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Abstract

Understanding the temporal and spatial expression patterns of the human cerebral cortex is essential for expanding
knowledge of its functionality. Previous analysis focused on the differentially expressed genes (DEGs) among cortical
subregions revealed an hourglass model for interareal differences. However, the overall pattern of transcriptional
differences during the development of every region remains to be fully explored. Here, analysing more than 800
neocortex samples from lifespan transcriptional profiles revealed that excitatory neurons are more regulated than
inhibitory neurons in the foetal brain. Developmental DEGs tend to be resting state or memory encoding-related and
are also involved in autism and Alzheimer's disease. In addition, twin peaks of DEGs occur during the development of
each neocortex region, with a first peak appearing in the perinatal period and an unexpected second peak appearing
around childhood. Genes in these peaks have similar functions, but the second peak is more inhibitory neuron related.

development.

All these results emphasize the significance of this unique temporal regulatory pattern for human neocortical

Introduction

The human cerebral neocortex is formed through
development and involved in various complex behaviours.
However, the complete development pattern of each
cortical region has not been fully explored. Understanding
the development patterns of human brain regions at the
molecular level is of vital importance as it may provide a
more comprehensive view of the uniqueness of the
human brain'~. Due to advancements in microarray and
next-generation sequencing technology, most transcrip-
tional activities of mRNAs can be accessed in different
brain regions at relatively low cost. These technologies
revealed that 86% of genes are expressed in the primate
brain, and ~82% of genes are expressed in the cerebral
neocortex®™'°,

Examining the transcriptional activities in multiple
brain regions across the lifespan has demonstrated that
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the regulation of the brain regional transcriptome is not
evenly distributed among different stages®”'°. This non-
uniformity exists both spatially and temporally. Specifi-
cally, a large number of genes are upregulated and
downregulated during prenatal development'®. In the
human prefrontal cortex, the regulation of gene expres-
sion is quicker during foetal development than during any
other developmental stage, and the speed is decreased in
infancy or later period of life’. Surprisingly, by comparing
the number of differentially expressed genes (DEGs)
among 11 cortex regions, an hourglass model was pro-
posed, which indicates that the transcriptional divergence
among different subcortical regions is more significant in
early and late periods of development than in childhood".
This model provides the basis of our understanding of
developmental differences in different human neocortical
regionslz. However, whether a unified model exists for the
global regulation pattern of a particular neocortex region
during its development remains unclear, let alone whether
different neocortex areas follow the same pattern across
the lifespan.
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Here, by investigating the human neocortex tran-
scriptome data across the whole lifespan, we assessed the
number of DEGs during development in each of the 11
regions. The neocortex regions exhibited a waterfall mode
regarding the overall developmental dissimilarity. Addi-
tionally, the number of developmental DEGs peaked in
both the perinatal period and around the childhood per-
iod. Then, we systematically characterized the features of
these peaks, which revealed the crucial regulatory periods
of different neocortex regions.

Results
Transcriptional differences in the human neocortex among
different developmental stages exhibit a waterfall mode

To characterize the global transcriptional regulation
pattern per neocortex subregion, we collected 886 sam-
ples of brain regional expression data from the Human
Brain Transcriptome (HBT) database'®, which spans from
10 weeks post conception (pcw) to 82 years of age. In
total, 11 brain regions were used for downstream analysis.
These regions included the frontal lobe: the orbital (OFC),
dorsolateral (DFC), ventrolateral (VFC), medial (MFC),
and primary motor (M1C) cortices; the parietal lobe: the
primary somatosensory (S1C) and posterior inferior (IPC)
cortices; the temporal lobe: the primary auditory (A1C),
posterior superior (STC), and anterior inferior (ITC); and
the occipital lobe: the primary visual (V1C) cortex, as
previously described''. Similar to previous methodol-
ogy'', ANOVA was performed to identify temporal DEGs
during development for each neocortex region. Our
results show that 11,771 genes were differentially
expressed between any two developmental stages (stages
were defined as described in ref. '°, and the samples were
divided by the same stage criteria as previously reported)
in at least one neocortical region (Supplementary Table
S1), which accounted for 85% of all 13,834 expressed
genes, suggesting that these neocortex regions are heavily
regulated during brain development.

