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ABSTRACT “Candidatus Synechococcus feldmannii” is a facultative intracellular sym-
biont of the Atlanto-Mediterranean sponge Petrosia ficiformis. Genomic information
of sponge-associated cyanobacteria derives thus far from the obligate and extracel-
lular symbiont “Candidatus Synechococcus spongiarum.” Here we utilized a differen-
tial methylation-based approach for bacterial DNA enrichment combined with met-
agenomics to obtain the first draft genomes of “Ca. Synechococcus feldmannii.” By
comparative genomics, we revealed that some genomic features (e.g., iron transport
mediated by siderophores, eukaryotic-like proteins, and defense mechanisms, like
CRISPR-Cas [clustered regularly interspaced short palindromic repeats-associated pro-
teins]) are unique to both symbiont types and absent or rare in the genomes of tax-
onomically related free-living cyanobacteria. These genomic features likely enable
life under the conditions found inside the sponge host. Interestingly, there are
many genomic features that are shared by “Ca. Synechococcus feldmannii” and
free-living cyanobacteria, while they are absent in the obligate symbiont “Ca.
Synechococcus spongiarum.” These include genes related to cell surface struc-
tures, genetic regulation, and responses to environmental stress, as well as the
composition of photosynthetic genes and DNA metabolism. We speculate that
the presence of these genes confers on “Ca. Synechococcus feldmannii” its facul-
tative nature (i.e., the ability to respond to a less stable environment when free-
living). Our comparative analysis revealed that distinct genomic features depend
on the nature of the symbiotic interaction: facultative and intracellular versus
obligate and extracellular.

IMPORTANCE Given the evolutionary position of sponges as one of the earliest
phyla to depart from the metazoan stem lineage, studies on their distinct and ex-
ceptionally diverse microbial communities should yield a better understanding of
the origin of animal-bacterium interactions. While genomes of several extracellular
sponge symbionts have been published, the intracellular symbionts have, so far,
been elusive. Here we compare the genomes of two unicellular cyanobacterial
sponge symbionts that share an ancestor but followed different evolutionary
paths— one became intracellular and the other extracellular. Counterintuitively, the
intracellular cyanobacteria are facultative, while the extracellular ones are obligate.
By sequencing the genomes of the intracellular cyanobacteria and comparing them
to the genomes of the extracellular symbionts and related free-living cyanobacteria,
we show how three different cyanobacterial lifestyles are reflected by adaptive
genomic features.
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Sponges are considered one of the earliest-branching multicellular animals (Meta-
zoa) (1, 2). They inhabit marine and freshwater environments (3–5) and form

intimate symbiotic interactions with complex communities of more than 60 phyla of
bacteria, including cyanobacteria (6). The latter are a very diverse group with enormous
influence on many processes at global scales, due to their ability to perform oxygenic
photosynthesis (7–9). The two major groups of cyanobacteria have pronounced differ-
ences in their taxonomic affiliations, genome sizes and contents, morphological phe-
notypes, and developmental capacities of the cell (10–14). The first group, clade 1 (10),
includes the highly diverse filamentous cyanobacteria that have dominated marine and
freshwater benthic environments for more than 2,300 million years (11). The second
group, clade 2 (10), includes marine unicellular cyanobacteria that originated much
later (1,000 to 542 million years ago [Mya]) (11) and contributed to the emergence of
metazoans, including the early-branching sponges (15), following the “Neoproterozoic
oxygenation event” (11, 16–20). Modern planktonic cyanobacteria related to clade 2
consist of the recently proposed genus Parasynechoccocus (12–14) and its sister clade,
Prochlorococcus.

Sponge-associated cyanobacteria are polyphyletic, implying that they derived from
multiple independent symbiotic events (21, 22). Unicellular cyanobacteria are the most
commonly reported and are widespread in sponges (21), in particular “Candidatus
Synechococcus spongiarum,” which consists of at least 12 different clades and is found
in many different sponge species (23). A less common cyanobacterial symbiont, first
defined as Aphanocapsa feldmannii (24) and later named “Candidatus Synechococcus
feldmannii” (25), is a symbiont in the sponge species Petrosia ficiformis (Poiret, 1789)
(21), which also harbors a dense and diverse microbiome (26). One study also reported
the presence of “Ca. Synechococcus feldmannii” in Ircinia variabilis; however, the
identification was based solely on morphology (24). Sequencing of the 16S-23S rRNA
internal transcribed spacer regions from six I. variabilis specimens from Spain resulted
in the identification of “Ca. Synechococcus spongiarum” and not “Ca. Synechococcus
feldmannii” (27).

While “Ca. Synechococcus spongiarum,” like most sponge symbionts, is extracellular
and vertically transmitted (via “leaky” vertical transmission) (28–31), “Ca. Synechococcus
feldmannii” is thought to be transferred horizontally, as sponge oocytes of P. ficiformis
were shown to lack symbiotic bacteria (32). In general, environmental acquisition of
symbionts in P. ficiformis is supported by known biogeographic influences on the
composition of its sponge-associated microbial community (26). Unlike “Ca. Synechoc-
occus spongiarum,” “Ca. Synechococcus feldmannii” is localized inside specialized host
cells called bacteriocytes (32, 33). The scenario of a facultative and horizontally trans-
mitted intracellular symbiont (“Ca. Synechococcus feldmannii”) and an obligate and
vertically transmitted extracellular symbiont (“Ca. Synechococcus spongiarum”) is pe-
culiar. In other symbioses (e.g., insects with bacteria), symbionts present in bacterio-
cytes are usually linked to obligate relationships, where the symbiont relies on host-
based mechanisms for transmission (34). In contrast, the obligate and vertically
transmitted cyanobacterial symbiont “Ca. Synechococcus spongiarum” is found extra-
cellularly in the sponge host rather than in bacteriocytes. Extracellular, obligate, and
vertically transmitted symbionts can be also found in insects (35), yet they are under-
studied compared to their intracellular counterparts. While genome-based studies of
extracellular and (primarily) vertically transmitted sponge symbionts have occupied the
focus of published studies, including the cyanobacterium “Ca. Synechococcus spon-
giarum” (36, 37), genomes of bacteriocyte-associated sponge symbionts have so far
been neglected. The characterization of facultative, intracellular sponge symbiont
genomes will contribute to our understanding of the impact of endo-cellularity and
transmission mode on bacterial genome evolution.

Here, we report the first genomes for the facultative intracellular species “Ca.
Synechococcus feldmannii.” We compare these genomes with those from the extra-
cellular, obligate symbiont species “Ca. Synechococcus spongiarum” and with free-
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living cyanobacterial counterparts to reveal evidence of genomic adaptations to the
different symbiotic lifestyles.

