments to date relatedness [61]. On the

Colombian-Pacific coast, IBD segment size inference could help identify some recently related

parasites. However, it requires whole genome sequence data and is hard (if not presently

impossible) to interpret in the face of frequent clonal propagation [32]. The development of an

ancestral recombination model that incorporates transmission-dependent selfing is a research

priority in malaria genomic epidemiology and would aid research on other organisms that

show both outbreeding and clonal propagation.

Materials and methods

Data

This study relies entirely on previously published data that are publicly available [13, 32]. In

the original study by Echeverry et al., finger-prick blood spot samples were obtained from

patients with symptomatic uncomplicated malaria [13]. Samples were collected between 1993

and 2007 from five cities in four provinces: Tadó and Quibdó in Chocó, Buenaventura in

Valle, Guapi in Cauca and Tumaco in Nariño (S1 Table) [13]. Informed consent was obtained

from all the subjects enrolled, as approved by the CIDEIM Institutional Review Board (IRB)

[13]. The Colombian-pacific coast is one of the rainiest regions of the world [55, 62]. At that

time, Colombia had approximately 100,000 malaria cases per year [13, 17]. Collectively Chocó,

Valle, Cauca and Nariño accounted for up to 75% of the P. falciparum cases reported, with rel-

atively high transmission in Chocó and relatively low transmission in Valle and Cauca [13].

The data that feature in this descriptive study also feature in a recent methodological study

concerning data requirements for relatedness inference [32]. As in [32], we did not post-pro-

cess the data in any way besides mapping SNP positions to the P. falciparum 3d7 v3 reference

genome and recoding heteroallelic calls as missing (since all samples with fewer than 10 het-

eroallelic SNP calls were classified monoclonal previously [13]). The monoclonal data include

325 P. falciparum samples with data on 250 biallelic SNPs whose minor allele frequency esti-

mates (the minor allele sample count divided by 325) range from 0.006 to 0.495 (S4 Fig).

Relatedness inference and classification of parasite sample pairs and

groups

For each pairwise parasite sample comparison, we generated a relatedness estimate and 95%

confidence interval using the HMM and parametric bootstrap described in [32]. Sample pairs

were classified as unrelated, related, highly-related and clonal using confidence interval end-

points as follows and summarised in Table 1. A pair was classified unrelated if its relatedness

estimate, r̂ , was statistically indistinguishable from zero with lower confidence interval end-

point (LCI) less than �, an arbitrarily small number to identify LCI� 0 and UCI� 1 given that

LCI and UCI 2 (0, 1) not [0, 1]. A pair was classified related if its relatedness estimate, r̂ , was
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statistically distinguishable from zero with LCI > �. A pair was considered highly-related if its

relatedness estimate, r̂ , was statistically distinguishable from some specified threshold, τ, with

LCI> τ. A pair was considered clonal if its relatedness estimate, r̂ , was statistically indistin-

guishable from one with upper confidence interval end-point (UCI) > 1 − �. Note that these

classifications are possible because all estimates are informative, i.e. no confidence intervals

span the entire zero to one range (Fig 1). These classifications are neither necessarily exclusive

nor conversely true: a clonal parasite pair is related, but a related parasite pair is not necessarily

clonal. Throughout, � = 0.01. In the main analysis (Fig 2) τ = 0.25, in the sensitivity analysis

(S1 Fig) τ 2 {0.25, 0.50}.

In addition to classifying parasite sample pairs, we classify groups of statistically indistin-

guishable parasite samples, which we call clonal components because they are defined using

the simple concept of components from graph theory. First, we construct a super-graph whose

vertices are parasite samples connected by edges that are weighted by relatedness estimates.

Within the super-graph, a clonal component is a sub-graph within which all parasite samples

are connected to one another (directly or not) via edges whose weights are statistically indistin-

guishable from one, while being connected to parasites samples outside the sub-graph via

edges whose weights are not statistically indistinguishable from one. Clonal components tend

to be fully connected (i.e. all parasite samples within the clonal component are directly con-

nected to one another by edges whose weights are statistically indistinguishable from one).

The igraph package [63] in R [64] was used to identify clonal components and to visualise

them using the Fruchterman-Reingold layout algorithm [45].

Spatiotemporal trends in P. falciparum population connectivity

Spatiotemporal trends in population connectivity were explored visually by partitioning para-

site sample pairs by their collection cities and dates, then plotting the per-partition fraction of

highly-related pairs. Inter-city great-circle distance was calculated using the Haversine for-

mula, which assumes the earth is spherical. Error bars were constructed by re-sampling per-

partition parasite sample pairs 100 times with replacement and taking the 2.5th and 97.5th per-

centiles of the fraction of highly-related pairs as the lower and upper limits, respectively. Sensi-

tivity to τ = 0.25 (high relatedness threshold used in Fig 2) was explored using an alternative

τ = 0.50 (S1 Fig) and also by using a threshold-free approach (Fig 3) as follows.