Tukey’s pairwise comparison estimated the contribution
of DEGs in a specific developmental stage''. The inter-
stage transcriptional divergence in each brain region
exhibited a waterfall pattern. For all neocortex subregions,
early and mid-foetal periods exhibited the most promi-
nent dissimilarity, with a sharp decrease at the neonatal
stage (Fig. 1a). This waterfall pattern of temporal diver-
gences in late foetal and early infancy suggests that the
perinatal period is an essential developmental stage that
represents dramatic changes in gene expression globally
in human neocortex regions.

Twin-peak pattern of gene regulation across
developmental stages

DEGs in adjacent developmental stages (developmental
DEGs) were calculated (from stage 3 to 15) to further
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investigate how the brain transcriptome changes stage by
stage. Unexpectedly, the number of developmental DEGs
burst twice across the whole lifespan in the neocortex
(Fig. 1b and Supplementary Table S2). The first peak
appeared in the perinatal period (from late mid-foetal to
early infancy), while the striking second peak occurred
around the period of childhood (from late infancy to
adolescence). The first and second peaks involved more
than 6,000 and 4,500 DEGs in each neocortex subregion,
respectively, which implies that two critical regulatory
periods exist at the molecular level during human neo-
cortex development and maturation, with the most
complex regulation occurring in the perinatal brain®”°.
In addition, the pattern was robust when we performed a
permutation test by randomly choosing the same number
of samples from each stage (Supplementary Fig. Sla, b).
By contrast, we found no similar pattern when we esti-
mated the distribution of developmental DEGs in other
non-neocortical regions (including the hippocampus,
amygdala, striatum, cerebellar cortex and mediodorsal
nucleus of the thalamus) from the same database (Sup-
plementary Fig. Slc, d), suggesting that the twin-peak
mode is a unique regulation pattern of neocortex
development.

Replication of twin-peak regulation in human prefrontal
cortex transcriptome

Exploring regulation patterns during development
might be difficult as developmental data points are often
incomplete, especially in the early developmental stages.
Therefore, we sought to validate the twin-peak pattern
observed in human neocortex regions by utilizing an
independent dataset, i.e., human prefrontal cortex tran-
scriptome data, which contain 269 samples across the
lifespan’. As expected, although the sampling time points
of the two datasets were slightly different, both the
waterfall model and twin-peak pattern were well repli-
cated in the independent dataset (Fig. 1c, d). In this pre-
frontal cortex dataset, 2,880 DEGs were detected in the
first peak, which is twice the number of DEGs detected in
the second peak (1103 DEGs; Supplementary Table S3).
All these results illustrate the robustness of the twin-peak
pattern observed.

Shared developmental DEGs among neocortex subregions

To examine the distribution of developmental DEGs, we
surveyed whether the same DEGs tended to be regulated
in multiple brain areas at the same stage. DEGs in the
twin peaks significantly overlapped across neocortex
regions in 10,000 permutation experiments (Fig. 2a, P <
0.001 for all 12 comparisons), and the proportion of DEGs
shared by different neocortex subregions in the peak
periods was higher than that in other developmental
periods (Fig. 2b). Additionally, 70% of DEGs (2,886 genes)
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Fig. 1 Waterfall mode and twin-peak regulation of neocortical development. a 3D heatmap shows the number of temporal DEG combinations
of 11 neocortex subregions. b The number of adjacent developmental DEGs per neocortex subregion. ¢ Temporal DEG combinations of the human
prefrontal cortex, which is from an independent dataset. d The number of adjacent developmental DEGs of the human prefrontal cortex. Different
colours represent the number of DEGs detected from high (red) to low (blue)

in the second peak were differentially regulated in the first
peak period (Supplementary Table S4), suggesting sig-
nificant similarities in the regulatory networks during the
two critical periods.