RESULTS
Genome recovery. Three draft genomes of “Ca. Synechococcus feldmannii” (277cV,

277cI, and 288cV) were obtained from two specimens of the Mediterranean sponge P.
ficiformis (277 and 288). The pangenome and core genome of the three “Ca. Synechoc-
occus feldmannii” specimens consisted of 2,924 genes and 1,338 genes, respectively.
The core genome of the three “Ca. Synechococcus feldmannii” and six “Ca. Synechoc-
occus spongiarum” specimens consisted of only 353 genes. “Ca. Synechococcus feld-
mannii” possesses relatively high GC content and small genome size similar to “Ca.
Synechococcus spongiarum” and members of Parasynechoccus (36). Additional infor-
mation on the “Ca. Synechococcus feldmannii” genomes is provided in Table 1.

Intraspecific genomic diversity. The three genomes of “Ca. Synechococcus feld-
mannii” showed similar gene architectures for homologous regions. However, each
assembly contained different gene composition and single-nucleotide polymorphism
(SNP) variations. A total of 1,349 SNPs were detected between the 277cV and 277cI
genomes derived from the same sponge specimen (Table 1). The number of SNPs
between the 277cV and 288cV, which was derived from a different P. ficiformis speci-
men, was higher: 8,789. Mapping of raw Illumina reads to the 277cV and 277cI genomes
showed lower intragenomic variability (14.1% and 17.6% of genes had SNPs) than the
288cV genome (82.5%). However, the percentages of nonsynonymous mutations re-
lated to SNPs within the coding regions were relatively constant, ranging between
66.5% and 77.5% (Table 1). The genes containing SNPs within genome 277cV included
all genes harboring fibronectin type III (FN3) and ankyrin (ANK) domains, 13 out of 14
genes coding for proteins with the leucine-rich repeat (LRR) domains, and 9 out of 10
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated
proteins)-related genes in the genome 277cI.

“Ca. Synechococcus feldmannii” and “Ca. Synechococcus spongiarum” are
Parasynechococcus-like sponge-associated cyanobacteria. According to a phylog-
enomic analysis of 24 genomes (including 3 genomes of “Ca. Synechococcus feldma-

TABLE 1 Genomic information for the three “Ca. Synechococcus feldmannii” assemblies
277cV, 277cI, and 288cV

Assembly

Result for assembly

277cV 277cI 288cV

Genome size (Mb) 2.5 1.9 2.2
Avg GC content (%) 62.9 64.7 64
Completeness (%) 94.1 86.1 87.8
Contamination (%) 0.0 0.3 0.0
Heterogeneity (%) 0.0 0.0 0.0

No. of:
Scaffolds 100 214 125
ORFs (Prodigal) 2,506 2,137 2,158
COGsa 1,084 1,018 1,008
SEED functionsa 856 810 811
ORFs (RAST) 2,349 1,942 1,907

Ratio to pangenome (%) 80.3 66.4 65.2
No. of SNPsb 4,467 1,980 11,826
Nonsynonymous SNPs (%)b 73.5 66.5 77.5
Genes with SNPs (%)b 14.1 17.6 82.5
No. of scaffolds with SNPsb 100 (all) 210 (out of 214) 125 (all)
No. of SNPsc 1,349 for 277cI, 8,789 for 288cV 6,301 for 277cI
Nonsynonymous SNPs (%)c 73.7 for 277cI, 78.6 for 288cV 77.8 for 277cI
aTotal number of unique COG and SEED annotations.
bIllumina reads were mapped to the assembly.
cArtificial reads produced from another genome were mapped to the assembly. The source of the artificial
reads is given.
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nnii,” 6 genomes of “Ca. Synechococcus spongiarum” and 15 genomes of free-living
cyanobacteria) based on 135 core genes common to all genomes, “Ca. Synechococcus
feldmannii” is most closely related to “Ca. Synechococcus spongiarum” (Fig. 1). These
symbionts, together with Prochlorococcus and small-celled and mostly marine unicel-
lular Synechococcus and Synechococcus elongatus, belong to cyanobacterial clade 2 and
cluster separately from Synechococcus within cyanobacterial clade 1, characterized by a
larger genome size and diverse phenotype (10). To address this phylogenetic charac-
teristic of the group of closely related unicellular Synechococcus species, a proposal has
recently been put forward to rename the group Parasynechococcus (13, 14). Thus, we
refer to the symbionts as Parasynechococcus-like sponge-associated cyanobacteria.

The worldwide distribution of Parasynechococcus-like sponge-associated cya-
nobacteria. We analyzed the distribution and abundance of “Ca. Synechococcus
feldmannii” and “Ca. Synechococcus spongiarum” using the Sponge Microbiome Proj-
ect data set (6), which is part of the Earth Microbiome Project (EMP [www
.earthmicrobiome.org]) and includes 2,882 sponge samples from 235 sponge species,
308 seawater samples, 54 marine sediment samples, and 1 algal tissue sample, col-
lected from 37 countries. “Ca. Synechococcus feldmannii” and “Ca. Synechococcus
spongiarum” were most closely affiliated (100% identity) to operational taxonomic
units (OTUs) OTU0000398 and OTU0000007, respectively. “Ca. Synechococcus feldma-
nnii” was found to be significantly enriched only in P. ficiformis (M. Britstein, C. Cerrano,
L. Zoccarato, I. Burgsdorf, N. J. Kenny, A. Riesgo, M. Lalzar, and L. Steindler, submitted
for publication), establishing “Ca. Synechococcus feldmannii” as an intracellular sym-
biont that is highly specific to a single sponge species. In contrast, “Ca. Synechococcus
spongiarum” was significantly enriched in 28 different sponge species (see Fig. S1 in the
supplemental material) sampled in 21 (out of 37) countries around the globe. Nine
sponge species significantly enriched in “Ca. Synechococcus spongiarum” were previ-
ously found to have photosynthetic activity based on measurements of photosynthetic
quantum yield by pulse amplitude-modulated (PAM) fluorometry (38). Conversely, all

FIG 1 Concatenated phylogenetic core genome tree calculated by iterative pairwise comparison of genomes of the cyanobacteria
analyzed here. Bootstrap values at branch nodes derive from 500 replications. The names of the here analyzed genomes are represented
in bold. The genomes of “Ca. Synechococcus feldmannii” are marked with a star. Symbiotic cyanobacteria and the marine Parasynechoc-
occus/Prochlorococcus subclade are marked with the blue and green branches, respectively. Cyanobacteria belonging to clade 2 (10) are
marked with bold branches. Oscillatoriales cyanobacterium JSC12 and Leptolyngbya sp. strain JSC 1 belonging to clade 1 (10) were used
as an outgroup for tree rooting.
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the PAM-negative sponge species lacked significant enrichment in “Ca. Synechococcus
spongiarum.” Interestingly, “Ca. Synechococcus spongiarum” was relatively abundant
in three samples of P. ficiformis from São Miguel Island, Portugal (1.84 to 5.63%), while
the same specimens lacked their typical symbiont, “Ca. Synechococcus feldmannii.”

