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Abstract

Background: The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a
comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent
dogs could support current testing strategies.

Methods: Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva
samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested
on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study.

Results: Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated
saliva samples with a diagnostic sensitivity of 84% (95% Cl: 62.5-94.44%) and specificity of 95% (95% Cl: 93.4-96%).
In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids,
diagnostic sensitivity and specificity were 95% (95% Cl: 66.67-100%) and 98% (95% Cl: 94.87-100%) for urine, 91%
(95% Cl: 71.43-100%) and 94% (95% Cl: 90.91-97.78%) for sweat, 82% (95% Cl: 64.29-95.24%), and 96% (95% Cl:
94.95-98.9%) for saliva respectively.

Conclusions: The scent cognitive transfer performance between inactivated and non-inactivated samples as well as
between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are
released across different body secretions, independently from the patient's symptoms. All tested body fluids appear
to be similarly suited for reliable detection of SARS-CoV-2 infected individuals.
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Background in December 2019 and was declared a global health
Current situation emergency by the World Health Organization in January
The recently emerged respiratory disease coronavirus 2020 [1, 2]. The severe acute respiratory syndrome cor-
disease 2019 (COVID-19) broke out in Wuhan, China, onavirus 2 (SARS-CoV-2), which causes COVID-19, in-
fects the upper respiratory tract and in more serious
cases may also cause severe pneumonia and acute re-
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present atypically and lead to multiorgan dysfunction
and death [1, 3, 4]. Containing this global pandemic re-
quires a high rate of efficient testing, as an effective tool
to contain viral spread. Viral loads can be detected by
reverse transcription polymerase chain reaction (RT-
PCR) assays and with slightly less sensitive and usually
more rapid antigen detection tests in nasal or pharyngeal
swabs [2, 4] and saliva [5-7] with a peak at days three to
ten after infection. The peak of infectiousness is around
symptom onset [8]. It remains unclear if sweat or urine
are also sources of virus transmission [9, 10].

Odour detection

Different infectious diseases may cause specific odours by
emanating volatile organic compounds (VOCs). These are
metabolic products, primarily produced by cell metabol-
ism and released through breath, saliva, sweat, urine, fae-
ces, skin emanations and blood [11]. The VOC-pattern
reflects different metabolic states of an organism, so it
could be used for medical diagnosis by odour detection
and disease outbreak containment [12].

Canines are renowned for their extraordinary olfactory
sense, being deployed as a reliable tool for real-time, mobile
detection of, e.g., explosives, drugs and may identify certain
pathogen- and disease-specific VOCs produced by infected
body cells. The limit of detection for canines is at concen-
trations of one part per trillion, which is three orders of
magnitude more sensitive than currently available instru-
ments [12]. Consequently various studies have shown
dogs‘abilities to detect with high rates of sensitivity and spe-
cificity [13] infectious and non-infectious diseases and con-
ditions, such as different types of cancer [14], malaria [15],
bacterial infections caused by e.g. Clostridium difficile or
mastitis causing pathogens [16, 17], hypoglycaemia in dia-
betics [18], and virus infections in cell cultures [12, 19]. In
addition, several research groups currently train and deploy
SARS-CoV-2 detection dogs [20, 21]. In a pilot study, our
group showed that dogs were able to detect inactivated sal-
iva samples from COVID-19 patients with a sensitivity of
83% and specificity of 96% [22], which has been confirmed
by other groups training dogs to detect either respiratory
secretions or sweat samples from COVID-19 patients [20,
21]. Despite these preliminary promising results, it remains
to be shown whether dogs detect VOCs which are biofluid-
specific or alternatively there is a more general change in
odour of COVID-19 patients. To test the latter hypothesis,
the current study used the same training set-up with inacti-
vated saliva samples as the former study [22]. The main ob-
jective of this study was to determine whether dogs trained
with BPL (beta-propiolactone)-inactivated saliva samples of
SARS-CoV-2 infected individuals are capable to detect na-
tive saliva samples of infected patients, as well as transfer
recognition from saliva to other body fluids such as urine
and sweat. The second aim was to investigate whether
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different stages of infection or clinical phenotypes of
COVID-19 would alter the detection ability of the dogs.