Then, we investigated the functionality of the DEGs in
those peak periods. KEGG pathway analysis showed that
the DEG lists of the twin-peak periods were both sig-
nificantly enriched in axon guidance, GABAergic
synapse and MAPK signalling pathway (first peak:
Benjamini—Hochberg corrected P <7.39 x 10™°; second
peak: Benjamini-Hochberg corrected P <=0.029; Fig.
2¢, d). In addition, DEGs in the first peak were involved
in morphine addiction (Benjamini-Hochberg corrected
P=23x10"%* and pathways of cell proliferation,
growth or migration, such as the Ras signalling pathway
and ErbB signalling pathway (Benjamini—Hochberg
corrected P<3.67 x107°), which is related to the

increase in brain size. DEGs in the second peak were
mainly  involved in  Dopaminergic = synapse
(Benjamini—Hochberg corrected P =0.029), a pathway
related to learning and memory'>**, which suggests that
the regulation of this peak might play a role in the
formation of life experience. Similarly, GO analysis
further showed that both peaks were enriched in the
neuronal cell body, axon part, presynapse and post-
synapse (Benjamini-Hochberg corrected P < 8.24 x
105 Fig. 2e, f). More interestingly, DEGs only in the
first peak tended to be involved in axon and dendrite
development (Benjamini—Hochberg corrected P<
9.56 x 10~ °% Supplementary Fig. S2), suggesting that
extensive neuronal developmental-related regulation
occurs during the prenatal period of these neocortex
regions. By contrast, no significant enrichment of
pathways was found for DEGs only in the second peak.
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More developmental DEGs are detected than interregional
DEGs

We further compared the distribution of developmental
DEGs with previously identified brain regional DEGs'".
First, there were, on average, four-fold more develop-
mental DEGs than interregional DEGs (11,610 develop-
mental DEGs vs. 3,133 interregional DEGs), indicating
that the developmental regulation of each neocortex
period involves a large number of molecules and pathways
and is more complicated. Second, the number of devel-
opmental DEGs detected in the early foetal brain was less
than one-third that of regional DEGs (531 developmental
DEGs vs. 1,785 regional DEGs). Third, a group of devel-
opmental DEGs in the twin-peak regulation periods
overlapped with brain regional DEGs in the same periods
(Supplementary Table S5), indicating that those genes are
participating in both neocortex developmental and
regional differentiation, which may promote the func-
tional synchronization of different neocortex regions''.

Enrichment of brain resting state and memory encoding-
related genes in developmental DEGs

Based on recent evidence, the brain’s resting state net-
works can be detected in the early development of the
brain'>'®, indicating the possibilities that their molecular
activities and functional networks coordinate devel-
opmentally. A recently identified group of genes whose
expression profiles are related to the brain’s resting state
signal has provided valuable clues for further investigation
of the genetic basis of advanced brain functions'”'®. Thus,
we explored the regulation patterns of these genes during
development. Eighty-seven of the 168 (>50%) collected
resting state-related genes are differentially expressed in
at least one neocortex during development. Additionally,
resting state-related genes are enriched in DEGs in 9 of
the 11 neocortex regions during the first peak period
(Benjamini-Hochberg corrected P <0.05; Fig. 3a). Simi-
larly, we found significant enrichment of our recently
identified memory encoding-related genes'® with those
developmental DEGs. Furthermore, those memory
encoding-related genes tend to be differentially regulated
primarily at the twin-peak periods, as well as at mid-foetal
and late adulthood periods, in most neocortex regions
(Benjamini—Hochberg corrected P <0.05; Fig. 3b). Gen-
erally, compared with the brain resting state-related
genes, our previously identified memory encoding genes
tend to be differentially regulated at more developmental
stages, especially in foetal brain development, indicating
the importance of regulating memory-related genes dur-
ing neocortical development. Indeed, mapping the genes
with GO annotations of “learning or memory” and “cog-
nition” to the DEGs across different developmental stages
revealed a similar widespread distribution pattern of
enrichment compared with that of memory encoding
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genes (Supplementary Fig. S3a, b). The results suggest
that genes related to brain advanced functions are
extensively regulated in the twin-peak periods during
neocortex development.