The functional genomic repertoire of Parasynechococcus-like sponge-
associated cyanobacteria. Nine symbiotic cyanobacteria were compared to 19 Para-

synechococcus cyanobacteria (Table 1; see Data Set S1, sheet 1, in the supplemental
material). The choice of free-living Parasynechococcus species used for comparative
genomics here is explained in (see Text S1 in the supplemental material). The genes of
three “Ca. Synechococcus feldmannii” and six “Ca. Synechococcus spongiarum” cyano-
bacteria (Data Set S1, sheet 1) were assigned to 1,378 clusters of orthologous groups
(COGs) and to 1,008 SEED functional roles. In comparison, the free-living genomes
analyzed here received a higher number of COG and SEED annotations per genome
(see Fig. S2 in the supplemental material). Agglomerative hierarchical clustering based
on COG and SEED functional categories grouped the symbiont genomes together and
apart from the closest free-living cyanobacteria. Symbiotic and free-living cyanobacte-
ria were characterized by different enrichments of specific functional categories com-
pared to free-living counterparts (see Fig. S3 in the supplemental material). A signifi-
cantly lower proportion of functional categories in symbiotic genomes was confirmed
by a lower number of genes with both COG and SEED annotations (Fig. S3 and Text S1).
However, when considering both absolute counts and similar function based on COG
annotation, only two SEED categories were truly enriched in symbiotic genomes: DNA
metabolism and iron acquisition and metabolism (Fig. S3).

Nonmetric multidimensional scaling (NMDS) based on 1,430 SEED functional cate-
gories produced four separate clusters: “Ca. Synechococcus feldmannii” genomes, “Ca.
Synechococcus spongiarum,” Parasynechococcus, and Parasynechococcus-related Cya-
nobium (39) clades (Fig. 2). A total of 764 out of the 1,430 functional categories
significantly correlated to NMDS coordinates (P � 0.05). Symbiotic genomes were
negatively loaded on axis 1 (Fig. 2A and B). Among the functions that influenced the
separation between the two symbiont types, we detected a group of functional roles
that appear related to the free-living stage of “Ca. Synechococcus feldmannii” (Fig. 2C).
The dual lifestyle of “Ca. Synechococcus feldmannii” (free-living and resident within the
host) is likely a source of a mixed gene composition in this symbiont, where some
metabolic pathways showed similarity to the obligate symbiont “Ca. Synechococcus
spongiarum” and others showed similarity to the closest free-living cyanobacteria, as
detailed below.

Sponge-specific features in the Parasynechococcus-like sponge symbionts. De-

spite the overall functional similarity, “Ca. Synechococcus spongiarum” and “Ca. Syn-
echococcus feldmannii” shared only 21 out of 1,378 COGs (Data Set S1, sheet 2). Shared
depleted and enriched functions likely reflect their adaptation to a common niche: the
host sponge. Among the shared depleted functions were genes related to maltose/
maltodextrin and manganese transport, DNA repair system UmuCD, and arsenate
reductase (Data Set S1, sheet 3). Among shared enriched functions, we found genes
related to (i) siderophore-mediated iron transport and (ii) defense mechanisms against
invading genomes.

(i) Siderophore-mediated iron transport in sponges. Symbiotic cyanobacteria
were found to be enriched in genes related to the transport of siderophores: COG0609,
COG1629, and COG4558 (Data Set S1, sheet 2). Eight out of nine symbiotic genomes
contained genes related to siderophore transport, while the complete pathway of
siderophore-mediated iron transport was found in one genome of “Ca. Synechococcus
feldmannii” (277cV) and two “Ca. Synechococcus spongiarum” genomes (M9 and SP3).
An operon including the iron regulation gene irpA (COG3487) was found in all genomes
of “Ca. Synechococcus feldmannii.” Interestingly, COG3487 was mostly present in
Alphaproteobacteria and Gammaproteobacteria (including the genera Pseudomonas,
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Vibrio, and Agrobacterium) and, according to eggNOG, was absent from all members of
the Parasynechococcus/Prochlorococcus clade.

(ii) Defense mechanisms against invading genomes. Out of the 21 common
COGs, only COG1106, related to abortive bacterial infection (40), was present in all 9
genomes of sponge-associated cyanobacteria (Data Set S1, sheet 2), while among the
free-living cyanobacteria, it was present only in cyanobacteria distantly related to the
Parasynechococcus-like sponge symbionts (e.g., Trichodesmium erythraeum IMS101 and
Nostoc punctiforme PCC73102). The total number and composition of restriction-
modification system (RMS) genes in the symbiotic cyanobacteria, and also four mem-
bers of the Cyanobium clade (e.g., Parasynechococcus antarcticus) and RS9917 (Para-
synechococcus equatorialis), were higher and different, respectively, from those of the
remaining 14 free-living cyanobacteria (Fig. 3). CRISPR-Cas is another type of defense
mechanism against invading DNA. Eight and four CRISPR regions were found in the
277cV and 277cI “Ca. Synechococcus feldmannii” genomes, respectively. However, only
277cI contained a pronounced CRISPR-Cas-related region and harbored CRISPR-Cas-
related genes (Fig. 4A). Genes related to CRISPR-Cas were also found in all six genomes
of “Ca. Synechococcus spongiarum” and in 2 (WH8016 and WH8020) out of the 19
free-living Parasynechococcus clade genomes we analyzed (Fig. 4A). Surprisingly, 277cI
shared seven CRISPR-Cas system eggNOG orthologs (NOGs) with the free-living
WH8020 (Fig. 4A). In contrast, CRISPR-Cas-related genes found in “Ca. Synechococcus
spongiarum” genomes resembled orthologs from other phyla or distantly related
cyanobacteria (Fig. 4A). For example, cse1 gene sequences found in three genomes of

FIG 2 Nonmetric multidimensional scaling (NMDS) ordination plots on relative abundances of 1,430 SEED annotations of 28 cyanobacterial genomes, NMDS
stress value � 0.058. Clusters of genomes produced are marked with a dashed blue line. Individual plots display overlaid smooth surfaces for significant (P �
0.01) representative functional roles (A) enriched in symbiotic cyanobacteria, (B) depleted in symbiotic cyanobacteria, and (C) common between “Ca.
Synechococcus feldmannii” and free-living cyanobacteria. Numbers on the splines represent number of copies of the specific functional role. Red color splines
represent distinctive features for symbiotic cyanobacteria. Green color splines represent common features for “Ca. Synechococcus feldmannii” and free-living
cyanobacteria. “Ca. Synechococcus spongiarum,” “Ca. Synechococcus feldmannii,” Parasynechococcus clade, and Parasynechococcus/Cyanobium are marked with
red, green, blue, and cyan dots, respectively.
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“Ca. Synechococcus spongiarum” were most closely related to orthologs from Gam-
maproteobacteria (Fig. 4B).

