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Optimal dynamic coding by mixed-dimensionality
neurons in the head-direction system of bats
Arseny Finkelstein 1,3, Nachum Ulanovsky1, Misha Tsodyks1 & Johnatan Aljadeff 2,4

Ethologically relevant stimuli are often multidimensional. In many brain systems, neurons

with “pure” tuning to one stimulus dimension are found along with “conjunctive” neurons that

encode several dimensions, forming an apparently redundant representation. Here we show

using theoretical analysis that a mixed-dimensionality code can efficiently represent a sti-

mulus in different behavioral regimes: encoding by conjunctive cells is more robust when the

stimulus changes quickly, whereas on long timescales pure cells represent the stimulus more

efficiently with fewer neurons. We tested our predictions experimentally in the bat head-

direction system and found that many head-direction cells switched their tuning dynamically

from pure to conjunctive representation as a function of angular velocity—confirming our

theoretical prediction. More broadly, our results suggest that optimal dimensionality depends

on population size and on the time available for decoding—which might explain why mixed-

dimensionality representations are common in sensory, motor, and higher cognitive systems

across species.
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Natural behavior requires processing of multidimensional
information. For example, responding to sounds of pre-
dators or prey would depend on a neuronal representa-

tion of sound location together with acoustic features such as
timber and pitch1, and navigation in a complex environment
would require a neural encoding of one’s position and orientation
in three-dimensional space2. Coding efficiency was suggested to
be a major organizing principle in the nervous system3,4. Con-
sequently, a tractable problem that has been studied extensively in
theoretical neuroscience is the nature of optimal coding of a one-
dimensional stimulus5–12. However, despite the fact that many
brain regions typically integrate multidimensional information,
much less attention has been given to understanding how optimal
representations depend on the dimensionality of the inputs.
Previous studies have suggested that stimulus dimensionality may
influence the optimal tuning width13–16, and that neurons with
mixed-selectivity tuning to multiple stimulus dimensions can
simplify the readout17. Furthermore, modeling of short-term
memory processes suggested that recall of multidimensional
items depends on whether individual neurons encode one or
multiple item-dimensions18. However, it remains unclear how the
biological and behavioral constraints of the system influence the
optimal dimensionality of the representation.

A multidimensional stimulus can be represented using different
strategies, since each neuron may provide information about the
location of the stimulus along one or more of its coordinates. For
example, decoding of a two-dimensional (2D) variable can be done
using one-dimensional (1D) stripe-like cells or using 2D bump-like
cells (Fig. 1a). We refer to neurons that encode a single stimulus
dimension as “pure cells”, and to those that encode jointly multiple
dimensions as “conjunctive cells”. Intuitively, one may expect that
a population of pure cells will outperform (in terms of the mag-
nitude of the resulting decoding error of the full multidimensional
stimulus) a conjunctive cell population of the same size, because
pure cells have a high firing rate in a larger fraction of the stimulus
space and therefore can cover the stimulus space more densely
(Fig. 1a). However, decoding the responses of pure cells will be
successful only if the two pure sub-populations that represent each
stimulus dimension are co-active—unlike conjunctive cells, which
can provide information about both dimensions of the stimulus
simultaneously, and do not depend on an effective coincidence-
detection of different groups of neurons (Fig. 1a). Therefore, for
fixed tuning widths, one might expect that the relative decoding
accuracy of unidimensional (pure) versus multidimensional
(conjunctive) codes may critically depend on two factors: the
population size and the time available for decoding.

Our recent experimental finding of a multidimensional head-
direction system in the bat brain, revealed the existence of neu-
rons with pure or conjunctive representation of head-direction in
azimuth and pitch19. Importantly, although either pure or con-
junctive cells alone are sufficient to encode a two-dimensional
space of solid angles (azimuth and pitch), we did observe
experimentally both of these populations (Fig. 1b–d)—which
together form a seemingly redundant representation. Here we
first analyzed theoretically the advantages of maintaining a
mixed-dimensionality representation, i.e., two populations of
neurons that use either pure or conjunctive encoding schemes to
represent a multidimensional stimulus. We identified several
distinct regimes in terms of the optimal encoding strategy, which
predicted that conjunctive cells can be advantageous for accurate
decoding of a rapidly evolving stimulus over short timescales,
whereas pure cells can be advantageous for long decoding times
or when the neural resources are limited. We then followed up on
these theoretical analyses by experimentally assessing the tuning
dimensionality in bat head-direction cells during different navi-
gation modes, and found that many cells showed a dynamical

switch from pure to conjunctive tuning—in accordance with the
optimal encoding strategy proposed by our theoretical analysis.

Results
Theoretical prediction for the decoding accuracy. We hypo-
thesized that pure and conjunctive cells might have different
relative advantages when the decoding time (T) is short or when
the number of neurons (N) used for decoding is limited (Fig. 1a).
Therefore, we focused on analyzing the decoding performance as
function of these two variables, T and N, by first considering the
decoding of a 1D stimulus. We think of N as the number of
neurons in a particular network whose spikes are used in the
decoding task. The decoding time T is the time-window during
which the modeled neurons fire in response to a fixed stimulus
being presented, and the decoding is performed using all spikes
emitted during this time-window. The decoding time can be
thought of as the inverse of the rate of change of the stimulus: i.e.,
when the stimulus changes fast, T becomes shorter—because the
decoding should be performed faster. The magnitude of the
decoding error and its dependence on the details of the model are
most commonly studied by computing the Fisher information
(FI) of the population responses5,6. The FI is a quantity that
provides a lower bound for the decoding error, independently of
the identity of the decoder. This is known as the Cramér–Rao
(CR) bound, which is achieved in the limit of infinitely long
decoding time T and infinitely many cells N20. However, for finite
N and T the decoding error is typically larger than the bound, ϵCR,
which is equal to one divided by the square root of the FI8.

In Supplementary Note 1, we derived new analytical expres-
sions for the dependence of the error on the FI before the
Cramér–Rao bound is saturated. For a 1D stimulus, assuming
large N, our theoretical analytical predictions were in excellent
qualitative agreement with numerical simulations of a maximum
likelihood (ML) decoder (Supplementary Fig. 1a, b; Methods).
For each specific value of N, there was a corresponding value of
T below which the error was significantly larger than the
Cramér–Rao bound. An interesting feature of our numerical
simulations is that the decoding error depends only on the FI,
which here is proportional to N × T, and does not depend
separately on N and T—even when the lower bound is not
saturated. In other words, the decoding error from a population
with, e.g., N=N0/2 neurons and decoding time T= 2T0, is the
same as for a population with N= 2N0 and T= T0/2, as long as
N0 and T0 are large enough. This feature was predicted by our
analysis where we derived an approximate analytical expression
for the error, which depends only on the FI and on the details of
the tuning curve (Supplementary Note 1; and see inset in
Supplementary Fig. 1a). To our knowledge, there has been no
previous theoretical justification why for a population of
unimodal and smooth tuning curves, deviations of the decoding
error relative to the Cramér–Rao bound can be understood using
the FI—as we provide here6,8,10.

Next, we considered the theoretical advantage of unidimen-
sional versus multidimensional representations by analyzing the
information content provided by the populations of pure and
conjunctive neurons about the 2D stimulus. Decoding accuracy
was measured using the scalar squared error, equal to the sum of
squared errors along each stimulus dimension. In order to
analyze which type of stimulus representation is optimal (in
terms of the decoding accuracy), we first computed the FI
analytically for both populations in the limit of large N and T. In
the case of a 2D stimulus, the pure population consisted of N/2
cells tuned to one stimulus dimension (e.g., azimuth) and N/2
cells tuned to the other stimulus dimension (e.g., pitch), while the
conjunctive population consisted of N cells tuned jointly to both
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stimulus dimensions (e.g., azimuth × pitch). The tuning-curve
scaling (i.e., the firing rate at the preferred direction) was chosen
such that each population emitted the same number of spikes on
average over multiple presentations of the stimulus and multiple
preferred directions (Methods). For a 2D stimulus and for our
choice of relative scaling of tuning curves, the FI of the
conjunctive population is equal to twice that of the pure
population, because each spike of a conjunctive cell provides
information about both stimulus dimensions at the same time
(see derivation in Methods). Recall that the error is bounded from
below by 1=

ffiffiffiffiffi
FI

p
(the Cramér–Rao bound), so the factor of two

difference between the FI of pure and conjunctive cell populations
translates to the following ratio of their corresponding decoding
errors: ϵpure=ϵconj ¼

ffiffiffi
2

p
. This demonstrates that a population of

conjunctive cells allows for a higher decoding accuracy than a
population of pure cells, in the limit of a large number of neurons
N and long decoding time T (see Fig. 2a, b: note that the solid
black lines, which represent the contour lines of the decoding
error, are shifted for conjunctive cells [a] relative to pure cells [b]
by an amount that corresponds to dividing by a factor of

ffiffiffi
2

p
).