Enrichment of autism and Alzheimer’s disease genes in
developmental DEGs

We hypothesized that neurodevelopmental disease
genes tend to be differentially regulated in the neocortex
during development. As expected, 247 out of 1,007
autism-related genes were differentially expressed in the
middle foetal brain (13 pcw to 24  pcw;
Benjamini-Hochberg corrected P<0.05). The biased
distribution of autism disease genes was not detected in
other developmental stages (Fig. 3c). At the early mid-
foetal (13 pcw to 19 pcw) developmental stage, 159
autism-related genes were enriched in DEGs among seven
regions (Benjamini—-Hochberg corrected P<0.014). Of
these genes, eleven were differentially expressed in all
these regions (Supplementary Table S5).

Additionally, out of 680 Alzheimer’s disease genes,
342 were differentially expressed during development
(Benjamini—Hochberg corrected P <0.05). However,
unlike the autism disease genes, which tend to be
enriched in DEGs of the middle foetal brain, Alzhei-
mer’s disease genes tended to be differentially regu-
lated at late adulthood developmental periods (age > 60
years old). In total, 32 Alzheimer’s disease genes were
differentially expressed in the late adulthood period,
and 23 of these genes significantly overlapped with
DEGs in five regions (OFC, ITC, S1C, VEC, and STC;
Benjamini—Hochberg corrected P<0.035; Fig. 3d).
Consistent with recent results*°~>?, our analysis high-
lighted the molecular nature of Alzheimer’s disease at
the transcriptomic level.

Excitatory neurons are more regulated than inhibitory
neurons in the prenatal brain

According to a recent study, novel excitatory neurons
have evolved while inhibitory neurons are conserved in
the evolution of the mammalian neocortex’, which
indicates the unique role of excitatory neurons in the
development of the human cerebral cortex. Therefore, we
explored the differential regulation of multiple cell types
in different developmental stages*>°. In foetal periods,
the markers of excitatory neurons were significantly more
regulated than were the markers of inhibitory neurons
(P<0.05 in all comparisons, Fig. 4a, b). In childhood,
slightly more regulations of inhibitory neuron-related mar-
kers were found (stage 9-10 and stage 10-11, P<0.05,
Fig. 4c). These findings suggest that different computational
logic might be developed in the two critical periods. Neither
of the two cell types was significantly regulated after ado-
lescence (Fig. 4d). In addition, for non-neuronal cells,
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astrocytes were strongly regulated at the early stages of
development, implying an important role in early brain
development (Fig. 4e). Similar patterns were found in
markers of Cajal-Retzius cells and oligodendrocyte pro-
genitor cells. In contrast, microglia and immune cells were
mainly regulated in late stages (Fig. 4e).

Modularity relationship links developmental DEGs with
functionally important pathways

To understand the modularity features of develop-
mental DEGs at the two peak periods, weighted gene co-
expression analysis was performed for each period® .
For networks of the first peak period, we identified 7 out
of 19 modules that are enriched with developmental
DEGs of the first peak (first peak DEG modules: black,