Features potentially related to the free-living stage of “Ca. Synechococcus
feldmannii.” “Ca. Synechococcus feldmannii” is hypothesized to be a facultative
symbiont (32, 33) and thus to have a free-living stage that may share relevant adaptive
genes with the members of the Parasynechococcus clade. Indeed, we find that “Ca.
Synechococcus feldmannii” shares 99 COGs with 19 free-living counterparts (Data Set
S1, sheet 4). The shared genes were related to (i) cell surface and motility, (ii) DNA
metabolism, (iii) environmental stress and cell regulation, and (iv) photosynthesis (Data
Set S1, sheet 3). The relatively higher number of shared COGs between “Ca. Synechoc-
occus feldmannii” and free-living Parasynechococcus compared to those shared be-
tween “Ca. Synechococcus feldmannii” and “Ca. Synechococcus spongiarum” is dis-
cussed in Text S1.

(i) Cell surface and motility. Enzymes involved in the synthesis of the O antigen
residue L-rhamnose, including dTDP-glucose pyrophosphorylase (COG1209 [EC
2.7.7.24]), dTDP-4-dehydrorhamnose 3,5-epimerase (COG1898 [EC 5.1.3.13]), and dTDP-
4-dehydrorhamnose reductase (COG1091 [EC 1.1.1.133]), were annotated in 17 out of
19 Parasynechococcus genomes and in “Ca. Synechococcus feldmannii” 288cV. dTDP-
4-dehydrorhamnose reductase (COG1091 [EC 1.1.1.133]) was also annotated in 277cV.
This is in contrast to “Ca. Synechococcus spongiarum,” in which these genes were
found to be missing (36, 37), possibly to avoid host predation. Unlike “Ca. Synechoc-
occus spongiarum,” all three “Ca. Synechococcus feldmannii” and Parasynechococcus
genomes possessed a motion-related pilus retraction ATPase pilT gene (COG2805).

(ii) DNA metabolism. All three genomes of “Ca. Synechococcus feldmannii” har-
bored small and large subunits of exonuclease VII (or exodeoxyribonuclease VII). The

FIG 3 Heat map of absolute counts of genes from different COGs related to microbial defense systems related to “Ca. Synechococcus feldmannii” (green), “Ca.
Synechococcus spongiarum” (red) and free-living bacteria (blue). The genomes were divided into two groups based on binary distance matrix. The total number
of genes related to RMS is present on the right. All the genomes of “Ca. Synechococcus spongiarum” (red) are incapable to perform homologous recombination.
COGs mentioned in Slaby et al. (77) as significantly enriched in genomes of sponge symbionts are marked with a star. COGs previously found as enriched in
sponge-associated metagenomes in Horn et al. (76) are marked in bold.
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recBCD pathway (exonuclease V), including alpha, beta, and gamma subunits, was
present in the 277cV and 288cV genomes, while 277cI lacked the gamma subunit
(COG1330). Both exonucleases were absent in “Ca. Synechococcus spongiarum” ge-
nomes and were present in all Parasynechococcus genomes (Data Set S1, sheet 3).

(iii) Environmental stress and cell regulation. The spermidine synthesis pathway
(COG0421 [EC 2.5.1.16] and COG1586 [EC 4.1.1.50]), important for survivability under

FIG 4 (A) Heat map of absolute counts of genes from different orthologous groups (NOGs) related to the CRISPR-Cas
system. “Ca. Synechococcus feldmannii” (green), “Ca. Synechococcus spongiarum” (red), and free-living bacteria (blue) are
compared. Only NOGs relevant for the genomes analyzed here (yellow star on the left) are shown. E1L3A represents
Salinisphaera shabanensis E1L3A, HL-EbGr7 represents Thioalkalivibrio sulfidiphilus HL-EbGr7, PCC7424 represents Cyan-
othece sp. strain PCC 7424, and DSM9946 represents Meiothermus silvanus DSM9946. NOGs exclusively found in cyano-
bacteria and not found in cyanobacteria are marked with one star and two stars, respectively. (B) Maximum likelihood
phylogenetic tree of the protein Cse1 (07EMB). “Ca. Synechococcus spongiarum” is marked in red, Gammaproteobacteria
in blue, and free-living cyanobacteria in green. Branches with similar taxonomy were collapsed, and numbers of collapsed
orthologs are shown in parentheses. The branches were colored according to the bootstrap values, ranging from yellow
(55%) to red (100%).
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low temperatures and osmotic stress, was annotated in all three genomes of “Ca.
Synechococcus feldmannii” and absent in “Ca. Synechococcus spongiarum” (Data Set
S1, sheet 6). Anti-sigma and anti-sigma antagonist factors are adaptive gene expression
regulators correlated to environmental changes (41). Anti-sigma antagonist (COG1366)
and serine phosphatase RsbU, regulator of sigma subunit (COG2208), were among the
17 orthologous groups found present in all genomes of free-living cyanobacteria and
lacking from “Ca. Synechococcus spongiarum” (141). Interestingly, eight of these
orthologous groups, including COG1366 and COG2208, were shared between “Ca.
Synechococcus feldmannii” and free-living members of the Parasynechococcus clade.
Furthermore, “Ca. Synechococcus feldmannii,” like members of the free-living Parasyn-
ecochoccus analyzed here, harbored histidine kinase/phosphatase envZ and related
transcription factor ompR, predictably lacking in “Ca. Synechococcus spongiarum” (Data
Set S1, sheet 3).

(iv) Photosynthesis. Photosystem II psbP and psbY genes were absent in all six
genomes of “Ca. Synechococcus spongiarum” and present in all three genomes of “Ca.
Synechococcus feldmannii” (Data Set S1, sheet 5).