Scent detection dogs could be a reasonable option for
a first line screening method in public facilities or during
major events as well as in medical institutions that
would be real-time, effective, economical, effortless and
non-invasive.

Methods

Samples - target scent, negative controls and distractors
To acquire saliva samples, individuals had to salivate
about 1-3 ml through a straw into sample tubes. For the
training phase, saliva samples from twelve subjects (hos-
pitalised and non-hospitalised SARS-CoV-2 infected in-
dividuals) suffering from asymptomatic to severe
COVID-19 symptoms were inactivated with beta-
propiolactone (BPL) according to the protocol described
in Jendrny et al. 2020 to provide safe training conditions
for dogs and handlers. To generate sweat samples, the
test persons had to wipe their crook of the arm with a
cotton pad. Urine samples were collected from the test
persons by urinating into a cup and transfer of 5 ml into
a sample tube. After acquisition, all of the samples were
deep-frozen at —80°C in the laboratory until usage.
Samples from ninety-three participants (32 male and 61
female subjects) were used in the study (Additional
Table 1). The SARS-CoV-2 status of each collected sam-
ple was determined by the RT-PCR SARS-CoV-2-1P4
assay from Institut Pasteur including an internal control
system and protocol [23, 24].

In contrast to our first study [22], which only included
hospitalised COVID-19 patients suffering from severe
courses of disease, we now additionally included non-
hospitalised asymptomatic individuals as well as individ-
uals with mild clinical signs. Inclusion criteria were ei-
ther the diagnosis of infection by positive SARS-CoV-2
RT-PCR of nasopharyngeal swabs (positive samples),
negative SARS-CoV-2 RT-PCR result and healthy condi-
tion (negative control samples) or negative SARS-CoV-2
RT-PCR result and symptoms of other respiratory dis-
ease (distractor samples). Written consent from all par-
ticipants were collected before sample collection. The
local Ethics Committees of Hannover Medical School
(MHH) and the Hamburg Medical Association (for the
University Medical-Center Hamburg-Eppendorf (UKE))
approved the study (ethic consent number 9042_BO_K_
2020 and PV7298, respectively).

To ensure safety for presentation of non-inactivated
samples, glasses specially designed for scent dog training
(Training Aid Delivery Device (TADD), Sci-K9, USA)
containing an odour-permeable fluoropolymer mem-
brane were used. A 1x1x0.5cm cotton pad soaked
with 100 pl of fluid sample material or a snippet of the
cotton pad used for sweat sampling was placed at the
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bottom of the TADD-glass and the glass was safely
sealed in the laboratory under biosafety level 3 labora-
tory conditions.

Dogs

All ten dogs were German armed forces’ service dogs
with a history of either protection work, explosives de-
tection or no previous training except for obedience
(Additional Table 2). Involved dog breeds were Malinois
(n=5), Labrador Retriever (n=3), German Shepherd
(n=1) and a Dutch shepherd crossbreed dog (n = 1) with
ages ranging between one and 9 years (median age = 3.7
years). Six female and four male dogs were included.

Testing device

For the detection training and testing, a device called
‘Detection Dog Training System’ (DDTS, Kynoscience
UG, Horstel, Germany) was utilised, which provided au-
tomated and randomised sample presentations for the
dogs as well as automatic rewards as described previ-
ously [22]. The recorded results were verified by manual
video analysis.

Training procedure

The training procedure was exclusively based on positive
reinforcement. Dogs were familiarised to the DDTS for
6 days using a replacement odour, followed by specific
training for 8 days to condition them for a SARS-CoV-2
specific odour in twelve inactivated positive saliva sam-
ples and negative control samples from healthy individ-
uals, respectively. The final study was conducted on 4
days and included non-inactivated saliva samples as well
as urine and sweat samples. All of the samples used in
the final study had not been presented to the dogs
before.