In contrast to our results in 1D, when we conducted a
simulation in 2D (using a ML decoder, Methods), we found that
the interchangeability of N and T—which is valid when N and T
are large as long as their product is fixed—does not hold across the
entire N− T space. Specifically, under realistic physiological
conditions when N or T are not large enough21,22 and the error

does not saturate the Cramér–Rao bound, we found that the error
no longer depends on the product N × T, but rather depends
separately on N and on T (Fig. 2a, b, see the divergence of the
actual error contour lines [solid] from the fixed—N × T lines
[dashed]). Since the average total number of spikes is proportional
to N × T and is equal for the two populations, this means that
given a finite number of spikes that could be emitted by a
hypothetical population, the magnitude of the decoding error
depends on whether these spikes are emitted by a few cells over a
long period of time (small N, large T)—or by many cells over a
short period of time (large N, small T). This dependence turns out
to be different for pure and conjunctive cells (when N and T are
small, note that the decoding errors for pure populations [Fig. 2a]
versus conjunctive populations [Fig. 2b] exhibit very different
divergence rates from the straight dashed lines—which represent
combinations of N, T for which the total number of spikes is fixed).
This suggests that the relative advantage of decoding by pure or
conjunctive populations will critically depend on the number of
neurons that participate in the particular computation in any
specific brain system, and on the timescale of the corresponding
behavior—as we will elaborate in the following sections.

Relative accuracy of pure and conjunctive coding. To assess the
relative accuracy of the two types of encoding strategies by
populations of pure versus conjunctive cells, we computed the
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Fig. 1 Head-direction coding by mixed-dimensionality neurons in the bat brain. a Schematic illustrating that a multidimensional stimulus (e.g., a 2D stimulus),
can be represented with sub-populations of pure cells that are tuned to only one dimension of the stimulus, or by a population of conjunctive cells that
encode the different dimensions of the stimulus jointly. Because pure cells have larger receptive fields they can tile the stimulus space more densely,
compared to a population comprising the same number of conjunctive cells. Therefore, when naively considering a two-dimensional variable such as a
position of a rook on a chessboard, one would expect to need only 2 ×N pure cells (N cells encoding the X dimension and N cells encoding the Y dimension)
in order to reach the same representational accuracy as N ×N conjunctive cells (with X × Y tuning). However, conjunctive cells provide information about
both dimensions of the stimulus at the same time, whereas decoding the activity of pure cells requires co-firing of both pure X and pure Y cells, and thus can
be compromised at short decoding times. b, c Examples of 1D tuning curves of head-direction cells that we recorded in the bat dorsal presubiculum19: a pure
azimuth cell (b) and a pure pitch cell (c), overlaid with von-Mises fits (black). Top insets in b and c illustrates schematically the directional tuning of these
pure cells in the 2D space of solid angles (360° azimuth × 360° pitch). d An illustration of a conjunctive cell with 2D tuning to a specific combination of
azimuth × pitch angles. The existence of both pure and conjunctive neurons in the same brain region suggests a mixed-dimensionality coding
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ratio of the decoding errors ϵpure=ϵconj as a function of the size of
the population N and the decoding time T. Using a ML decoder,
we found that there are three regimes for the relative performance
of the two populations (see Fig. 3a)—where the regimes depend
on N and T.

Regime #1: For large N and large T, the errors of both the pure
and conjunctive populations are saturated to the Cramér–Rao
bound. Therefore, in this regime the conjunctive cells outperform
the pure cells, such that their error ratio is ϵpure=ϵconj ¼

ffiffiffi
2

p
,

exactly as predicted analytically by the FI (see Fig. 3a, white
region).

Regime #2: For moderate to small N, the relative performance
of the pure cell population improves as compared to regime #1,
such that the error ratio is ϵpure=ϵconj <

ffiffiffi
2

p
(see Fig. 3a, the region

below the solid green line). Within that region, there is a sub-
regime where the pure cell population in fact outperforms the
conjunctive cell population, such that: ϵpure=ϵconj < 1 (Fig. 3a,
below the dashed green line). In other words, for populations
smaller than a critical value of N (Ncr), the performance of pure
cells becomes absolutely better than that of conjunctive cells.

Regime #3: We also found a third regime when T is small. Here
the conjunctive cell population outperforms the pure population
by more than expected from the FI (i.e., more than in regime #1)
—resulting in error ratios of ϵpure=ϵconj >

ffiffiffi
2

p
(see Fig. 3a, blue

region). This suggests that as the decoding time T decreases, the
relative advantage of the conjunctive cells over the pure cells is
increasing.

As discussed in the previous section, the specific value of the
error ratio that serves as the boundary between the regimes for a
2D stimulus, ϵpure=ϵconj ¼

ffiffiffi
2

p
, stems from the analytically derived

FI values, given our choice to scale the tuning curves such that the
average population firing rate is the same for the pure and
conjunctive neurons. Importantly, the proposed relative advan-
tage of conjunctive cells for short decoding time T, and of pure
cells for small or moderate N, is observed also for other scaling of
the tuning curves—when the average population firing rate of
pure and conjunctive cells is no longer equal (Supplementary
Fig. 3; Methods).

In the simulations described so far, the spike count of each
neuron was drawn independently according to its tuning curve.
We also considered the case of non-zero noise correlations23–25,
where spike counts of neurons with overlapping tuning curves are
correlated (Supplementary Fig. 4a, b); cases where neurons had
shared additive or multiplicative modulation of their tuning
(Supplementary Fig. 4e, f); and a model in which the azimuth and
pitch tuning of both pure and conjunctive cells results from
shared feed-forward inputs from two hypothetical upstream
populations (Supplementary Fig. 5). In these cases, we also found
the same qualitative behavior: at short decoding times the error
ratio is larger than at long decoding times, indicating a relative
advantage for conjunctive cells (Supplementary Fig. 4c, e, f;
Supplementary Fig. 5)—similar to the difference between regime
#3 and regime #1 found in the absence of noise correlations,
shared noise or shared inputs. Additionally, conjunctive cells
became progressively worse compared to pure cells as N
decreased (Supplementary Fig. 4d–f; Supplementary Fig. 5;
Methods), similarly to what we observed in regime #2 (Fig. 3a).
Taken together, this suggests that adding noise correlations,
shared noise or shared inputs likely has relatively little effect on
the trade-off between pure and conjunctive representations.

Further, we found the existence of the same regimes also when
considering a stimulus of dimension larger than 2, with the error
ratio that serves as the boundary between the regimes now being
ϵpure=ϵconj ¼

ffiffiffiffi
D

p
(where D is the stimulus dimensionality). For

example, for a 5D stimulus, we observed that the error ratio that
served as the boundary between the regimes now being
ϵpure=ϵconj ¼

ffiffiffi
5

p
(Supplementary Fig. 2a). Moreover, when

considering neurons with broader tuning curves, encoding either
a 2D stimulus (Fig. 3b) or a 5D stimulus (Supplementary Fig. 2a),
we also found the same three regimes—although the boundaries
between them were different as compared to neurons with
narrower tuning curves (compare Fig. 3a, b to Supplementary
Fig. 2a, b). We therefore conclude that quantitatively, the exact
shape and location of the regimes in the N− T space may depend
on a number of factors, including: the choice of scaling, the
tuning width, the assumptions about noise-structure, and the
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dimensionality of the stimulus. However, qualitatively, there are
always three regimes where the error ratio is equal to, less than, or
greater than what is predicted by the analytical FI calculation—
and the existence of these three regimes is robust to the choice of
model parameters. Finally, we note that changing the overall
firing of the populations is equivalent (in terms of decoding) to a
rescaling of time—so we expect that these results will be relevant
for many brain systems operating at different ranges of firing
rates and different behavioral timescales.

Pure code is advantageous for small population size. What are
the sources of performance differences of pure versus conjunctive
populations for small numbers of neurons N, or for short
decoding times T? In regime #2, pure cells become progressively
more accurate relative to conjunctive cells, as N decreases—a
phenomenon that can be understood intuitively through a cov-
erage argument (see Fig. 1a): pure cells have 1D “stripe-like”
regions of increased firing rate, each covering a larger portion of
the stimulus space as compared to the 2D “bump-like” con-
junctive cells—and hence pure cells can tile the space more
effectively. Therefore, the minimal number of cells required to
achieve a certain level of accuracy is expected to be smaller for the
pure population than for the conjunctive one. In order to test
explicitly whether the relative advantage of pure cells for small N
stems from better coverage of the stimulus space, we analyzed the
relative accuracy of pure and conjunctive cells as a function of
tuning width and the dimensionality of the stimulus. We expected
that if loss of coverage is the reason for the advantage of pure cells
over conjunctive cells for small N, this effect will be more pro-
nounced for narrower tuning curves and for higher-dimensional
stimulus spaces. Indeed, we found that as the tuning width of
both populations became narrower, there was a progressive

increase in the critical population size Ncr below which the pure
population outperformed the conjunctive population in absolute
terms (Fig. 3c). We also analyzed the case for which the tuning
width was different for pure and conjunctive cells, and found that
the decoding accuracy depends on the relative tuning width of the
two populations, in agreement with the coverage argument
(Supplementary Fig. 6).

We next analyzed hypothetical stimuli of higher dimensions,
and found that the relative advantage of pure cells was strongly
dependent on the dimensionality of the stimulus. While for a low-
dimensional stimulus space, the pure cells outperformed the
conjunctive cells only for a small Ncr (Fig. 3c, see, e.g.,
dimensionality D= 2), for a high-dimensional stimulus Ncr

became progressively larger (Fig. 3c, for each tuning width
compare the values of the dashed lines computed for stimulus
spaces of different dimensions D). For example, for a 5D
stimulus, pure cells could outperform the conjunctive cells, in
absolute terms, for a neuronal population of up to 4000 cells
(Supplementary Fig. 2b, right panel: green line in inset, for 4000
neurons, is below 1 for long T). Taken together, these results
show that at small values of N, the population of pure cells—i.e.,
neurons with low-dimensional tuning—outperforms the popula-
tion of conjunctive (multidimensional) cells, because pure cells
tile space more efficiently. The critical size of the network for
which pure cells outperformed the conjunctive cells (Ncr)
increased with stimulus dimensionality and with the sharpness
of the tuning curves. Therefore, for any neural system
with unimodal tuning curves, we predict that if the stimulus
space is high-dimensional and the neural resources are limited
(small N)—then most cells should be tuned to a number of
dimensions that is substantially smaller than the dimensionality
of the full stimulus space. In other words, one should rarely find
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ratio in N− T space (a, b). Brown symbols correspond to the plots in 5D (Supplementary Fig. 2)
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neurons that are tuned to all the dimensions of a high-
dimensional stimulus space.