Unique features of “Ca. Synechococcus feldmannii.” The peculiar lifestyle of “Ca.
Synechococcus feldmannii,” an intracellular symbiont that is horizontally transmitted,
likely requires functions that differ from both its closest free-living relatives and from
the extracellular, primarily vertically transmitted, symbiont “Ca. Synechococcus spon-
giarum.” Fourteen COGs were exclusively found in two out of three genomes of “Ca.
Synechococcus feldmannii” (Data Set S1, sheet 7). FimT (COG4970), related to pilin
structure, was annotated in all three “Ca. Synechococcus feldmannii” genomes (Data
Set S1, sheet 3). Additional DELTA-BLAST analysis confirmed the annotation of the FimT
domain in COG4970. Only two genomes from the Parasynechococcus clade that we
analyzed harbored COG4970. All “Ca. Synechococcus spongiarum” genomes lacked
these genes.

ELPs. Eukaryotic-like proteins (ELPs) found in the different symbiont types and
free-living cyanobacteria are summarized in Table 2. The “Ca. Synechococcus feldma-
nnii” 277cV genome contained 11 proteins with 80 fibronectin type III (FN3) domains
(Table 2; Data Set S1, sheet 8). Three proteins (277cV_123, 277cV_1068, and
277cV_2528) showed a mixed-domain architecture (Fig. 5A) and also contained cad-
herin (CAD), cadherin-like (CHDL), and autotransporter domains (Fig. 5A). A search for
proteins with a domain architecture similar to that of 277cV_123 in the Conserved
Domain Architecture Retrieval Tool (CDART) database revealed 15 proteins: 14 of them
belong the Xanthomonadales order of Gammaproteobacteria. Interestingly, one protein
belonged to the cyanobacterial sponge symbiont “Ca. Synechococcus spongiarum”
SP3: SP3_1976 (37) (Fig. 5B). For 277cV_1068, the proteins with the closest architecture
belonged to the plant endosymbiotic nitrogen-fixing genus Rhizobium. The CHDL-
containing protein 277cV_641 of “Ca. Synechococcus feldmannii” also harbored a

TABLE 2 Summary of ELP types in symbiotic cyanobacteria

ELP Predicted interaction(s)
Interaction with host
cells/tissue

Result for ELP types:

“Ca. Synechococcus
feldmannii” (n � 3)

“Ca. Synechococcus
spongiarum” (n � 6)

Ankyrin Avoidance of host predation Archaeocyte 277cV All genomes
LRR Host specific Unknown All genomes 4 genomes (except

15L and M9)
TPR Host specific Unknown Not enriched Enriched in SP3
Rhamnose-free

O antigen
Avoidance of host predation

and phage resistance
Archaeocyte 277cV and 288cV Absent

Cadherin Adhesion to host cells Unknown Enriched in 277cV
and 288cV

Enriched in DE9115

FN3a Binding to host integrins
and possible colonization

Extracellular matrix 277cV and 288cV 5 genomes
(except M9)

aThere were 3 to 11 FN3 proteins per genome (18 to 80 FN3 domains per genome) for “Ca. Synechococcus feldmannii” and 2 to 5 FN3 proteins per genome (2 to 12
FN3 domains per genome) for “Ca. Synechococcus spongiarum.”
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CshA-type fibril repeat (CSHAF). Surprisingly, this protein architecture (CSHAF and
CHDL) appears to be unique to “Ca. Synechococcus feldmannii.” CSHAF was also found
in WH8102 (Parasynechococcus marenigrum) and WH7803 (Parasynechococcus pacifi-
cus); however, the domain composition of these proteins differed from 277cV.

Five out of six genomes of “Ca. Synechococcus spongiarum” also contained proteins
with FN3 domains (Table 2). The “Ca. Synechococcus spongiarum” 15L, DE9115, and
SP3 genomes had 5 proteins that contained other types of domains in addition to FN3
(Fig. 5 and Table 2). In contrast, the 19 free-living cyanobacteria analyzed here all lacked
proteins containing FN3 domains (Table 2). A global search of proteins with FN3
domains within the entire phylum Cyanobacteria revealed 63 sequences that are not
sponge associated; only 8 of them showed a mixed-domain architecture, like that found
in the symbionts (Data Set S1, sheet 9). Among those 63 sequences, only one belonging
to Synechococcus sp. strain GFB01 (out of more than 40 species of free-living cyano-
bacteria with FN3 domains) was found to be affiliated with clade 2 cyanobacteria (10),
the same clade to which the Parasynechococcus-like sponge symbiotic cyanobacteria
belong (Fig. 1). The two major taxonomic groups of free-living cyanobacteria that
harbored FN3 domain proteins belonged to the Nostocales and Oscillatoriales orders
(Data Set S1, sheet 9).

DISCUSSION
Different lifestyles result in different genomic adaptations. The cyanobacterial

sponge symbiont “Ca. Synechococcus feldmannii” is exceptional in terms of its unique
association with the sponge species P. ficiformis, combined with its horizontal acqui-
sition and intracellular location (Fig. 6). In contrast, a stable mutualism characterized by
vertical transmission is inherent for the widespread cyanobacterial symbiont “Ca.
Synechococcus spongiarum” (43). The unique lifestyle of “Ca. Synechococcus feldma-
nnii” may reflect a more ancestral symbiotic relationship between sponges and cya-
nobacteria, before a stable mutualistic state was established.

“Ca. Synechococcus spongiarum” is vertically transmitted, so it likely does not need
to survive a free-living state (outside the host). Contrarily, “Ca. Synechococcus feldma-
nnii” is acquired from the environment at each sponge generation and thus must be
able to survive a free-living stage and recolonize a sponge host. Furthermore, the
extracellular “Ca. Synechococcus spongiarum” is exposed to sponge archaeocytes
(sponge phagocytizing cells), while the intracellular “Ca. Synechococcus feldmannii” is
protected from sponge archaeocytes by a physical barrier (the bacteriocyte mem-
brane). We found that these differences in lifestyle are likely reflected in several genetic
features of these two symbiont types (Fig. 6). We previously suggested that the typical
O antigen of Parasynechococcus, composed of L-rhamnose (44), may be recognized by
sponge archaeocytes as a signal for phagocytosis, while the lack of an L-rhamnose-
based O antigen in the symbiont “Ca. Synechococcus spongiarum” (according to the

FIG 5 Domain architecture of FN3 proteins combined with additional types of domains derived from (A) “Ca.
Synechococcus feldmannii” and (B) “Ca. Synechococcus spongiarum.” Names of proteins with an incomplete C
terminal are marked with a star. The numbers of residues are written in parentheses.
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missing biosynthetic pathway for this sugar) may enable this symbiont to avoid host
predation (37). Free-living cyanobacteria, on the other hand, must maintain the
L-rhamnose-based O antigen, in order to float in the water column (because O antigen
mutants of free-living cyanobacteria sink [45]). As expected, the facultative symbiont
“Ca. Synechococcus feldmannii,” which is predicted to have a free-living stage and thus
a requirement to float, would need to maintain biosynthesis genes to produce the
L-rhamnose-based O antigen. “Ca. Synechococcus feldmannii,” when found inside the
host sponge, is suggested to use a different mechanism to protect itself from sponge
archaeocyte phagocytosis: the compartmentalization inside bacteriocyte cells. We fur-
ther speculate that “Ca. Synechococcus feldmannii” fails to colonize other sponge
species, as in their mesohyl it will be vulnerable to host predation.