blue, brown, dark orange, light green, tan and turquoise;
Benjamini—Hochberg corrected P <822 x 10°); among
these, six modules were also enriched with developmental
DEGs of the second peak (Benjamini—Hochberg corrected
P <841 x 10~>; Supplementary Fig. S4a). Similarly, for the
networks of the second peak period, we discovered 15 out
of 25 modules enriched with developmental DEGs of the
second peak (Benjamini—Hochberg corrected P < 2.04 x
10*); among these, six were also enriched with devel-
opmental DEGs of the first peak (Benjamini—Hochberg
corrected P<5.65 x 10~ Supplementary Fig. S4b, Sup-
plementary Table S6). These highly overlapping modules
indicate that similar co-expression regulatory networks
are involved in the critical developmental period of
the brain.
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In addition, to explore whether the DEGs in twin-peak
modules are related to the tipping points of brain devel-
opment, we applied the dynamic network biomarker
method®. We found dynamic network biomarkers con-
sisting of 1,845 genes and that a critical stage just emerges
after childhood, which may imply the transition of the
brain to a mature state. By assessing the top linked 300
genes in the networks of the twin peaks, we found that
20.7% (62/300) and 14.3% (43/300) of these genes were
dynamic network biomarkers in the first and the second
peak network modules, respectively.

Further functional analysis of the top linked genes in
those DEG modules revealed that they were relevant to
biological pathways such as GABAergic synapse, calcium
signalling pathway, axon guidance and synaptic vesicle
cycle (Benjamini—Hochberg corrected P<9.32x 107 %
Supplementary Fig. S4c, d). Specifically, the second peak
DEG modules were associated with pathways related to
learning and memory, such as long-term potentiation
(Benjamini—Hochberg corrected P=2.89 x 10~*). More-
over, we found a “purple” module in the first peak period
and a “green” module in the second peak period, which
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were both enriched with Parkinson’s disease, Alzheimer’s
disease and Huntington’s disease (first peak:
Benjamini—Hochberg corrected P<1.27 x 10~'% second
peak: Benjamini—Hochberg corrected P<3.22x10™%).
Our results imply the intrinsic link of developmental
DEGs and those important neurological processes at the
network level.

We noticed that both “memory or learning” and “cog-
nition” genes were highly associated with DEG modules in
the twin-peak periods, i.e., two modules in the first peak
period (blue, Benjamini-Hochberg corrected P =4.31 x
103 dark orange, Benjamini—Hochberg corrected P =
0.0184; Supplementary Fig. S4e, f) and one module in the
second peak period (pale turquoise, Benjamini—Hochberg
corrected P =2.97 x 10~*% Supplementary Fig. S4g and
Supplementary Table S7). For example, in the blue
module, we found two “cognition” hub genes, PTN and
GM?2A; GM2A was associated with an ASD-related hub
gene SLC1A2. Moreover, we found a hub gene, PLCD3,
which was a dynamic network biomarker and was asso-
ciated with several ASD-related hub genes, such as
PRODH, CAMK2A, DOCKI10 and RAPGEF4 (Supple-
mentary Fig. S4e).

Finally, some co-expression modules were enriched
with both first peak DEGs and the second peak DEGs. For
example, by comparing all the DEG modules between the
twin-peak networks, we detected a first-peak DEG module
involved in IgG binding (light green,
Benjamini—Hochberg corrected P=1.93x107°) and a
second-peak DEG module related to taste transduction
(white, Benjamini—Hochberg corrected P=3.75x 10”7).
The functional implications of these modules during brain
development need to be further investigated.

Developmental DEGs in the human early foetal brain are
two-fold higher than those in rhesus macaque
Identifying human-specific DEGs is an important topic
as it may indicate the molecular basis for the uniqueness
of the human brain®*"*?, Here, we estimated macaque
developmental DEGs by utilizing the recently released
non-human primate brain developmental atlas® and
compared them with our human developmental DEGs.
Due to the limitation of the sampling time points and
brain regions in macaques, only samples from the V1C
region spanning from the early foetal period to young
childhood were included in the final analysis. This com-
parison of the expression of orthologous genes between
human and macaque in this region showed that the
number of developmental DEGs in human early foetal
brain V1C was two-fold higher than that in macaque V1
(Supplementary Fig. S5a and Supplementary Table S8).
Moreover, more genes were differentially regulated in the
macaque brain after birth, and the second peak occurred
earlier in macaque V1 at adjacent stages of 3 months to
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12 months (Supplementary Fig. S5b and Supplementary
Tables S8, S9). These results indicate that the transcrip-
tional regulation of early stages is more important to the
uniqueness of the human brain.