Conjunctive code is more robust for short decoding time. We
have described earlier that as decoding time T becomes shorter,
the conjunctive neurons become increasingly more accurate
relative to the pure neurons (Fig. 3a, b, regime #3—blue). We
hypothesized that this happens because in order to decode a
multidimensional stimulus from pure cells, all stimulus dimen-
sions must be accurately estimated simultaneously, so that the
decoder should effectively implement a coincidence-detection
mechanism relying on separate sub-populations of low-
dimensional pure cells (e.g., two sub-populations encoding
pure azimuth and pure pitch: see Fig. 1a). Such a coincidence-
detection mechanism is expected to fail for short decoding time
T—as indeed observed in Fig. 3 (regime #3). This failure of
coincidence-detection is expected to be ameliorated for large
population size N. Indeed, we found that as N increases, there is a
shortening in the decoding time T for which conjunctive cells are
advantageous (Fig. 3a, b: note the diagonal border of the blue
region).

According to the coincidence-detection hypothesis, the relative
advantage of conjunctive cells for small T is expected to occur
only when decoding the stimulus value along multiple dimen-
sions simultaneously (e.g., 2D azimuth × pitch), but not when
decoding each dimension separately (e.g., 1D azimuth or pitch).
To test this, we considered an example 2D stimulus—a point in
the two-dimensional space of solid angles (azimuth and pitch); we
then computed the decoding errors for azimuth or pitch (1D)
separately, and for azimuth × pitch (2D) jointly—for both pure
and conjunctive cells. To allow direct comparison of the pure and
conjunctive populations, we compared the ratio of the decoding
errors for 2D/1D. We found that this ratio was fixed for
conjunctive cells (Fig. 4a, blue), whereas for pure cells this ratio
diverged from a constant value and became larger as T decreased
(Fig. 4a, red). These results indicate that the disadvantage of pure
cells for short T stems from a failure to integrate the different
dimensions of the stimulus into a multidimensional representa-
tion— because coincidence-detection across multiple dimensions
fails for short T.

To understand further how the estimation accuracy of the
multidimensional stimulus depends on the decoding time, we
analyzed the decoding-error distribution across the stimulus
space (360° azimuth × 360° pitch) for pure and conjunctive cells,
at different decoding times T (Fig. 4b). As expected, as T
increased, the error became smaller for both types of cells
(Fig. 4b, see the decrease in spread of the error distribution when
going from left to right; note that the right-most plot
corresponding to T= 0.5s has a different scale [zoom-in]).
Importantly, for pure cells (top row), the error magnitude along
each dimension had a large spread (note the “cross-shaped”
distribution in Fig. 4b, top left)—meaning a poor combined
estimate of the 2D stimulus when the decoding of either the
azimuth or the pitch sub-populations fails. By contrast, for
conjunctive cells, the error magnitude in azimuth and pitch had
small spread, manifested in a circularly symmetric error
distribution with only few extremely poor estimates (Fig. 4b,
bottom left). As T increased, the marginal 1D error distribution
for pure cells became progressively narrower (Fig. 4b, top right),
and eventually the shape of the 2D error distribution for pure
cells became similar to that observed for conjunctive cells (Fig. 4b,
bottom right).

We further analyzed how the failure of pure cells at short
decoding time T was related to the overall number of spikes
emitted by each of the populations. We found that the

transition from regime #3 to regime #1 occurs once N and T
are such that there are no longer instances when one of the sub-
populations of pure cells fires below a certain critical number of
spikes required for accurately estimating of both stimulus
components simultaneously (akin to coincidence-detection, see
Supplementary Fig. 7). In other words, the advantage of
conjunctive cells is manifested when one of the sub-populations
of pure cells has a non-negligible probability to emit too few
spikes, resulting in a very poor estimate of the stimulus along at
least one dimension.

Finally, the theoretical estimate obtained for the 1D error
(Supplementary Note 1, and Supplementary Fig. 1a) also provides
a qualitative prediction for regime #3. We find that, like the ratio
computed from simulations, this theoretical estimate exceeds

ffiffiffi
2

p
for short decoding times (see Fig. 4c inset), which can be
understood intuitively by noting that when the error is not
saturated to the Cramér–Rao bound (ϵ=ϵCR > 1 in the inset to
Supplementary Fig. 1a), increasing the FI by a factor of 2 results
in reduction of the error by a factor greater than

ffiffiffi
2

p
.

Taken together, our analyses indicate that conjunctive cells
have an advantage over pure cells in decoding a multidimensional
stimulus at short decoding times T. We showed that this occurs
because conjunctive cells can represent all stimulus dimensions at
the same time, whereas decoding by pure cells relies on
coincidence-detection of different stimulus dimensions by
different groups of cells—a mechanism that fails for short
decoding times.

Decoding from mixed-dimensionality populations reveals
synergy. We next analyzed whether conjunctive cells can improve
the performance of pure cells in a synergistic manner. To reveal
such a putative synergistic effect we normalized the absolute error
of the mixed population ϵmix (Supplementary Fig. 8a) by
ϵmix;independent, the error expected under the null assumption that
the different sub-populations contribute independently towards
improving the decoding accuracy, without interactions (observing
a ratio <1 would then indicate a synergistic interaction; Methods).
We found that for short decoding times the normalized error
ϵmix=ϵmix;independent was lowest when 50–80% of the cells in the
mixed population had pure tuning, and the rest were conjunctive
(Supplementary Fig. 8b, green square). This stemmed from the
fact that the addition of conjunctive cells reduced the chance of
catastrophic decoding errors by pure cells at short decoding times
(Supplementary Fig. 8c, note the cross-shaped error distribution
for the pure-only case [top], but not for the mixed case [middle]).
We therefore conclude that pure cell become less error-prone at
short decoding times T when they are mixed with a population of
conjunctive cells.

Two behavioral modes in bats with different temporal scales. In
the previous sections, we showed that the relative decoding
accuracy of pure versus conjunctive cells depends on the decod-
ing time. While it is not trivial to estimate the decoding time at
which a realistic biological network is operating, there is a closely
related and experimentally tractable timescale—namely, the
timescale over which a behaviorally relevant stimulus is changing.
We therefore analyzed the statistics of change in heading-
direction of Egyptian fruit bats during natural navigation out-
doors, using data that was previously collected using miniature
high-resolution GPS-devices26 (Methods). In a typical nightly
flight, individual bats traverse distances of up to 25 km from the
roosting cave to a distant foraging site (Fig. 5a, left). A closer
examination revealed that rather straight commuting flights were
often interleaved with epochs of intense maneuvering, which
correspond to foraging for fruits around fruit-trees (Fig. 5a,
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right). This suggested the existence of two behavioral modes: a
navigational mode, consisting of long straight flights with little
directional modulation—and a maneuvering mode, with rapid
changes in heading-direction (the two modes are shown in
Supplementary Movie 1).

To further test for the existence of two distinct behavioral
modes, we computed the combined angular velocity of the bat in
azimuth and pitch, and plotted it against the horizontal
displacement—a parameter that measures the Euclidean distance
traversed by the bat (Fig. 5b, see Methods). This analysis revealed
two very distinct behavioral clusters—one that was characterized
by large horizontal displacement and small angular velocity
(corresponding to long-distance navigation), and the other with
small horizontal displacement and large angular velocity

(corresponding to maneuvering). This pronounced separation
allowed to analyze each behavioral mode independently (Fig. 5c:
navigation—left, and maneuvering—right). There was a positive
correlation between azimuth and pitch velocities in both modes
(Fig. 5c, inset)—and during maneuvering in particular, high
velocity in azimuth co-occurred with high velocity in pitch
(Fig. 5c, right; Pearson correlation coefficient r= 0.26, P < 0.001).
This suggests that rapid changes in heading-direction angle
during maneuvering are not restricted to only azimuth or pitch—
raising the need for simultaneous encoding of both of these
dimensions.

Dynamic tuning of bat head-direction cells matches theory.
Can the advantages of different encoding strategies, as highlighted
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ffiffiffi
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predicted by the

Cramér–Rao bound (dashed black line). Inset: the ratio of the pure and conjunctive decoding errors ϵpure=ϵconj can be estimated from the theory by dividing the
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ffiffiffi
2

p
for small T, similar to the

simulation results, but fails to capture the differences in the maximum value of the ratio for different values of N (N= 1000 and N= 2000)
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by our theoretical analysis, be mapped onto the modes of bats’
natural orientation behavior? During long-distance navigation,
the available decoding time can be relatively long, because in this
mode the bats fly rather straight and therefore change their
heading-direction very slowly. Thus, for low angular velocity
(long T), pure cells are not expected to be prone to errors due to
insufficient decoding time, and therefore may perform the task
efficiently with relatively small number of neurons and without
increasing the firing rates or recruiting conjunctive neurons. By
contrast, during maneuvering the bat turns frequently with rapid
modulations of heading-direction in both azimuth and pitch.
Therefore to maintain a comparable decoding accuracy at high
angular velocity (short T), we postulated based on our theoretical
analysis that the head-direction system could exhibit some of the
following dynamics during maneuvering: (i) an increase in the
firing rate of pure cells; (ii) recruitment of additional cells (i.e., to
increase N, see Fig. 2a); and (iii) a shift from a pure to a con-
junctive representation.