Common adaptations to the sponge environment. Iron is one of the vital factors
for cyanobacterial metabolism due to its high requirements by the photosynthetic
apparatus (46). Most marine cyanobacteria, including the Parasynechococcus/Prochlo-
rococcus clade, lack production and transport of siderophores and rather use cell
surface reduction of Fe(III) to the soluble Fe(II) (47). However, “Ca. Synechococcus
feldmannii,” similar to “Ca. Synechococcus spongiarum” genomes, harbored a signifi-
cantly higher number of genes related to iron acquisition, including siderophore
transport. Parasynechococcus-like sponge symbionts lacked genes related to synthesis
of siderophores and thus likely actively compete for siderophores from external sources
(43). Discovery of the siderophore producer-consumer relations within the sponge-
associated community will be an important step in understanding the network of
chemical dependencies among the sponge community members. Interestingly, and
dissimilar to “Ca. Synechococcus spongiarum,” “Ca. Synechococcus feldmannii” harbors

FIG 6 Schematic representation of genetic features that reflect different symbiotic lifestyles inherent to “Ca. Synechococcus feldmannii” and “Ca. Synechoc-
occus spongiarum.” These differences incorporate types of symbiont transmission, degree of genomic isolation toward free-living cyanobacteria, iron
metabolism, and cell surface properties related to interaction with the host archeocytes. RMS, restriction-modification systems; ELP, eukaryotic-like proteins.
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an operon that includes an irpA-like iron-regulated gene (COG3487) that is related to
iron starvation in Synechococcus sp. strain PCC7942 (48–50). Changes in environmental
iron conditions may play a role for “Ca. Synechococcus feldmannii” to sense whether it
is found inside or outside the host and accordingly trigger gene regulation related to
either the symbiotic or the free-living state.

ELPs: similarities and differences between the two symbiont types. One type of
common ELP is ANK repeat proteins. Pathogenic proteins containing ANK repeats were
shown to prevent digestion of the pathogens in the vacuoles of the host immune
system cells (51, 52). A similar mechanism is also used by nonpathogenic bacteria: for
example, a very high number of ANK-containing proteins in insect-associated Wolba-
chia were linked to the interaction with the host (53, 54). FN3 domain proteins are
another type of ELP linked to adhesion of the bacterium to host tissues. The adhesin
protein FlpA (containing FN3 domains) was found in the pathogen Campylobacter jejuni
and appeared to be essential for its attachment to epithelial host cells (55). Moreover,
functional genomic and exoproteomic analyses of the S-layer-forming probiotic Lacto-
bacillus revealed the presence of extracellular adhesins containing FN3 domains (56–
58). ELPs such as ANK, CAD, FN3, and LRR domains were previously reported to be
enriched in various (meta)genomic analyses of sponge symbionts (36, 37, 59–64), and
also in the Parasynechococcus-like symbionts of sponges analyzed here. However, the
different symbiotic properties of “Ca. Synechococcus feldmannii” and “Ca. Synechoc-
occus spongiarum” likely influence the arsenal of ELP genes each harbor. The extra-
cellular nature of “Ca. Synechococcus spongiarum” probably necessitates the observed
higher diversity of genes with ANK repeats due to its direct exposure to the phagocy-
tosing archaeocyte host cells (65, 66), while the requirement of “Ca. Synechococcus
feldmannii” for sponge cell colonization explains the observed higher number of FN3
and CAD domains, which have adhesion properties. The enrichment of FN3 domains in
sponge-associated bacteria was proposed to be involved in adhesion to the host cells
by attachment to glycoprotein and structural proteins (60, 67), as well as cadherin
domains, in adhesion to host cells and host colonization (60). Interestingly, we found
that the expression of a sponge protein containing an FN3-like domain was positively
correlated to the acquisition of “Ca. Synechococcus feldmannii” by P. ficiformis (M.
Britstein, personal communication). FN3 domains with mixed-domain architecture from
“Ca. Synechococcus feldmannii” showed higher similarity to Alpha- and Gammaproteo-
bacteria than to free-living cyanobacteria and thus may have been acquired by hori-
zontal gene transfer (HGT) from co-occurring sponge symbionts.

A high percentage of nonsynonymous mutations among ELP genes in “Ca. Syn-
echococcus feldmannii” may reflect directional selection on these genes for improved
colonization of the host. For example, adaptive mutations in adhesin genes of Esche-
richia coli increased binding to the polysaccharide structures of the host (68). Alterna-
tively, the high mutation rates on genes related to host interaction may relate to their
location on the cell membrane. Genomic islands characterized by higher mutation and
HGT rates were found to contain genes involved in the formation of extracellular
structures, among diverse free-living cyanobacteria, and their acquisition is generally
thought to serve as a defense system against phage pressure (69–72). Interestingly,
genes related to the CRISPR-Cas system in “Ca. Synechococcus feldmannii” also had a
high mutation rate characteristic of genomic islands.

Ecological isolation and genetic barriers in the two symbiont types. The ma-
jority of the free-living Parasynechococcus strains analyzed here do not possess pro-
nounced genomic barriers and are characterized by a large number of HGT events
(73–75). Conversely, the symbiont genomes were found to be enriched in restriction-
modification systems (RMSs) and genes related to abortive infection, in accordance
with what has previously been reported for (meta)genomes of sponge symbiotic
bacteria (59, 60, 76–79). RMSs (80, 81) and abortive infection systems (40) are efficient
and widespread defense mechanisms against invading DNA in various bacteria. These
systems promote genomic diversity by isolation of different genotypes from the
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genetic exchange with other lineages (80–83). The RMS (type I) allows bacteria to
distinguish between self and foreign DNA according to methylation pattern. RMSs may
thus promote HGT with distantly related bacteria of a similar methylation pattern, but
may lead to genetic isolation toward closely related bacteria with different RMS
repertoires (59, 60, 76). HGT can also occur by homologous recombination, involving
recBCD (84, 85), which plays an important role in genome evolution of bacterial
populations (86–89). RecBCD has multiple roles and can also function as a defense
mechanism against invading DNA by degrading foreign DNA, if the crossover hot spot
instigator (CHI) sequence is absent in the incoming DNA (80, 84). Earlier studies
reported that a the presence of a high number of RMS genes in bacterial genomes
correlates with the absence of recBCD (80), which is also the case in “Ca. Synechococcus
spongiarum.” Thus, “Ca. Synechococcus spongiarum” may exchange genetic material
only with other nearby symbionts that have similar RMS patterns, while it may have lost
the ability for homologous recombination with other cyanobacteria (5). “Ca. Synechoc-
occus feldmannii,” on the other hand, maintains the recBCD genes and has a free-living
stage. It may, therefore, encounter other cyanobacteria and be capable of exchange of
genetic information with the free-living Parasynechococcus strains by homologous
recombination. Alternatively, homologous recombination involving RecBCD and ExoVII
may also be linked to protection against UV damage (85, 90, 91) that “Ca. Synechoc-
occus feldmannii” might face during the free-living stage. In accordance with the above
results, and based on gene homology, we hypothesize that “Ca. Synechococcus feld-
mannii” obtained its CRISPR-Cas system through HGT from a free-living Parasynechoc-
occus strain, while “Ca. Synechococcus spongiarum” probably acquired it from a
sponge-associated gammaproteobacterial symbiont.