To explore population connectivity using a threshold-free approach, we calculated 1-Was-

serstein distances between groups of parasite samples from different cities using the trans-
port [65] package in R [64]. Specifically, for a pair of cities a and b, we construct a na × nb

genetic distance matrix, G, of 1 � r̂ ij (where na and nb are the parasite sample counts from cit-

ies a and b, respectively, i = 1, . . ., na and j = 1, . . ., nb) and two vectors wa¼
1

na ;...;
1

na= Þ=ð and

wb¼
1

nb
;...;1 nb= Þ=ð of length na and nb, respectively. We then calculate the 1-Wasserstein distance,

which minimises the total cost of transporting wa to wb, where 1 � r̂ ij is the cost of transport-

ing a single unit, using transport::transport(wa, wb, costm = G, method =
"shortsimplex"). This amounts to treating parasite samples from different cities as draws

from different distributions, where the 1-Wasserstein distance can be interpreted as the cost

required to transport a distribution of parasite samples from one city to another [18, 34]. Since

per-city parasite sample sizes differ, transportation requires the expansion (or contraction) of

parasite mass in addition to the transportation of individual units. City pairs with smaller

1-Wasserstein distances are interpreted as having greater connectivity between the P. falcipa-
rum populations collected from them. Error bars were constructed by re-sampling parasite

sample pairs per inter-city partition 100 times with replacement and taking the 2.5th and
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97.5th percentiles of the distribution of 1-Wasserstein distances based on the re-sampled sam-

ple pairs as the lower and upper limits, respectively.

Supporting information

S1 Table. Yearly monoclonal P. falciparum sample counts per city.

(PDF)

S2 Table. A summary of all clonal components. Date and city refer to the date and city of col-

lection of the earliest parasite sample per clonal component.

(PDF)

S3 Table. Average relatedness between select clonal components. Average relatedness to

three decimal places between clonal components (CCs) 1, 12, 14, 20 and 40 with the maximum

2.5% end-point of the 95% confidence intervals per CC in parentheses. The maximum 2.5%

end-point indicates that relatedness between C20 and C40 is not statistically distinguishable

from zero, for example.

(PDF)

S1 Fig. Fractions of highly-related sample pairs partitioned in time and space: Sensitivity

to the high-relatedness threshold. Highly-related samples pairs are defined as those with

lower confidence interval end-point (LCI) of relatedness estimate, r̂ , greater than thresholds

0.25 and 0.50; or with upper confidence interval end-point (UCI) of r̂ > 0:99 (i.e. clonal para-

site sample pairs). Colours correspond to Fig 1. (A) Partitioned by time between collection

dates. (B) Partitioned by collection city.

(TIF)

S2 Fig. Sample collection chronology does not reflect transmission chain event chronology.

Schematic illustrating why sample collection chronology is not necessarily representative of

the true sequence of transmission chain events when sampling is sparse and clonal propaga-

tion is frequent. The schematic shows two hypothetical locations A and B where malaria para-

sites have been sampled sparsely: solid ellipses represent sampled parasites, open ellipses

represent parasites that were present but not sampled, different colours denote different para-

site genotypes.

(TIF)

S3 Fig. Clonal components and singletons and the average relatedness between them. Ver-

tices depict clonal components (CCs), which are groups of two or more statistically indistin-

guishable parasite samples, and singletons, which are individual parasite samples that do not

belong to a CC. Vertices are plotted using the Fruchterman-Reingold layout algorithm [45],

thereby clustering inter-related vertices. The size of each CC vertex is proportional to the num-

ber of parasite samples per CC, ranging from 2 to 28 statistically indistinguishable parasite

samples. CCs are named in order of the collection date of the earliest parasite sample per CC.

CCs with parasite samples from two or more sites are depicted as pie charts. Colour denotes

the city of parasite sample collection. Edge transparency and weight is proportional to average

relatedness, ranging from 0.003 to 0.912. Relatedness estimates that are indistinguishable from

zero were set to zero. Edges whose average relatedness is zero are not plotted. Each CC besides

CC4 is related to at least one other. CC4 is likely a contaminant; see main text. A singleton

from Buenaventura, which is loosely related to CC4, may also be a contaminant.

(TIF)

PLOS GENETICS Identity-by-descent with uncertainty characterises Plasmodium falciparum population connectivity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009101 November 16, 2020 14 / 18

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009101.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009101.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009101.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009101.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009101.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009101.s006
https://doi.org/10.1371/journal.pgen.1009101


S4 Fig. Minor allele frequency estimates. Histogram of minor allele frequencies estimated

using all 325 monoclonal P. falciparum samples genotyped at 250 biallelic SNPs.

(TIF)
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46. Sáenz FE, Morton LC, Okoth SA, Valenzuela G, Vera-Arias CA, Vélez-Álvarez E, et al. Clonal popula-
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47. Vera-Arias CA, Castro LE, Gómez-Obando J, Sáenz FE. Diverse origin of Plasmodium falciparum in

northwest Ecuador. Malaria journal. 2019; 18(1):251. https://doi.org/10.1186/s12936-019-2891-y

48. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:

linked loci and correlated allele frequencies. Genetics. 2003; 164(4):1567–1587.

49. Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, et al. Windborne long-distance migration

of malaria mosquitoes in the Sahel. Nature. 2019; 574(7778):404–408. https://doi.org/10.1038/s41586-

019-1622-4 PMID: 31578527

50. Verdonschot PF, Besse-Lototskaya AA. Flight distance of mosquitoes (Culicidae): a metadata analysis

to support the management of barrier zones around rewetted and newly constructed wetlands. Limnolo-

gica-Ecology and Management of Inland Waters. 2014; 45:69–79. https://doi.org/10.1016/j.limno.2013.

11.002
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