To test these predictions experimentally, we turned to
recordings of head-direction cells in the dorsal presubiculum of
bats that were freely crawling in the laboratory, using new
analysis of data reported in Finkelstein et al.19 (Methods). We
reasoned that the optimality principles that might have emerged
in the head-direction system in order to support different modes
of natural orientation behavior could be reflected in the circuit

dynamics also under laboratory conditions. During crawling, bats
also exhibited epochs of both slow and fast turns of the head
(Fig. 6a), with combined angular velocity of the head in azimuth
and pitch spanning a similar range to the range that we measured
during orientation behavior in the wild, albeit with somewhat
different statistics (Fig. 6b, compare with the marginal distribu-
tion in Fig. 5b—right marginal histogram). This allowed us to
separate the crawling behavior into two parts, based on low versus
high angular velocity in azimuth and pitch (Fig. 6b, dashed line)
—by applying the same threshold value that distinguished
navigation and maneuvering modes in the wild.

We next compared the head-direction tuning in azimuth and
pitch for low versus high angular-velocity conditions. First, we
did not find a significant change in the firing rates between low
and high angular velocities (Fig. 6c, compare blue and red bars
within each group of neurons—conjunctive, pure, untuned).
Second, we found a recruitment of both pure and conjunctive
cells at high angular velocity from the pool of directionally
untuned cells (Fig. 6d). Third, the proportion of pure azimuth
and pure pitch cells increased only moderately at high angular
velocity, whereas the recruitment of conjunctive cells was more
prominent (Fig. 6e). In fact, at high angular velocity, 16.5% of
cells exhibited conjunctive tuning to azimuth and pitch—4 times
more than for low angular velocity (Fig. 6e), consistent with our
theoretical predictions.
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Next, we examined in more detail to what extent the dynamic
changes in head-direction tuning—and in particular, the increase
in the fraction of conjunctive cells (Fig. 6e)—resulted from
recruitment of directionally untuned cells, as compared with
transitions from a pure to a conjunctive representation. We found
that 42% of the cells with pure tuning at high angular velocity had
the same tuning at low angular velocity (Fig. 6f, example cell 1
had a pure azimuth tuning under both conditions)—whereas 53%
were untuned at low angular velocity (Fig. 6g, left). By contrast,
only 10% of the cells with conjunctive tuning at high angular
velocity were also conjunctive during epochs of low angular
velocity, whereas 47% developed a conjunctive tuning from an
untuned state (Fig. 6f, example cell 3 and Fig. 6g, right).
Importantly, we found that the remaining 43% of the conjunctive
cells had pure tuning to either azimuth or pitch at low angular
velocity (Fig. 6g, right). These cells gained additional tuning to the
other angular dimension at high angular velocity (Fig. 6f, example
cell 2)—thus dynamically switching from pure to conjunctive
representation. We verified our findings by analysing the data
over multiple ranges of angular velocity, and observed that that
the proportion of conjunctive cells indeed increased with angular
velocity, a process that was accompanied by gradual narrowing of
the tuning in azimuth or pitch (Supplementary Fig. 9). Taken
together, this demonstrates that tuning dimensionality of head-
direction cells is not a fixed property, but can switch dynamically
as a function of angular velocity—consistent with the proposed
improvement to the population code accuracy that was suggested
by our theoretical analysis.

In summary, our theoretical and experimental analyses suggest
that mixed-dimensionality representations by pure and conjunc-
tive cells are not redundant, but in fact can outperform an
encoding strategy that relies on only one of these cell types—by
matching dynamically the neuronal population size and type to
the behavioral task at hand.

Discussion
Multidimensional variables can be represented in the nervous
system using neural tuning curves with different shapes and
dimensionalities. In the case of the head-direction system of bats,
our previous experimental work has suggested the existence of a
mixed-dimensionality coding by both pure and conjunctive
neurons tuned to head azimuth and pitch19. Here we used
theoretical, computational, and experimental approaches to
investigate the advantages of such a mixed-dimensionality
representation, by considering a biologically relevant situation
in which the number of active neurons and the decoding time
might change dynamically.

Our theoretical analysis demonstrated that fast decoding from
many neurons is not equivalent to slow decoding from fewer
neurons, and the optimal performance depends in fact on whe-
ther pure or conjunctive cells are used for decoding. At long
timescales, a population of pure cells can be more efficient in
representing a high-dimensional stimulus using fewer active
neurons. We found that the critical population size at which pure
cells can outperform conjunctive cells increases with the dimen-
sionality of the stimulus. We demonstrated that the critical value
can be on the order of 1000 to 10,000 neurons for 4–5 stimulus
dimensions. For comparison, the size of a single barrel in the
somatosensory cortex of mice (involved in complex dynamic
computation of whisker kinematics in 4–5 dimensions) is about
5000 neurons27. Many neurons in the head-direction system are
also likely highly multidimensional, and encode other variables in
addition to head azimuth and pitch19,28,29. Furthermore, in sys-
tems where neurons fire sparsely, the number of neurons needed
for appropriate coverage of the stimulus space can be significantly

higher30. This suggests that, when decoding high-dimensional
signals, an accurate conjunctive code could require more neurons
than the brain typically dedicates to a particular decoding pro-
blem—making a pure code favorable in such scenarios. By con-
trast, conjunctive cells can provide a more robust decoding for a
rapidly changing stimulus, when only a short decoding time is
available—but this will require more active neurons.

Our theoretical results therefore predicted that if the rate of
change of a multidimensional stimulus will increase (e.g., during
vigorous maneuvering or faster movement), the system will
perform optimally by recruiting more neurons to the task, with a
preference for recruiting conjunctive cells—a prediction that was
confirmed by our experimental findings in the head-direction
system of bats (Fig. 6). This prediction is also supported by recent
findings from entorhinal-cortex recordings in mice31. We there-
fore proposed here a novel role for conjunctive neurons as a
neural substrate for encoding behaviorally relevant variables at
fine temporal scales—although we note that conjunctive coding
also likely has other important functions, such as representing
multidimensional information in complex cognitive and working-
memory tasks18,32,33.

An important question is how the conjunctive representation
formed? One possibility is a feed-forward network in which
conjunctive cells are formed by inputs from pure cells. Such an
architecture, which leads to formation of a conjunctive repre-
sentation from functionally distinct dendritic inputs, was repor-
ted for hippocampal place cells34. In this scenario, conjunctive
cells may inherit the unreliability of pure cells at short decoding
times. However, we showed that at short decoding times, the
robustness of pure coding can be improved by increasing the
number of neurons participating in the task. Therefore, if in
the case of head-direction cells the conjunctive neurons in the
dorsal presubiculum receive converging inputs from a sufficiently
large population of pure cells located in subcortical areas2,29,35,
the resulting conjunctive representation will be immune to fail-
ures at short decoding times.

To show a feasibility of this architecture we modeled a feed-
forward network in which downstream pure or conjunctive cells
were constructed by pooling from two large upstream populations
of pure cells. We showed that decoding from downstream con-
junctive cells was more accurate at short decoding time compared
to decoding from downstream pure cells, even though both types
of cells were constructed from the same upstream populations
(Supplementary Fig. 5). This suggests that if anatomical con-
straints preclude readout from a large number of upstream pure
cells then, at short decoding times, it would be advantageous to
decode from an intermediate layer composed of conjunctive cells
—as compared to readout from an intermediate layer of pure cells
of the same size. It is important to emphasize that our claim is not
that conjunctive neurons are able to know more about the sti-
mulus than is known by their inputs. Rather, if the stimulus
information must be forced through an anatomical “bottleneck” of
N neurons, then doing so via a pure or via a conjunctive popu-
lation will affect the amount by which the decoding accuracy is
reduced—in a way that depends also on the decoding time T.

An alternative way to construct conjunctive head-direction
tuning is through an attractor network where the conjunctive
representation is not formed hierarchically from pure cells but
rather emerges from recurrent connectivity. Rubin et al.36 have
shown that a mixed-dimensionality representation of head-
direction similar to the one seen experimentally can be main-
tained by an attractor network. Moreover, their theoretical ana-
lysis demonstrated that the fraction of pure versus conjunctive
neurons could be modulated dynamically, suggesting the possi-
bility that an external signal (e.g., angular velocity) could shift the
head-direction system towards the encoding scheme that is
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optimal for the current behavioral mode—as we found experi-
mentally here.

We expect that our approach could help identify optimal
population codes in other encoding-decoding paradigms, beyond
the head-direction system and the unimodal tuning that we
considered here. In the mammalian navigation circuit, con-
junctive coding was reported in the hippocampus for azimuthal
head-direction and place tuning37–39; for place, goal-direction,
and goal-distance tuning40; and for various combinations of
azimuthal head-direction, place, grid, and border tuning—in the
presubiculum, parasubiculum, and entorhinal cortex28,41–43.
Notably, in addition to conjunctive representations, all these
regions contain also neurons with pure tuning to the same
parameters (e.g., pure tuning to grid or to head-direction)—
suggesting that mixed-dimensionality coding exists for various
multidimensional stimuli beyond those encoding circular
variables.