“Ca. Synechococcus feldmannii”: special requirements to survive the free-
living stage. The facultative nature of the association of “Ca. Synechococcus feldma-

nnii” with its host sponge requires the ability to adapt to changing environments and
may involve more capacity for gene regulation than that of the obligate symbiont “Ca.
Synechococcus spongiarum.” Despite a lower number of histidine kinases (COG0642)
and DNA-binding response regulators (COG0745), “Ca. Synechococcus feldmannii”
indeed differed from “Ca. Synechococcus spongiarum” in its repertoire of genes
involved in genetic regulation and transcription, sharing with free-living cyanobacteria
several components that were found lacking in “Ca. Synechococcus spongiarum”: for
example, genes envZ and ompR, known to control the osmoregulation of Escherichia
coli (42, 92).

While both symbiont types had a streamlined genetic component of the photosyn-
thesis apparatus, the composition of these genes in “Ca. Synechococcus feldmannii”
was more similar to that of free-living cyanobacteria and included psbP and psbY genes,
which were lacking in “Ca. Synechococcus spongiarum.” These genes were probably
lost in “Ca. Synechococcus spongiarum,” as it is always found in a more light-stable
sponge environment and is characterized by lack of competition with different cyano-
bacterial species (37, 93, 94). However, such genes may be required in “Ca. Synechoc-
occus feldmannii” to survive light shifts during the time it is found outside the sponge.
Similarly, the presence of N-acetylmuramic acid 6-phosphate etherase (murQ), which is
used in the reutilization of degradation products of peptidoglycan under limited-light
conditions (95), may be important for “Ca. Synechococcus feldmannii” when the
symbiont is found in seawater at low light levels. “Ca. Synechococcus spongiarum” lost
this function. Moreover, spermidine is one of the most abundant polyamines in
cyanobacteria (96, 97) and was previously linked to the replacement of damaged
proteins under “chill-light” conditions (i.e., low temperature in combination with light)
and osmotic stresses in Synechocystis sp. strain PCC6803 (98, 99). In Bacillus subtilis, the
sigma-regulated phosphatase RsbU is involved in response to environmental stresses,
including blue light and osmolytes (100, 101). The complete loss of genes involved in
spermidine biosynthesis and sigma regulation genes in “Ca. Synechococcus spongia-
rum” may be related to a stable environment inside the host, while the presence of this
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biosynthetic pathway in “Ca. Synechococcus feldmannii” may be needed during the
free-living stage.

Besides functional metabolic adaptations, “Ca. Synechococcus feldmannii” harbors
cell surface elements that better resemble its free-living counterparts rather than the
symbiont “Ca. Synechococcus spongiarum.” These include gliding motility-related pilT
(102, 103) and pilus assembly-related fimT (104–106). The absence of these genes in
“Ca. Synechococcus spongiarum” and their presence in “Ca. Synechococcus feldmannii”
likely reflect the free-living stage of “Ca. Synechococcus feldmannii” and the need for
host colonization, through increased contact with the host cells and motility toward the
sponge.

In summary, we have shown that “Ca. Synechococcus feldmannii” combines features
of planktonic and symbiotic picocyanobacteria. The facultative nature of its symbiosis
with P. ficiformis would enable the host to select for the optimal symbionts according
to the environmental conditions sensed. This would create competition among poten-
tial substrains of “Ca. Synechococcus feldmannii,” which are capable of exchanging
genetic information with both open-ocean and symbiotic bacteria, promoting adaptive
evolution.

MATERIALS AND METHODS
Sponge sampling, DNA isolation, and microbial DNA purification. Two (no. 277 and 288) Petrosia

ficiformis specimens were collected by SCUBA in January 2014 at depths of 27.3 and 14.9 m, respectively,
from the Achziv nature marine reserve, Mediterranean Sea, Israel. Sponges were collected in compliance
with permit 40246/2014 from the Israel Nature and National Parks Protection Authority. Only cortex
tissue was used for further DNA extraction. DNA was extracted as described earlier (107). The microbial
DNA fraction was enriched using New England Biolab’s NEBNext microbiome DNA enrichment kit.

Shotgun sequencing, assembly, and binning. Genomic DNA was fragmented by sonication using
Covaris S2 (Covaris, Woburn, MA). DNA libraries were prepared using the KAPA Hyper DNA library
preparation kit with further Pippin Prep (Sage Scientific) size selection to 800 to 1,000 bp. Metagenomic
shotgun libraries were sequenced on an Illumina NextSeq 500 platform (150-bp paired-end reads) in the
DNA Services Facility at the University of Illinois at Chicago. Totals of 384.2 and 308.6 Gb of sequence for
277 and 288, respectively, were generated with mean insert sizes of 673 and 679.9 bp. Low-quality
(minimum-quality threshold � 20) and short (minimum-length threshold � 50) reads and reads with
ambiguous bases (“N”) were trimmed with the software sickle version 1.33, using a sliding-window
approach (108). Sequence quality was evaluated using FastQC version 0.11.5 (109).

The 277cI genome was assembled de novo using IDBA-UD version 1.1.0 (110) (k-mer range � 40 to
80, step � 10). The 277cV and 288cV genomes were assembled from a subsampled version of the data
set (10% of reads) using Velvet, with a k-mer size of 59, expected genome k-mer coverage of 41, and
minimum cutoff of 15. Only scaffolds of �2 kb were used for genome binning. Genomes were first
binned either based on visualization of a self-organizing map (ESOM) using tetranucleotide signatures as
previously described (111) or on DNA fragment clustering via Barnes-Hut stochastic neighbor embedding
(BH-SNE) in VizBin using pentanucleotide signatures (112). Second, assembly errors were rectified using
REAPR version 1.0.18 (113). Third, completeness and contamination of the final bins were estimated with
checkM version 1.0.7 (114). Then, protein sequences were obtained using Prodigal in metagenome mode
(115). Finally, taxonomy affiliation of the predicted genes was obtained as detailed earlier (37).