Study design of the double-blinded study

The study was conducted in compliance with safety and
hygiene regulations according to the recommendations
of the Robert Koch Institute (Berlin, Germany), and ap-
proved by local authorities (regional health department
and state inspectorate’s office; Hannover, Germany). All
samples were handled by the same person with personal
protective equipment to prevent odour contamination
which may irritate the dogs. In the first session non-
inactivated saliva samples were used to assess whether
dogs were able to transfer their trained sniffing perform-
ance from inactivated to non-inactivated saliva samples.
In the following sessions, the detection performances for
non-inactivated sweat, urine, and, again, saliva samples
were evaluated. There were four possibilities for the dogs
to respond to the presented odours:

Page 3 of 14

1. True positive (TP): the dog correctly indicates a
SARS-CoV-2 positive sample

2. False positive (FP): the dog incorrectly indicates a
negative control or distractor

3. True negative (TN): the dog sniffs shortly at a
negative sample but correctly does not indicate it

4. False negative (EN): the dog sniffs shortly at a
positive sample but does not indicate it

A detection trial was considered accomplished if the
dog left his snout in the target scent presenting hole of
the DDTS for >2s, initiating automatically the reward-
ejection of the device as well as the next randomised
trial. By using the software-controlled DDTS, the dogs
were automatically rewarded for indicating a positive
sample without the study losing its double-blind status.
In each trial, the device’s software randomly assigned the
target scent’s position between the seven different posi-
tions without the dog or its handler knowing which hole
was next positive. The results were recorded electronic-
ally for subsequent analysis and verified by manual time-
stamped video analysis. The standard temperature in the
dog training laboratory was controlled at 24 + 1 °C.

Although the samples were presented to the dogs in
safe specimen vessels (TADD-glasses), the detection ex-
periments with infectious material were performed in a
biosafety level 2 laboratory to prevent any risk of infec-
tion. After leaving the test room, the canines were
washed with 4% chlorhexidine shampoo with at least ten
min contact time to prevent any potential environmental
contamination and virus spread. The equipment was dis-
infected after each test day with suitable disinfectant
wipes soaked in limited virucidal disinfectant solution.
In addition, swab samples of the dogs’ noses and from
the outside of TADD-membranes were taken after each
day of testing and examined with RT-PCR-assays at the
Central Institute of the Bundeswehr Medical Service or
Research Center for Emerging Infections and Zoonoses
to exclude contamination and replication with infectious
viral particles in the dogs’ noses or an escape of virus-
containing material from the vessel (Additional Table 3).

Analysis of sensitivity and specificity

Sample size and sample acquisition were conducted
based on and according to our pilot study [22]. The
diagnostic sensitivity as well as diagnostic specificity,
positive predictive values (PPV), and negative predictive
values (NPV) were calculated according to Trevethan
[25]. 95% confidence intervals (Cls) for sensitivity, speci-
ficity, PPV, and NPV were calculated with the hybrid
Wilson/Brown method [26]. Medians of sensitivity, spe-
cificity, PPV, NPV, and accuracy with corresponding
95% CIs of median were also calculated per session.
Two-tailed Fisher’s exact test was used for analysis of
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the contingency tables; a P <0.05 was considered signifi-
cant. All calculations were done with the Prism 9 soft-
ware from GraphPad (La Jolla, CA, USA).

Results

When non-inactivated saliva samples were presented to
the dogs after training with inactivated saliva samples,
dogs were able to discriminate between samples of in-
fected (RT-PCR positive), non-infected (RT-PCR nega-
tive) individuals and distractor samples (RT-PCR
negative but respiratory symptoms) with a diagnostic
sensitivity of 84% (95% CI: 62.5-94.44%) and specificity
of 95% (95% CI: 93.4-96%). During the following detec-
tion sessions, when the device was equipped with non-
inactivated samples with the same body fluid (saliva,
sweat or urine), the corresponding values for diagnostic
sensitivity and specificity for saliva samples were 82%
(95% CI: 64.29-95.24%) and 96% (95% CI: 94.95-98.9%),
for sweat samples 91% (95% CIL: 71.43-100%) and 94%
(95% CI: 90.91-97.78%), and for urine samples 95%
(95% CI: 66.67-100%) and 98% (95% CI: 94.87-100%)
respectively (Table 1, Fig. 1). Disease prevalence was
about 18% on average.