Discussion

Our analyses showed that >80% of expressed genes are
differentially regulated during the development of the
human cerebral neocortex. The distribution of these
DEGs is not uniform, with more significant differences in
the transcriptome of the human foetal cortex compared
with that of the rest of the lifespan, which leads to a
waterfall mode regarding the global distribution of
developmental DEGs. Furthermore, two bursts of reg-
ulation in the transcriptome of neocortex were observed:
the first peak, which is the greater one, occurs in the
perinatal period, while the second peak of developmental
regulation occurs around the childhood period. A large
number of genes are involved in these two significant
regulatory periods of cortical development, and many of
these genes are from similar functional pathways and co-
expression networks. The functional analysis of those
genes and their related pathways suggested that these two
critical periods provide the molecular basis for human
neocortical growth and maturation. The twin-peak reg-
ulatory patterns were replicated by using an independent
dataset containing the lifespan transcriptome of the
human prefrontal cortex. Similarly, according to recent
research, a large number of genes experience dramatic
expressional changes in both late foetal and childhood-
adolescence periods®®. Moreover, among the five typical
genes involved in brain-based traits and neuropsychiatric
diseases, four of them (MEF2C, SATB2, SOXS, TCF4, and
TSHZ3) were found in our twin-peak gene lists.

Our enrichment analysis of developmental DEGs in
neurological disease genes revealed that many disease-
related genes, such as autism- or Alzheimer-related genes,
are tightly regulated only at some specific developmental
stages. However, genes that are potentially important for
advanced brain functions, such as resting state-related
genes or memory encoding-related genes, tend to be
regulated in multiple developmental stages. The differ-
ences in the distribution pattern are confirmed by using
genes annotated as “learning or memory” and “cognition”,
indicating the complexity of long-term regulation of these
functional genes during neocortex development. More
importantly, the markers of excitatory neurons are more
regulated than those of inhibitory neurons in early cortical
development. The cell type enrichment pattern of tem-
poral DEGs is consistent with the timeline of neural cell
generation and maturation. More interestingly, the mar-
kers of astrocytes are enriched in the mid-fetal brain,
which may indicate an unexpected role for them in this
period. Together, these findings emphasized the
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importance of excitatory neurons in the uniqueness of the
human brain. Finally, the modularity feature of these
genes in the twin-peak co-expression networks suggests
an intrinsic link among all these different genes involved
in the nervous system.

The number of interarea DEGs remains large in dif-
ferent foetal periods of the neocortex and decreases
rapidly after birth'", which is significantly different from
the pattern of developmental DEGs. The developmental
synchronization of different cortical regions in this period
may be linked to the first regulatory peak observed.
Indeed, a large number of overlapping genes exist
between developmental and interareal DEGs. Consistent
with spatial synchronization'', the significant overlap of
the developmental DEGs among different neocortex
regions suggests that synchronization also occurs tem-
porally during development, which may be of great
importance for the correct formation of neural circuits
among those regions. Thus, the twin-peak regulation and
hourglass mode distribution of DEGs provide the basis for
further understanding the global temporal and spatial
developmental regulation of the human neocortex.

Materials and methods
HBT data

Two microarray datasets on the gene expression of
developing human brain and one dataset on developing
rhesus monkey brain were used for analysis. The micro-
array data of human neocortical development were
downloaded from the HBT database'® (http://hbatlas.org/),
which includes 14,047 genes in the downstream compu-
tation. The microarray data of the human prefrontal
cortex were obtained from previous research’, which
includes 17,162 genes. The microarray data of the devel-
oping brain of rhesus monkey were obtained from®, which
contains 12,441 genes.