Mixed-dimensionality representations also exist beyond the
navigational circuitry, with evidence for a mixture of both pure
and conjunctive coding in different sensory areas: For example,
visual feature selectivity in the salamander retina44 and in primate
visual cortex45; somatosensory neurons tuned to different kine-
matic features of the whisker motion and touch in the rodent
somatosensory pathway46,47; neurons with different auditory
feature selectivity in auditory field L of birds48, and in the primary
auditory cortex of cats and ferrets49,50. Neurons in the ferret
auditory cortex were found to represent pitch, timbre, and spatial
location of the sound conjunctively1, but there was also a
dynamic multiplexing of these features, so that different dimen-
sions of the stimulus could be represented independently within
specific time-windows following sound presentation. Pure and
conjunctive representations were also found in the midbrain of
weakly electric fish, where neurons were reported to respond to
single or multiple electrosensory features51.

Beyond classical sensory regions, mixed-dimensionality tuning
was also found in the context of multisensory representations52,
including multisensory tuning to optic flow and vestibular
inputs53 or optic flow and locomotion54. Furthermore, neurons
with mixed-dimensionality coding for hand position and velocity
were found in the motor cortex55, and neurons with mixed-
dimensionality coding for 3D head motion were reported in the
motor subdivision of the superior colliculus56. Finally, neurons
with mixed-dimensionality coding were found in face-processing
areas in monkeys—where cells were reported to encode up to
eight dimensions in the face feature space, in either pure or
conjunctive fashion57. As noted above (see Fig. 3c), the tradeoffs
in encoding by pure and conjunctive population codes, which
we found here, will be even more prominent in such an
8-dimensional space.

Taken together, our analysis proposes a new role for a mixed-
dimensionality encoding strategy by pure and conjunctive popu-
lations, with respect to the time available for decoding, the number
of neurons involved in the task representation, and the dimen-
sionality of the encoded stimulus. Using the bat head-direction
system as an example, we demonstrated that neuronal circuits can
switch dynamically from pure to conjunctive representations for
different behavioral modes, in line with the optimality principles
revealed by our theoretical analysis. We expect that these princi-
ples can be generalized to other neuronal systems that encode
multidimensional representations—such as sensory, motor, and
higher cognitive areas—suggesting a new fundamental link
between natural behaviors and neural computation.

Methods
Animals. This study includes new data analysis of previously published experi-
ments19,26 conducted on Egyptian fruit bats, Rousettus aegyptiacus. All

experimental procedures were approved by the Institutional Animal Care and Use
Committee of the Weizmann Institute of Science, and are detailed in refs.19,26

Tuning curve fitting and model construction. To investigate the relative
advantage of pure versus conjunctive representations in the brain, we focused on
the example of the head-direction system in the bat dorsal presubiculum (a part of
the hippocampal formation), which was recently shown to contain populations of
neurons employing both strategies—pure cells (tuned to either azimuth or pitch:
Fig. 1b, c) and conjunctive cells (tuned jointly to azimuth × pitch: Fig. 1d)19.

We fitted the one-dimensional head-direction tuning curves of neurons (see
Fig. 1c, d) with a circular normal function, known also as von-Mises function—
which has the following form:

RiðφÞ ¼ c1e
κ cos φ�φið Þ þ c2: ð1Þ

Here φi is the preferred direction of the cell in radians, φ is the stimulus value
according to which the firing rate is determined, and κ, c1, and c2 are constants
corresponding to the tuning width, peak-firing rate, and baseline firing rate,
respectively.

For 2D tuning, we fitted the 1D azimuth (φ) and 1D pitch (θ) tuning curves of
conjunctive neurons with one-dimensional von-Mises functions, and combined
these to give a two-dimensional von-Mises function (see Fig. 1e):

Riðφ; θÞ ¼ c3e
κ1 cosðφ�φiÞþ κ2 cosðθ�θiÞ þ c4; ð2Þ

where κ1, κ2 control the tuning widths in the azimuth and pitch directions, and c3
and c4 are constants corresponding to the peak-firing rate and baseline firing rate,
respectively.

The model we constructed for the neural responses consisted of two sub-
populations (pure and conjunctive) described by Eqs. (1), (2), respectively. The
pure population consisted of N/2 cells tuned to azimuth and N/2 cells tuned to
pitch, while the conjunctive population consisted of N cells tuned jointly to
azimuth × pitch. All preferred head-directions were drawn randomly from a
uniform distribution between 0 and 2π in azimuth and pitch.

Choosing pitch tuning to span the entire 360° range is in-line with the
experimental finding of a toroidal coordinate system whereby azimuth and pitch
tuning are coded independently19. Specifically, we have shown19 that both azimuth
and pitch are encoded as circular variables (0–360°). When bats were crawling on a
horizontal arena, head-direction angles covered the full range of azimuth (0–360°),
but had a more limited range of pitch (approximately ±45° pitch). To demonstrate
the circular tuning to pitch we recorded head-direction cells while bats traversed on
the inside of a vertically positioned ring that allowed sampling the entire range
(0–360°) of pitch angles. We showed that during crawling on a horizontal surface
(where the pitch range was limited), pitch tuning curves were a “clipped version” of
the full tuning to pitch that was observed when the entire pitch range was sampled
on the vertical ring. Thus, in our model the tuning curves of individual neurons
spanned the entire range of azimuth and pitch (i.e., both dimensions were circular
0–360°). In order to compare tuning width and firing rate of pure and conjunctive
cells for the entire range of azimuth and pitch, we used 101 pure azimuth cells
recorded when the animal was crawling on the horizontal arena, 40 pure pitch cells
recorded on the vertical ring, and 5 conjunctive cells recorded both on the
horizontal arena and on the vertical ring19. This ensured that that we could directly
compare the tuning width and peak-firing rate in azimuth and pitch for pure and
conjunctive populations.

Choice of peak-firing rates and tuning widths. The experimentally recorded pure
azimuth and pure pitch cells19 had similar peak-firing rates as computed from the
above fit: Rdata

pure;azim = 0.98 ± 0.11 Hz, Rdata
pure;pitch = 1.17 ± 0.22 Hz (mean ± standard

error of the mean, non-significant differences, P= 0.39 by Student’s t-test, Sup-
plementary Fig. 10a). Because there was no significant difference in the firing rate
of pure azimuth and pure pitch cells, the peak-firing rate was set to be the same for
all pure neurons in the model, Rpure,model= 1.00 Hz (very close to the experi-
mentally observed peak-firing rate averaged over all the recorded pure cells Rdata

pure =
1.04 ± 0.01 Hz).

The peak-firing rate of conjunctive cells (defined as the highest peak-firing rate
of the two marginal tunings to azimuth and pitch) was significantly higher than
that of all pure cells: Rdata

conj = 3.4 ± 1.6 Hz (P < 0.001 by Student’s t-test,
Supplementary Fig. 10a).

Note that the peak-firing rates above are in fact the modulation depth of the
tuning curves—i.e., the peak-firing rate minus the baseline firing rate—we report
the modulation depth because some neurons had a non-zero baseline firing rate.
However, in order to reduce the number of free parameters for the model we chose
c2= c4= 0, corresponding to no baseline firing rate of pure and conjunctive cells.

Pure azimuth and pure pitch cells also had very similar tuning width, which is
computed at half-height of the fitted tuning curve from baseline (differences are
non-significant, P= 0.78 by Student’s t-test, Supplementary Fig. 10b). The tuning
width of conjunctive cells was not significantly different from the tuning width of
pure cells in the corresponding dimensions (P= 0.82 for azimuth, and P= 0.16 for
pitch, by Student’s t-test), resulting in similar average tuning width in azimuth and
pitch for both cell types (not significantly different by Student’s t-test, P= 0.48,
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Supplementary Fig. 10b). Therefore, for modeling purposes we treated the
experimentally observed tuning width of pure and conjunctive cells to be the same.
To strengthen the connection to other neuronal systems where tuning tends to be
narrower than in the head-direction system, we chose a tuning of 45°
(corresponding to κ= 9.11, equal for pure and conjunctive cells), unless noted
otherwise. In Fig. 3, we analyzed a range of tuning widths to show that our results
generalize across tuning widths, and included detailed results for the tuning width
fitted to the head-direction data (κ= 2.37).

In the model, unless noted otherwise, the peak-firing rate of conjunctive cells
was chosen such that each population (pure or conjunctive) emitted the same
number of spikes on average over multiple presentations of the stimulus and
multiple samples of the cells’ preferred directions (i.e., the mean population firing
rates were the same). To achieve this, we computed the proportionality constant
between Rconj,model and Rpure,model by integrating over the tuning curves of N cells.
The proportionality constant depends on the tuning width parameter and the
stimulus dimensionality D, and is given by Rconj,model= Rpure,model exp((D− 1)κ)/
ID�1
0 ðκÞ, where I0 is the modified Bessel function of the first kind. Similar integrals
were performed in the calculation of the FI, and are shown below (Eqs. (5)–(10)).

We focused on this normalization condition because (1) we think that a
comparison between two populations that emitted the same number of spikes is the
most appropriate one to make, and (2) it matched almost precisely the
experimental data, where we observed that the tuning width of both populations
was very similar (Supplementary Fig. 10b), whereas the peak-firing rate of
conjunctive cells was significantly elevated compared to the pure cells (Rdata

pure = 1.04
± 0.01 Hz versus Rdata

conj = 3.4 ± 1.6 Hz, Supplementary Fig. 10a).
In addition to the peak-firing rate normalization that yields equal mean

population firing rate for pure and conjunctive cells, we examined additional
normalization conditions:

● One condition is the case where the peak-firing rate of conjunctive cells was
chosen such that the two populations have equal FI. Under this condition
the two populations have the same decoding error in the limit of large number
of neurons and long decoding time, as explained below. To this end, we set the
peak-firing rate of conjunctive cells to Rconj,model= Rpure,model exp((D− 1)κ)/
ID�1
0 ðκÞD� �

(here again the firing depends on the tuning width and the
dimensionality). This special case is discussed in Supplementary Fig. 3.