During the presentation of 5308 randomised sample
presentations, the overall success rate was 92% with 723
correct indications of positive, 4140 correct rejections of
negative or distractors, 214 incorrect indications of
negative and incorrect rejections of 231 positive sample
presentations (Table 2).

From 93 subjects in total, 46 were tested SARS-CoV-2
positive and 47 were tested SARS-CoV-2 negative via
RT-PCR of nasopharyngeal swabs. The RT-PCR results
of the sample material (saliva, sweat, urine) from partici-
pants with a diagnosed SARS-CoV-2 infection via naso-
pharyngeal swab and RT-PCR were only positive in
twelve cases. The time interval between RT-PCR of the
nasopharyngeal swab sample and RT-PCR of the sample
material from the same individual ranged from 2 to 5
months, prior to which the sample material was stored
and frozen at - 80 °C. Nasopharyngeal swabs from each
dog, as well as from the outside of the membranes taken
after each day of testing were all negative.

Discussion

Rapid, affordable and accurate identification of SARS-
CoV-2 infected individuals remains pivotal not only for
limiting the spread of the current pandemic, but also for
providing a tool to limit the impact on public health and
the economy. Data from the current scent dog detection
study confirm our former pilot study (sensitivity 84%
versus 83% and specifity 95% versus 96%, respectively).
In the current study, dogs were after only 8 days of
training not only able to immediately transfer their scent
detection abilities from inactivated to non-inactivated
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saliva samples, but also to sweat and urine, with urine
having the highest sensitivity of 95% and specificity of
98%. These results suggest a general, non-cell specific,
robust VOC-pattern generation in SARS-CoV-2 infected
individuals and provide further evidence that detection
dogs could provide a reliable screening method provid-
ing immediate results.

In the former pilot study from our group [22], only
BPL-inactivated samples of COVID-19 patients and con-
trols were used. The first step in the current trial was
therefore to evaluate if dogs can transfer scent recogni-
tion to non-inactivated saliva samples, even when
trained only with inactivated samples. The inactivation
process with BPL did not impair the SARS-CoV-2-asso-
ciated scent of the samples, as dogs were able to dis-
criminate with a similar accuracy between inactivated
and non-inactivated saliva samples from SARS-CoV-2
infected individuals and controls. This has implications
for the training of dogs, as the health and safety mea-
sures other groups had to follow when using non-
inactivated samples can be overcome by using BPL-
inactivation. Data from the current study indicate that
dogs can familiarise to a training device and be safely
trained within little more than a week by using inacti-
vated saliva samples from SARS-CoV-2 positive individ-
uals and controls and become reliable SARS-CoV-2
detection dogs for untreated samples. Furthermore, the
safety of working with the TADD-glasses was also con-
firmed by negative PCR results of the samples attained
(canine nasopharynx and outer TADD-glass-membrane).

In a second step, untreated saliva, sweat and urine
samples were presented to the dogs separately to evalu-
ate if they can transfer scent recognition from saliva to
other untreated body fluids. The detection rate for this
experiment was also high, especially considering the
dogs having not been trained with sweat or urine sam-
ples before. In order to eliminate the risk of recognizing
an individual odour from a specific subject, samples used
were different for each session.

The sample material of the individuals with positive
SARS-CoV-2 status (nasopharyngeal swab tested positive
via RT-PCR) was predominantly RT-PCR negative which
could mean that dogs are able to detect the changes in
metabolism of non-infectious secretions of SARS-CoV-2
infected individuals. This could explain some of the an-
ecdotal reports from the scent detection work at
Helsinki airport that dogs were able to detect asymp-
tomatic SARS-CoV-2 infected individuals prior of them
shedding virus. On the other hand, it is also possible that
viral RNA has already degraded due to the storage
process and is therefore no longer detectable via RT-
PCR.