ORF prediction, domain search, and functional annotation. Protein sequences were queried
against the NCBI-CDD database using the Domain Enhanced Lookup Time Accelerated Basic Local
Alignment Search Tool (Delta-BLAST, BLAST version 2.2.30�) and Reverse Position-Specific BLAST
(RPSBLAST, BLAST version 2.2.30�), with E value cutoffs of 0.05 and 0.001, respectively. CAD and CHDL
(cd11303, cd11304, PFAM00028, PFAM12733, and smart00736), FN3 (cd00063), and CSHAF (TIGR04225)
domains were obtained from the Delta-BLAST results. The architecture of the relevant proteins was
visualized with the IBS illustrator (116). COG annotation version 2014 (117) was assigned with Perl script
cdd2cog.pl (https://github.com/aleimba/bac-genomics-scripts/tree/master/cdd2cog) using the RPS-
BLAST results. The amino acid sequences identified were also searched against the NCBI-NR database
with DIAMOND (blastp, sensitive) and assigned to SEED/Subsystems annotation (118) using MEGAN
6.11.4. Additional functional annotation of protein sequences was performed by eggNOG-mapper and
eggNOG database version 4.5 (119, 120), using the bactNOG data set and HMMER data mapping mode.
The eggNOG website (http://eggnogdb.embl.de) was also used to obtain member lists of relevant
orthologous groups. The Conserved Domain Architecture Retrieval Tool (CDART) (121) (https://www.ncbi
.nlm.nih.gov/Structure/lexington/lexington.cgi) was used to obtain proteins with similar domain archi-
tecture. The Integrated Microbial Genomes (IMG) (122) (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi)
and Pfam (123) (http://pfam.xfam.org/) databases were used to obtain proteins with FN3 domains among
cyanobacteria.

Statistical analyses of the genome functional constituency. Bray-Curtis dissimilarities were cal-
culated based on the SEED/Subsystems annotations using the vegdist function (vegan package) in R
version 3.4.1. Multivariate nonmetric multidimensional scaling (NMDS) was created using the metaMDS
function (vegan package in R) (124, 125). Clusters of the genomes were created using hclust (ward.D2
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agglomeration method) and a cut height of 0.32 by the cutree function. Smooth surfaces were fitted
using the thin plate spline method in the ordisurf function (vegan package). Heat maps were created
using the superheat package (126) (Manhattan or binary distances, ward.D2 agglomeration method for
hierarchical clustering). The Wilcoxon test (wilcox.test in R, package stats) was used to determine
significant differences in relative abundances of COG and SEED functional classes between sponge-
associated and free-living cyanobacteria. P values were corrected for multiple testing using the Bonfer-
roni correction (p.adjust function in R), and categories with corrected P values of �0.05 were considered
significantly different.

Comparative genomic and phylogenomic analyses. The phylogenomic tree was constructed using
EDGAR (127) based on the core genome as detailed by Burgsdorf et al. (37). The pangenomes of
symbionts were obtained as the set of all genes in the relevant group of genomes (37). For these
purposes, open reading frames (ORFs) in the three “Ca. Synechococcus feldmannii,” six “Ca. Synechoc-
occus spongiarum,” and 15 free-living cyanobacteria were identified with the classic RAST algorithm (128,
129).

CRISPR detection and analysis. CRISPR arrays were predicted using CRISPRFinder (130). Only
CRISPRs described as confirmed were used for the further analysis. CRISPR-associated proteins were
annotated using eggNOG-mapper. Protein sequences of Cse1 (07EMB) were obtained from the eggNOG
website and aligned using GUIDANCE2 (131–133) (http://guidance.tau.ac.il/ver2/) using the MAFFT
algorithm and 100 iterations. Ambiguous regions were trimmed from the alignment by trimAl (134) using
the gappyout method. A maximum likelihood tree of 320 positions was calculated by the Le_Gas-
cuel_2008 model (135), with gamma-distributed rate variation (1.4908), and a proportion of invariant
sites (0.4688%) was constructed with MEGA 7.0.2 (136). Phylogenetic robustness was inferred from 100
bootstrap replications. The resulting tree was redrawn and annotated using iTOL (137).

Distribution and abundance of cyanobacteria in sponge versus environmental samples. To
determine the distribution and abundance of “Ca. Synechococcus spongiarum,” we used the SMP data
set (6, 138). 16S rRNA sequences were subjected to blastn 2.2.30� (139) (E value threshold � 0.005)
against the OTU representatives of the amplicon sequencing data set contains sponge and environmen-
tal samples (6). The OTUs with sequence identity of �99% were used to determine the relative
abundance among the SMP samples. The binomial (presence/absence) P values of the host enrichment
analysis of “Ca. Synechococcus spongiarum” among various sponge species and environmental samples
were calculated as the binomial cumulative probability of the absence of OTUs as described previously
(6), excluding P values that were corrected for multiple testing using the p.adjust() R function using the
false-discovery rate (FDR) correction. Samples with corrected P values of �0.1 were considered signifi-
cantly enriched with “Ca. Synechococcus spongiarum.” Only sponge samples that contained the ecto-
some part and which were not collected from the dark caves were further used to test the enrichment
of “Ca. Synechococcus spongiarum.”

The PAM fluorometry measurements for each sponge species were obtained from Steindler (38).
SNP calling. SSRG.pl (https://github.com/PombertLab/SNPs/blob/master/SSRG) was used to create a

synthetic library of artificial reads from the genomes of “Ca. Synechococcus feldmannii.” Further mapping
of the either synthetic or sequenced raw Illumina reads against the reference genomes was done
accordingly: (i) get_SNPs_IB.pl (https://github.com/PombertLab/SNPs/blob/master/SSRG) and FreeBayes
(140) were used to call the variants between the reads and the reference genome, and (ii) SNPs were
annotated using SNPdat_v1.0.5.pl (https://github.com/agdoran/snpdat).

Data availability. Fourteen sequences of genes contained FN3 domains derived from the genomes
of “Ca. Synechococcus feldmannii” were deposited in the NCBI GenBank database under accession no.
MK422179 to MK422192. The draft genomes of the Ca. S. feldmannii 277cV, 277cI, and 288cV have been
deposited under Biosample no. SAMN10755897, SAMN10755956, and SAMN10755957, respectively
(Bioproject no. PRJNA515489).
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