● To examine the effect of pure and conjunctive cells having different tuning
width, we varied the tuning width of pure cells between 35 and 100°, while
the tuning curve of conjunctive cells was fixed at 45°. The peak-firing rate
of pure cells was chosen such that the two populations emitted the same
number of spikes on average (Supplementary Fig. 6).

In the notation of Eqs. (1) and (2) these definitions correspond to setting c1=
Rpure;model e

�κpure and c3= Rconj;model e
�2κconj .

Choice of preferred direction and stimulus distributions. For simplicity, we
chose for our simulations uniform distributions of preferred pitch and azimuth, for
both pure and conjunctive cells. The empirical distributions found for both the
preferred directions (i.e., the tuning) and for the sampled directions (i.e., the sti-
mulus) are shown for this data set in Figs. 1d, f and 4c of Finkelstein et al.19

Importantly, in experiments where the entire range was sampled, tuning to both
pitch and azimuth was uniform.

We also chose a uniform distribution of stimuli, although choosing any other
stimulus distribution would not have changed our results given the uniform
distribution of preferred angles. This is true because from the point of view of the
decoder each stimulus is identical. In other words, the number of cells with
preferred direction in the neighborhood of a given stimulus does not depend on the
location of the stimulus, and therefore it also does not depend on the distribution
from which the stimulus is drawn.

In the model, each neuron had Poisson statistics. Unless noted otherwise, there
were no noise correlations, so the probability of observing n1,…, nN spikes from
neurons 1,…, N respectively during an interval of duration T given the stimulus
(φ, θ) is:

p n1; ¼ ; nN jφ; θð Þ ¼ p n1jφ; θð Þ ´ ¼ ´ p nN jφ; θð Þ ¼
YN
i¼1

pi nijφ; θð Þ; ð3Þ

where,

pi nijφ; θð Þ ¼ Riðφ; θÞT½ �ni
ni!

e�Riðφ;θÞT : ð4Þ

Fisher information. We begin by computing the FI of a single population of
neurons with 1D von-Mises tuning curves, and then extend it to conjunctive cells
in two or more dimensions. The model used in Figs. 2–4 has N/2 pure azimuth and
N/2 pure pitch neurons, and N conjunctive neurons, so we carry out the calcula-
tions for these population sizes.

The FI at a particular stimulus value φ is equal to a sum over all neurons of the
squared derivative of the tuning curve, weighted by the inverse of the tuning curve:

JðφÞ ¼ T
XN=2

i¼1

d
dφRiðφÞ
� �2

RiðφÞ
: ð5Þ

For large N, we can replace the sum over neurons (and their preferred head-
directions) with an integral that includes the distribution of preferred directions. In
this section, we assume a uniform distribution of preferred directions.
Consequently, the FI is constant for all values of the stimulus φ, giving

Jφφ ¼ ðN=2ÞRpureT

2π

Z 2π

0
dφ
Z 2π

0
dθ

d
dφ e

κðcosφ�1Þ
� �2

eκðcosφ�1Þ ; ð6Þ

where from now on we drop the model subscript on the parameters Rpure, Rconj.
The notation Jφφ indicates that in the numerator of Eq. (6) the derivative of the
tuning curve is taken twice with respect to φ, and hence that term is squared. Its
usefulness will become apparent when we move on to treating the problem in
dimensions larger than one. The integral over θ reminds us that the stimulus is
two-dimensional, but it is equal to one because the cells are not tuned to this angle.

This integral can be carried out explicitly for von-Mises tuning curves, leading
to

Jpure ¼ Jφφ ¼ 1
2
NRpureTκe

�κI1ðκÞ ð7Þ

where Iν(κ) denotes the ν-th order modified Bessel function of the first kind.
When the stimulus is multidimensional, the FI is no longer a scalar. Rather, it is

a matrix in which the diagonal elements are similar to the one-dimensional case,
where both derivatives are with respect to the same stimulus coordinate. The off-
diagonal elements are terms where the two derivatives are with respect to different
stimulus coordinates.

In the general multidimensional case, the Cramér–Rao bound is an inequality
between the mean squared error and the eigenvalues of the inverse FI matrix.
Throughout the paper, unless noted otherwise, we focus on the scalar error, equal
to the square root of the sum of squared errors along each of the stimulus
dimensions. We will see below that for the simplified model, which we focus on—
with no noise correlations—the FI is proportional to the identity matrix (i.e., the
off-diagonal elements are all zero, and the diagonal elements are all equal to each
other) for both pure and conjunctive populations. This means that for this
simplified model the CR bound is given in terms of a scalar FI quantity—which is
the proportionality constant connecting the FI matrix to the identity matrix.

Since we assume that the tuning of pure and conjunctive cells is identical along
each of the stimulus coordinates, the diagonal elements of the FI matrix are equal.
For pure cells, this is simply equal to the quantity computed above in the 1D case.
For two-dimensional conjunctive cells, the diagonal elements of the FI matrix are,

Jφφ ¼ Jθθ ¼
NRconjT

4π2

Z 2π

0
dφ
Z 2π

0
dθ

d
dφ e

κðcosφþcos θ�2Þ
� �2

eκðcosφþcos θ�2Þ
ð8Þ

leading to

Jconj ¼ Jφφ ¼ Jθθ ¼ NRconjTκe
�2κI0ðκÞI1ðκÞ: ð9Þ

Under the assumption of no noise correlations, the off-diagonal elements of the
FI matrix (i.e., the cross-terms Jφθ, Jθφ) are zero. Mathematically, one can see that
taking a single derivative of the tuning curve with respect to each stimulus
coordinate will result in an integrand that is an odd function of that coordinate,
and hence that term will be zero.

Using the same approach one can also compute the average number of spikes
emitted by each population, and find that

npure ¼ NTRpure e
�κI0ðκÞ and nconj ¼ NTRconj e

�2κI20 ðκÞ: ð10Þ

Throughout the paper, except in Supplementary Fig. 3, we normalize the peak-
firing rate of conjunctive neurons Rconj such that the mean population firing rate of
the pure and conjunctive populations is equal. We set npure= nconj, and using Eq.
(10) this gives the following relationship between the peak-firing rates of pure and
conjunctive cells (and the tuning width parameter κ):

Rconj ¼ Rpure
eκ

I0ðκÞ
: ð11Þ

The Bessel function in the denominator arises from the integration over the
von-Mises tuning curve. Conjunctive cells are tuned to both stimulus coordinates,
thus one of the Bessel functions does not cancel out.
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In the model on which we focus in this study, the FI matrix is proportional to
the identity matrix for both pure and conjunctive populations. The proportionality
constants (Jpure, Jconj) give the lower bound on the mean squared error for the
decoding errors of these populations, and thus it is instructive to compare the
(scalar) FI quantities when the population firing rate is equal for pure and
conjunctive cells.

Substituting Rconj into Eq. (9) and comparing the FI of the pure and conjunctive
populations we find,

Jconj ¼ 2Jpure: ð12Þ

In Supplementary Fig. 3, we choose the peak-firing rate of conjunctive neurons
Rconj by setting Jconj= Jpure (i.e., equal FI for pure and conjunctive cells). Using Eqs.
(7), (9) this gives,

Rconj ¼ Rpure
eκ

2I0ðκÞ
; ð13Þ

so using Eq. (10), in this case the mean population firing rates satisfy

npure ¼ 2nconj: ð14Þ

Similar calculations can be carried out to compute the FI and the total firing
rate of conjunctive neurons coding more than two dimensions (Fig. 3c,
Supplementary Fig. 2). We normalized tuning curves such that the population
firing rate of N conjunctive neurons coding a D dimensional variable is equal to D
sub-populations of pure neurons, each of size N/D. When doing so we found that
the FI ratio is

JconjðDÞ
JpureðDÞ

¼ D: ð15Þ

Decoder. Given the spike train n1,…, nN, the goal of the decoder is to find the
head-direction (φest, θest) that most likely gave rise to the observed spike train. This
is not a trivial exercise because of the stochastic nature of the spike trains. If the
spike trains were deterministic, we would expect the decoder to recover the correct
stimulus exactly.

One may wonder why the error of representing two or more different types of
information jointly is relevant for an organism, and how to define the error in
scenarios where the relevant variables are measured in different units (for example,
the time and distance to the location of a future event). Animals must often act
upon multiple streams of information by choosing a single strategy, so the accuracy
with which all stimulus variables are represented jointly (i.e., the scalar error over
all dimensions) can determine the success or failure of this strategy. In principle,
the definition of the error itself can also follow from the fact that errors in the
estimates of different stimulus components may lead to similar non-optimal
outcomes. In other words, the stimulus components can be normalized along
different dimensions such that equal deviations of each of the normalized
coordinates lead to equal cost to the animal. Doing this in practice is of course a
difficult problem, which is fortunately circumvented in the head-direction system
in bats that we discuss here—where all the variables have the same units. The
theoretical analysis in our study assumes that all stimulus variables are measured
using the same units and that errors along each direction are equally important.