The fact that dogs were able to discriminate success-
fully between positive, negative samples and distractors
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represents evidence of a successful discrimination
process, whereas the detection ability across three body-
fluids from 93 different individuals indicates a successful
generalisation process. The study involves repeated mea-
sures since the same samples could be detected more
than once in the same session. In any case, in the
double-blind study, per detection cycle, dogs were con-
fronted with samples they did not scent before and all
negative and positive samples came from new and differ-
ent patients.

Comparable to the current study, the prevalence in
our pilot study was 18.5%. Furthermore, sensitivity and
specificity were reproducible which was one of our goals.
The high prevalence is due to the fact that always only
one positive sample was presented next to several nega-
tive samples. It is important to note that prevalence is
subject to dynamic processes and can impact predictive
values of any screening method of a pandemic disease.
Since the prevalence in our test paradigm is higher than
in the current pandemic situation, with a growing num-
ber of people getting vaccinated, the real positive pre-
dictive values would be lower when sensitivity and
specificity of dogs remain unchanged. In any case, a
lower prevalence should not impact the performance of
the dogs themselves, especially in the testing setting that
we conducted, being rewarded with food for correct

decisions. Level of frustration not finding a positive sam-
ple might increase when the prevalence falls below a cer-
tain threshold. Certainly, this ‘threshold of frustration’
depends on study design and mainly on personal traits
of the dogs and training experience. However, the empty
runs (presentation of only negative samples but no target
scent) we used in training did not lead to excessive frus-
tration in any of the dogs.

Several research groups that also trained SARS-CoV-2
sniffer dogs achieved good results, which support this
work and consolidate the reliability of the canines’ olfac-
tory sense for medical purposes. Grandjean et al. (2020)
trained six dogs in 1 to 2 weeks using sweat samples and
achieved success rates between 76 to 100% [20]. In
addition to their work, where only sweat samples from
hospitalised patients were used, the current study sug-
gests that also asymptomatic SARS-CoV-2 infected indi-
viduals can be detected by the dogs. Our dogs were able
to identify different COVID-19 disease phenotypes and
phases of disease expression (sore throat, cough, cold,
headache and aching limbs, fever, loss of smell and taste
and/or severe pneumonia). Other scent dog detection
studies, conducted by Vesga et al. (2020) and Eskandari
et al. (2021) achieved promising results (Vesga et al.:
95.5% average sensitivity and 99.6% specificity; Eskandari
et al.: 86% sensitivity and 93% specificity, respectively)
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Table 2 Detection performance and success rates per session and dog

Session Dog Detection SARS-CoV-2 infection status Total Total number Success
postve negue DeTher ofzame ot er
decisions
Non-inactivated saliva samples (after 1 week Dog 1 Yes 15 5 118 132 89%
of training with inactivated saliva samples) No 9 103
Dog 2 Yes 14 5 89 95 94%
No 1 75
Dog 3 Yes 16 5 125 136 92%
No 6 109
Dog 4 Yes 9 12 64 79 81%
No 3 55
Dog 5 Yes 16 3 75 81 93%
No 3 59
Dog 6 Yes 16 5 99 107 93%
No 3 83
Dog 7 Yes 20 0 110 114 96%
No 4 90
Dog 8 Yes 17 3 89 92 97%
No 0 72
Dog 9 Yes 17 4 97 102 95%
No 1 80
Dog 10 Yes 14 7 113 129 88%
No 9 99
All dogs  Yes 154 49 979 1067 92%
No 39 825
Non-inactivated saliva, urine and sweat samples Dog 1 Yes 18 7 174 191 91%
No 10 156
Dog 2 Yes 18 19 161 186 87%
No 6 143
Dog 3 Yes 20 6 135 150 90%
No 9 115
Dog 4 Yes 18 12 169 197 86%
No 16 151
Dog 5 Yes 17 15 164 195 84%
No 16 147
Dog 6 Yes 19 6 117 127 92%
No 4 98
Dog7  Yes 19 1 201 223 90%
No 21 182
Dog 8 Yes 20 1 112 115 97%
No 2 92
Dog 9 Yes 18 5 136 147 93%
No 6 118
Dog 10  Yes 18 8 124 139 89%