Temporal and developmental DEG identification

For each neocortical region, temporal DEGs during
different development stages were estimated by slightly
modifying a previously established method of identifica-
tion of regional DEGs'". First, ANOVA was performed to
identify DEGs in the neocortex, PFC, and macaque brain.
Then, to control for the false discovery rate (FDR), the
significant level (p values) from ANOVA test were cor-
rected with the Benjamini and Hochberg procedure for
multiple comparisons®®>. The threshold of DEGs was
chosen as previously reported"' (FDR Q value < 0.01, fold
change > 2), including the post-mortem interval (PMI)
and RNA integrity number (RIN) as technical covariates.
For the PFC and macaque datasets, we did not control for
covaried factors as neither PMI nor RIN information was
provided.
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A post hoc Tukey’s HSD test was performed to calculate
the differences between each pair of developmental stages
in each neocortex subregion. The number of significant
comparisons for each stage per neocortex subregion was
then used as the number of inter-stage DEG combina-
tions. To investigate the expression changes of the tem-
poral DEG stage by stage, we defined developmental
DEGs by the following criteria: in Tukey’s HSD test, the
absolute value of the difference between two adjacent
developmental stages is >1.

Permutation experiments

Permutation tests were performed to examine the sta-
tistical significance of the overlapping developmental
DEGs across 11 neocortex regions. For a given adjacent
developmental stage, the number of shared DEGs across
neocortex regions was calculated. Then, for each simu-
lation, the number of DEGs was resampled to calculate
the number of overlapped DEGs. Ten thousand permu-
tation experiments were performed for each stage, and the
subsequent p-value was determined.

Functional gene enrichment analysis

An autism-related gene list was obtained from the
SFARI database® (10/07/2018, https://gene.sfari.org/
database/gene-scoring/). Memory encoding-related genes
were collected from previous research'®. Resting state
fMRI-related genes were previously described'”'®. The
learning or memory gene list and cognition gene list were
downloaded from AmiGO?® (Accession: GO:0007611 and
GO:0050890, http://amigo.geneontology.org/amigo/). GO/
KEGG enrichment analyses were performed using clus-
terProfiler package v3.8.1°° with R. The enrichment ana-
lysis of the functional gene set was performed using
Fisher’s exact test with the Benjamini-Hochberg proce-
dure to adjust the p values.

Weighted gene co-expression network analysis

Weighted gene co-expression network analysis
(WGCNA) was performed for the twin-peak regulation
periods (periods 6—8 and 10-11), respectively. In total,
226 samples from the first peak and 82 samples from the
second peak were included in the computation. Signed
co-expression networks were built with the WGCNA
package v1.63°** in R. For all genes included in the
analysis, a pairwise correlation matrix was computed;
then, an adjacency matrix was calculated by raising the
correlation matrix to power 18, according to a scale-free
topology criterion®”. For each pair of genes, a robust
measure of network interconnectedness (topological
overlap measure) was calculated, and the modules were
generated by hybrid dynamic tree cutting®’. Other para-
meters used in the analysis were the minimum module
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size =50, deepSplit=4, and the minimum height for
merging modules = 0.15.

Dynamic network biomarker analysis

The dynamic network biomarker genes were identified by
modifying a previously established method®. Briefly, we
first calculated DEGs by t-test (FDR corrected) at each
development stage against the first development stage.
Next, we clustered genes at each stage by Pearson corre-
lations and set the maximum cluster number as 40. For
each cluster, four parameters were calculated in each stage:
the standard deviation (SD), the average Pearson correlation
coefficient (PCC) among the cluster members, the average
PCC between the in-cluster genes and out-cluster genes,
and the composite index (CI). Finally, we selected the
cluster that showed the greatest change in the CL

Cell type markers

Cell type marker genes were obtained from recently
released data®*™?°. The enrichment analysis of marker
genes at each developmental period was performed using
Fisher’s exact test, with the Benjamini—Hochberg proce-
dure to adjust the p values. To determine the overall
differential regulation of each cell type in the 11 neocor-
tical regions, we used the enrichment of marker genes in
at least half of all regions as a threshold. For instance, p <
0.001 indicates that the marker genes are significantly
differentially regulated in >5 of the 11 regions with a
significance level of p < 0.001.
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