Maximum likelihood. Given our assumption of Poisson statistics, one can show
that the ML decoder solves the following minimization problem for two pure sub-
populations:

φest ¼ argmin
φ

LðφÞ ¼ argmin
φ

PN=2

i¼1
niκcos φ� φi

� �� TRpure e
κ½cosðφ� φiÞ� 1�

h i

θest ¼ argmin
θ

LðθÞ ¼ argmin
θ

PN=2

i¼1
niκcos θ � θið Þ � TRpure e

κ½cosðθ� θiÞ� 1�
h i ð16Þ

and similarly for a conjunctive population:

φest; θest
� � ¼ argmin

φ;θ
Lðφ; θÞ

Lðφ; θÞ ¼PN
i¼1

niκ cos φ� φi

� �þ cos θ � θið Þ� �� TRconj e
κ cos φ�φið Þþ cos θ� θið Þ� 2½ �h i

:

ð17Þ

These equations were solved numerically using standard optimization
algorithms, yielding ML estimated head-directions. The contour lines of the ratio of
mean decoding errors using pure and conjunctive cells were used to define the
regimes (in N− T space). The contour lines we plotted were at values

ffiffiffiffi
D

p
± δ

(except Supplementary Fig. 3 where we used 1 ± δ). The value of δ we used was 0.02

in all cases (Fig. 3a, b, Supplementary Figs. 2a, b and 7b). In Supplementary
Figs. 4e, f and 5b, c, in the absence of an analytical derivation of the error ratio in
the limit of large N, T, we used the value found at the largest N, T in the simulations
as the boundary between the regimes.

From a mathematical point of view, the main problem we address in this study
is the performance of this decoder when it uses the responses of pure cells or
conjunctive cells. A key observation is that each of the functions
LðφÞ;LðθÞ;Lðφ; θÞ has two independent contributions. We can identify the first
term as the so called population vector: a sum of the preferred angles scaled by the
number of spikes each neuron fired (and possible constant factors). The variability
of this term stems from the Poisson spiking statistics, i.e., from the fact that in each
presentation of the stimulus, ni is in general not equal to T times the average firing
rate for the particular value of the stimulus. On the other hand, the second term is
not affected by the stochasticity of spike generation. Rather, it corrects for the
possibility that some stimulus values have more “nearby cells” (cells with preferred
direction that is close to the stimulus) than other stimulus values. As the number of
neurons N tends to infinity, all stimulus values are equally covered so that the
second term becomes equal to the average population firing rate, and does not
enter into the optimization procedure. Thus in this limit the ML estimate is equal
to the population vector (PV) estimate.

Population vector. The PV decoder is most readily understood geometrically. We
can represent each neuron by a vector that points in its preferred head-direction,
and is scaled by the number of spikes that neuron fired. The PV is the vector sum
of all these “individual” vectors, and the estimated angle is the direction to which
the PV is pointing.

The periodic Cramér–Rao bound. In its classical formulation the CR bound deals
with unbounded stimulus coordinates, such as position. In this case, the error too
can grow unboundedly, as the FI goes to 0. Our manuscript focuses on decoding of
angular variables which are bounded between 0 and 2π.

The difference is that as the FI goes to 0 (for fewer and fewer spikes) the CR
bound states that the mean squared error should grow to infinity. This however
cannot be the case, since the worst error a decoder can make is to “guess” the
opposite direction, meaning that the mean squared error is bounded from above.
This is the reason that the ratio of the decoding error and its lower bound
according to the CR bound is non-monotonic (see Supplementary Fig. 1).

For a 2D stimulus as T decreases, the error of each pure cell subpopulation
starts to saturate to its maximal value of 90° before the conjunctive cell error
saturates to its maximal value of ~138° (the maximal average errors were computed
assuming the decoded angle was completely random). To rigorously address this
issue, Routtenberg & Tabrikian58 derived a so called periodic Cramér–Rao bound
that takes into account the upper bound on the error—but their theory cannot be
readily applied to our case since doing so requires knowing the distribution of
errors made by a specific decoder.

Noise correlations and non-independent models. We explored above the relative
advantages of pure versus conjunctive coding of multidimensional stimuli
assuming that cells’ spike counts are random variables that depend on the stimulus
alone, and not on the response of other neurons. We now introduce dependencies
between neurons, which are commonly referred to as noise correlations (NC). We
consider four “strategies” of introducing dependencies between neurons’ responses:
noise correlations, shared additive gain, shared multiplicative gain and shared
inputs (“pooling”).

Noise correlations. We assume a specific NC structure, i.e., the relationship
between the overlap of two neurons’ tuning curves to the value of their pairwise
noise correlations. For pure cells, we assume this structure is similar to that found
in the head-direction system of rodents25. For conjunctive cells, we assume the
same dependence, but use the distance between two-dimensional tuning curves
instead of one-dimensional curves. We consider two possible decoders. First, we
study the error using a “naive” decoder for which information about the depen-
dencies between cells is not available to the downstream target. This decoder is
therefore the same as the one used in the absence of NC. Second, we consider a
decoder that infers the identity of the stimulus while taking into account the fact
that the spike counts are correlated.

We emphasize that, in contrast to the work of Abbott & Dayan23 and a large
literature on the subject of NC that followed, our focus here is not on whether the
decoding accuracy is better or worse in the presence of NC (and possibly a
specialized decoder). Rather, we are interested in asking whether NC affect the
trade-off we found in the independent case between encoding by pure versus
conjunctive cells.

For this set of assumptions, we found that the analysis of mixed-dimensionality
coding remains largely unaffected when we introduce noise correlations. These
results suggest that the benefits of a mixed-dimensionality code could potentially
hold regardless of the presence or the structure of NC and the identity of the
decoder (Supplementary Fig. 4).

The population coding model with both pure and conjunctive neurons that
incorporates NC was constructed using the following procedure:
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● Like the model with no NC, we drew the preferred directions of all cells
independently from a uniform distribution.

● We computed the pairwise preferred direction distance matrix dij (Supple-
mentary Fig. 4a),

dij ¼

θi � θj

			 			; i; jarepurepitch

φi � φj

			 			; i; jarepureazimuthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi � θj

			 			2þ φi � φj

			 			2
r

; i; jareconjunctive

8>>>>><
>>>>>:

ð18Þ

● From dij, we computed the correlation matrix cij, using a function similar to
that found by Peyrache et al.25 These authors found that head-direction cells
in rats are positively correlated if their preferred directions are similar (dij≲
45°), negatively correlated when dij ≈ 60°, and uncorrelated when dij > 60° (see
Supplementary Fig. 4a). We assume that the same NC structure exists for
conjunctive cells, giving:

cij ¼
1
4 cos 2dij

� �
e�d2ij i≠ j

1 i ¼ j

(
ð19Þ

We also assume that pure azimuth, pure pitch and conjunctive cells are
uncorrelated with cells in other sub-populations.

● The final step is to draw spike counts with the specified correlation matrix.
Since there is no closed form prescription for drawing a set of Poisson random
numbers with an arbitrary correlation matrix59, we use a Gaussian
approximation:

Draw a set of Gaussian random numbers zi with mean 0 and correlation
given by the matrix with elements cij.
Compute the cumulative Gaussian distribution function of the zi’s, denoted qi.
The spike count of the neuron i, denoted ni is then the inverse cumulative
Poisson distribution function of qi.

We verified numerically that the Gaussian approximation does not strongly
distort the correlation structure, such that the resulting spike counts have Poisson
statistics (guaranteed by using the inverse Poisson cumulative distribution
function) and that their correlation matrix is approximately equal to c.

The simulation is completed by inferring the stimulus using the spike counts.
We did that first by using a “naive” decoder that does not take into account the
noise correlations (see Eqs. (16, 17)). Second, we used a decoder that infers the
stimulus based on the spike counts and knowledge of the NC. Here, one cannot
write an explicit expression for the likelihood of a set of N spike counts given the
stimulus. This is for the same reason that one cannot directly draw Poisson
distributed spike counts with a specific correlation structure. Briefly, for a Poisson
distribution, the probability of a vector of spike counts depends on the covariance
matrix, which itself depends on the spike counts, making it impossible to obtain an
explicit form for the distribution. The same is not true for a Gaussian distribution
in which the covariance is independent of the spike counts. We thus used the
derivations and the expressions which appear in Ecker et al.60 for the Gaussian
approximation of the likelihood function.

In Supplementary Fig. 4c, we show that the same qualitative behavior we
observed in simulations of populations without noise correlations are also observed
when comparing the performance of pure and conjunctive cells that do have NC as
specified above. The value to which the error ratio saturates at large N and T is no
longer

ffiffiffi
2

p
because the Fisher information of each population depends on the NC,

so its ratio changes too. For the naive decoder, this ratio depends on N in a non-
trivial way—it saturates slowly with N relative to the saturation of the error ratio
for the NC dependent decoder (compare top and bottom panels of Supplementary
Fig. 4d).

Shared additive gain. We consider here the possibility that on a given “trial,” a
subpopulation of pure cells, or the population of conjunctive cells can be upre-
gulated or downregulated in a shared manner. To this end, we repeated the
simulations with the following modification.

On each trial, the tuning curve of all pure azimuth, pure pitch and conjunctive
cells was shifted by random amounts Δpure,azimuth, Δpure,pitch and Δconj, respectively.
The Δ’s were drawn independently from a uniform distribution between −0.2 and
0.2, such that the shifted tuning curves for pure azimuth, pure pitch, and

conjunctive cells are (compare to Eqs. (1), (2)):

RiðφÞ ¼ Rpure eκ cosðφ�φiÞ�1½ � þ Δpure;azimuth

� �
RiðθÞ ¼ Rpure eκ cosðθ�θiÞ�1½ � þ Δpure;pitch

� �
Riðφ; θÞ ¼ Rconj eκ cosðφ�φiÞþcosðθ�θiÞ�2½ � þ Δconj

� � ð20Þ

Spikes were then drawn from a Poisson distribution with parameter equal to
T times the shifted tuning curve evaluated at the stimulus presented at that given
trial. When that parameter was less than 0 (in cases where a population was
downregulated) the parameter was set to 0.