No 7 106
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Table 2 Detection performance and success rates per session and dog (Continued)

Session Dog Detection SARS-CoV-2 infection status Total Total number Success
postve negue DeTher ofzame ot er
decisions
All dogs  Yes 185 80 1493 1670 89%
No 97 1308
Non-inactivated sweat samples Dog 1 Yes 10 0 59 67 88%
No 8 49
Dog 2 Yes 10 4 53 57 93%
No 0 43
Dog 3 Yes 10 5 60 69 87%
No 4 50
Dog 4 Yes 10 3 59 62 95%
No 0 49
Dog 5 Yes 10 7 60 71 85%
No 4 50
Dog 6 Yes 10 4 57 65 88%
No 4 47
Dog 7 Yes 10 1 42 44 95%
No 1 32
Dog 8 Yes 10 1 54 56 96%
No 1 44
Dog9  VYes 10 1 38 40 95%
No 1 28
All dogs  Yes 90 26 482 531 91%
No 23 392
Non-inactivated urine samples Dog 1 Yes 10 1 80 91 88%
No 10 70
Dog 2 Yes 10 2 47 50 94%
No 1 37
Dog 3 Yes 10 1 59 63 94%
No 3 49
Dog 4 Yes 8 1 67 72 93%
No 4 59
Dog 5 Yes 10 2 47 49 96%
No 0 37
Dog 6 Yes 10 2 64 66 97%
No 0 54
Dog 7 Yes 10 0 40 41 98%
No 1 30
Dog8  Yes 10 0 47 47 100%
No 0 37
Dog 9 Yes 10 0 49 49 100%
No 0 39
Dog 10 Yes 10 4 62 66 94%

No 0 52
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Table 2 Detection performance and success rates per session and dog (Continued)

Session Dog Detection SARS-CoV-2 infection status Total Total number Success
postve negue DeTher ofzame ot er
decisions
All dogs  Yes 98 13 562 594 95%
No 19 464
Non-inactivated saliva samples Dog 1 Yes 19 1 143 147 97%
No 3 124
Dog 2 Yes 20 5 17 128 91%
No 6 97
Dog 3 Yes 20 7 159 173 92%
No 7 139
Dog 4 Yes 20 4 131 137 96%
No 2 1
Dog 5 Yes 20 5 114 120 95%
No 1 94
Dog 6 Yes 20 4 105 m 95%
No 2 85
Dog 7 Yes 18 8 145 163 89%
No 10 127
Dog 8 Yes 20 6 149 164 91%
No 9 129
Dog9  Yes 20 1 110 112 98%
No 1 90
Dog 10 Yes 19 5 174 191 91%
No 12 155
All dogs  Yes 196 46 1347 1446 93%
No 53 1151
All sessions Dog 1 Yes 72 14 574 628 91%
No 40 502
Dog 2 Yes 72 35 467 516 91%
No 14 395
Dog 3 Yes 76 24 538 591 91%
No 29 462
Dog 4 Yes 65 32 490 547 90%
No 25 425
Dog 5 Yes 73 32 460 516 89%
No 24 387
Dog 6 Yes 75 21 442 476 93%
No 13 367
Dog7  VYes 77 10 538 585 92%
No 37 461
Dog 8 Yes 77 1" 451 474 95%
No 12 374
Dog 9 Yes 75 1 430 450 96%

No 9 355
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Table 2 Detection performance and success rates per session and dog (Continued)

Session Dog Detection SARS-CoV-2 infection status Total Total number Success
postve negue DeTher ofzame ot er
decisions
Dog 10 Yes 61 24 473 525 90%
No 28 412
All dogs  Yes 723 214 4863 5308 92%
No 231 4140

and also planned real-life experiments [21, 27]. These
studies support the evidence of canines offering a reli-
able screening method for SARS-CoV-2 infections. Fu-
ture studies are important to address some remaining
limitations such as the low number of distractor samples
with specified pathogens (differentiation to other lung
diseases or pathogens such as infections with other sea-
sonal respiratory viruses, like influenza viruses, rhinovi-
ruses, respiratory syncytial virus, human
metapneumovirus, adenovirus, and coronaviruses other
than SARS-CoV-2). This was however not within the
scope of the current study. The laboratory identification
of the specific VOC pattern is still in its infancy, but
some current studies showed SARS-CoV-2 specific bio-
markers in breath samples detectable by gas
chromatography-ion mobility spectrometry [28, 29],
which also support our hypothesis. Scent dogs should be
considered an addition to the gold standard RT-PCR, for
rapid testing in situations where great numbers of
people from different origins come together. The accur-
acies may be increased by extending the training phase
and selecting individual dogs with better scent detection
accuracy. Dogs could also be trained to work directly
on humans, but several factors need to be considered.
People can be afraid of dogs, have strong allergies or
be simply uncomfortable within the proximity of a
dog. In addition, some infected individuals may feel
stigmatized by being positively indicated by a dog.
Therefore, the authors suggest a test scenario under
real conditions as follows: Individuals to be tested
should line up and swipe a cotton swab over the
crook of their arm or neck. In the next step they
present it to the dog through an opening in a parti-
tion wall which seperates the person to be tested
from dogs as well as other individuals.

To date, there are very few reports of SARS-CoV-2 in-
fections in dogs. Some studies confirm a limited suscep-
tibility of the dog to this virus [30]. According to current
data, SARS-CoV-2 could be detected in dogs via RT-
PCR but seroconversion and mild clinical signs were also
reported. However, serology in the canine population
shows a very low prevalence [31]. Experimentally in-
fected dogs neither shed nor spread the virus indicating
no evidence regarding dog-to-human or dog-to-dog

transmission [31]. Overall, these facts imply a low infec-
tion risk for working dogs.

As with any testing scenario, human and in this case
dog daily performance could vary. This also applies to
the most accurate diagnostic performance of the gold
standard RT-PCR that can only be achieved under ideal
conditions, which does not always reflects the real life
situation. Peer reviewed and preliminary systematic re-
views indicate PCR sensitivities ranging from 71 to 100%
implying false negative results ranging up to 29% under
real-life conditions [32, 33].

In order to generate rapid test results, a large number
of over-the-counter rapid antigen tests are currently
used. Test results are generated within about 15 min.
According to the manufacturers, the tests approved in
Germany have diagnostic sensitivities between 91 and
98% and specificities between 98 and 100% [34]. How-
ever, the diagnostic accuracy under real-life conditions is
estimated to be much lower (pre-prints [35, 36]). A sys-
tematic review by Dinnes et al. (2021) evaluated the
diagnostic accuracy of point-of-care antigen and
molecular-based tests for SARS-CoV-2 infections and
found sensitivities between 34.1 and 88.1% as well as an
average specificity of about 99.6% [37] The Paul Ehrlich
Institute (Langen, Germany) specified minimum criteria
for approved rapid antigen test for SARS-CoV-2 infec-
tions. They require a diagnostic sensitivity of above 80%
and specificity above 97% [38]. The scent dog method
would meet these criteria. The purpose of validation of
our screening method as a diagnostic test is out of the
scope of the current study. The deployment of dogs as a
real scenario SARS-CoV-2 screening method is just be-
ing implemented in some public facilities in different
countries [39]. First reports are promising, however, fur-
ther studies have to be implemented in order to validate
dogs’ scent recognition capabilities as diagnostic tool for
detection of SARS-CoV-2 infections.

Conclusions

Detection dogs were able to transfer the conditioned
scent of BPL-inactivated saliva samples to non-
inactivated saliva, urine and sweat samples, with a sensi-
tivity >80% and specifity >94%. All three fluids were
equally suited for SARS-CoV-2 detection by dogs and
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could be used for disease specific VOC-pattern recogni-
tion. Detection dogs may provide a reliable screening
method for SARS-CoV-2 infections in various settings to
generate immediate results that can be verified by the
gold standard (RT-PCR). Further work, especially under
real-life conditions in settings where many individuals
have to be screened is needed to fully evaluate the po-
tential of the dog detection method.
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