Decoding was performed using the same ML decoder used in the simulations
without shared variability. This corresponds to a situation where downstream
targets do not have access to the value of the shared gain on a given trial.

Shared multiplicative gain. We similarly considered a case where the shared gain
was multiplicative instead of additive. In this case, each tuning curve was multiplied
by a random number (shared among neurons in the same subpopulation) αpure,
azimuth, αpure,pitch and αconj. The α’s were drawn independently from a log-normal
distribution with parameters μ=−1/2, σ2= 1, such that the average multiplicative
gain factor was 1. Now the tuning curves are,

RiðφÞ ¼ αpure;azimuthRpuree
κ cosðφ� φiÞ�1½ �

RiðθÞ ¼ αpure;pitchRpuree
κ cosðθ� θiÞ�1½ �

Riðφ; θÞ ¼ αconjRconje
κ cosðφ� φiÞþcosðθ� θiÞ� 2½ �

ð21Þ

Again, spikes were then drawn from a Poisson distribution with parameter
equal to T times the tuning curves evaluated at the stimulus presented at that given
trial; and decoding was performed using the a ML decoder that is unchanged by the
gain modulation.

Shared input (feed-forward pooling model). To test whether the same trade-off
between coding by pure/conjunctive cells exists when the conjunctive representa-
tion is generated in a more realistic fashion (relative to pre-defined tuning curves
and NC structure) we constructed the following pooling model.

Two populations of size N0 have von-Mises tuning curves (κ= 9.1,
corresponding to tuning width of 45°) and evenly spaced preferred orientations θj
= φj=

2πj
N , j= 1,…, N. Spike counts (denoted mθ

j , m
φ
j ) are produced independently

with Poisson statistics using integration time T (which will be varied in the same
way as was done for the rest of the models). For the tuning preferences of the
downstream populations, in every simulation, we chose uniformly at random N/2
azimuth directions θpureið Þ, N/2 pitch directions φpure

ið Þ and N pairs of azimuth-
pitch directions (θconji , φconj

i ).
Given the spike counts of the upstream populations (the first layer, see

schematic in Supplementary Fig. 5) and the preferred orientations of the
downstream populations, we computed the spike rates of neurons in the
downstream populations (i.e., the second layer) using the following equations,
which describe the pooling operation that pure azimuth, pure pitch and
conjunctive neurons perform on their shared inputs:

rpurei;φ ¼ Apure
PN0

j¼1
mφ

j exp κcos φpure
i � 2πj

N

� �� �
;

rpurei;θ ¼ Apure
PN0

j¼1
mθ

j exp κcos θpurei � 2πj
N

� �� �
;

rconji ¼ Aconj

T

PN0

j¼1
mθ

j exp κcos θconji � 2πj
N

� �h i ! PN0

j¼1
mφ

j exp κcos φconj
i � 2πj

N

� �h i !
:

ð22Þ

The constants Apure, Aconj were chosen such that the population firing rate of
the pure downstream population and the conjunctive downstream populations
were equal. Since both mθ

j , m
φ
j are proportional to T, dividing by T in the definition

of rconji ensures that the expected number of spikes of conjunctive neurons
downstream is also linear in T (instead of quadratic if this factor was not included).
The spike counts of neurons in the main (downstream) populations are drawn
independently from a Poisson distribution,

npurei;θ � Poisson rpurei;θ

� �
; npurei;φ � Poisson rpurei;φ

� �
; nconji � Poisson rconji

� �
: ð23Þ

Since the responses of the main population are produced in two stages, there is

no explicit form for the likelihood functions P npurei;φ

n o
i¼1;¼ ;N=2

jφ

 �

,
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P npurei;θ

n o
i¼1;¼ ;N=2

jθ

 �

, P nconji

n o
i¼1;¼ ;N

jϕ; θ

 �

making it unfeasible to use a ML

decoder. We thus decoded the stimulus using the population vector. We set the
error to π when there were no spikes for a given population.

A schematic illustrating the model is shown in Supplementary Fig. 5a. Despite
the fact that the Poisson noise in both stages (upstream and main) is independent,
pooling from shared inputs introduces correlations between the spike counts of
neurons in the second layer in a biologically plausible way. In this model,
correlations between neurons both within each population as well as across
populations. The magnitude of the noise correlations in this model depends on the
relative size of the upstream and downstream populations (N0 and N, respectively):
when N is close to N0 correlations become larger.

We computed the decoding error ratio for the main pure and conjunctive
populations. Plotting the error ratio in the N− T space, we clearly find two regimes
where the ratio is bigger than or smaller than the ratio for large N, T, which is ~0.8
for the parameters we use (Supplementary Fig. 5a, b). This means that if
conjunctive cells pool broadly from an upstream population of pure cells, they can
outperform a population of pure cells of the same size and tuning properties. This
finding does not depend on the magnitude of noise correlations created by pooling,
since the same behavior of the error ratio is seen for N0= 10,000 (Supplementary
Fig. 5b, large upstream population compared to the maximal size of the
downstream population N= 2000) and for N0= 4000 (Supplementary Fig. 5c,
upstream population of comparable size to the maximal size of the downstream
population).

Expected error of a mixed pure and conjunctive population. In Supplementary
Fig. 8, we show the error of a mixed population of pure and conjunctive cells as a
function of the fraction of cells that have pure tuning. This error is minimal when
all the cells are conjunctive (Supplementary Fig. 8a).

However, we argue in the text that the error of the mixed population ϵmix
should be compared to ϵmix;independent , the error of a mixed population assuming the
pure and conjunctive sub-populations contribute independently to reducing the
error, but have no “synergistic” interactions. Here we derive ϵmix;independent as a
function of the errors ϵpure and ϵconj of the pure and conjunctive sub-populations.

We assume that the inverse of the squared errors are information-like
quantities, in the sense that they are additive: The FI provided about a stimulus by
two sub-populations jointly is equal to the sum of the FI provided about the
stimulus by the two sub-populations separately. When the error is not saturated to
the CR bound, the appropriate quantity is the inverse of the squared error, which is
smaller than the actual FI (effectively, less information about the stimulus exists in
the spiking response).

Mathematically,

~Jpure ¼
1

ϵ2pure
; ~Jconj ¼

1
ϵ2conj

: ð24Þ

Note that ~Jpure and ~Jconj are not the Fisher information, because we do not
assume that ϵpure and ϵconj are saturated to the CR bound.

The total information about the stimulus provided by these two sub-
populations is equal to ~Jmix;independent =~Jpure þ ~Jconj , which corresponds to the
inverse of the expected squared error from the mixed population, giving

ϵmix;independent ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Jmix;independent

q ¼ ϵpureϵconjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2pure þ ϵ2conj

q : ð25Þ

Multidimensional error and errors along each dimension. In Fig. 4a of the main
text we show that for pure and conjunctive populations, the ratio of the total
decoding error in 2D and the error along each of the directions independently
approaches a value of 1.57 for large T. To show this, assume that the error is a
Gaussian random variable with mean zero (since the decoder is unbiased) and
variance σ. In general σ is different for pure and conjunctive cells and depends on
N and T. The probability distribution of error ϵ along one either dimension is

pðϵÞ ¼ p ϵφ

� �
¼ p ϵθð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � ϵ2

2σ2


 �
ð26Þ

The distribution of the 2D error is

p ϵφ; ϵθ

� �
¼ 1

2πσ2
exp � ϵ2φ þ ϵ2θ

2σ2

 !
: ð27Þ

We can then use this to compute the total mean error

ϵ2h i ¼ 1
2πσ2

Z Z 1

�1
dϵφdϵθ exp � ϵ2φ þ ϵ2θ

2σ2

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2φ þ ϵ2θ

q
¼

ffiffiffi
π

2

r
σ; ð28Þ

and the error in one dimension

ϵ1h i ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z 1

�1
dϵexp � ϵ

2σ2

� �
ϵj j ¼

ffiffiffi
2
π

r
σ: ð29Þ

So the ratio is

ϵ2h i
ϵ1h i ¼

π

2
� 1:57; ð30Þ

independent of σ.
In Fig. 4a of the main we text show that this ratio is larger than π/2 for pure cells

at short decoding times T. This results from the high probability of very large
errors along at least one direction (azimuth or pitch), compared to the probability
one would expect if the distribution of errors was Gaussian. Specifically, this is a
signature of an error distribution with large kurtosis.

Conditional error calculations at short decoding time. We have shown that for
small T there is a regime where the conjunctive cells outperform the pure cells
compared to what is expected from the FI considerations (i.e., in 2D,
ϵpure=ϵconj>

ffiffiffi
2

p
). In Supplementary Note 1 we discuss in detail the departure of the

error from the Cramér–Rao bound. Here we explain the existence of this regime by
computing the decoding errors conditioned on the number of spikes.

When the number of spikes emitted by the entire population is small (≲15),
there is a finite chance that one of the pure sub-populations will fire very few spikes
(≲5) such that estimation head-direction along one direction is very poor. In these
instances, a decoder relying on the conjunctive population (that emits the same
number of spikes on average) is likely to outperform one that relies on the pure
cells.

To test whether the instances of poor estimates in one pure subpopulation
explain this effect, we computed the probability that one of the pure sub-
populations and the conjunctive population will fire a small number of spikes
denoted by nmin (Supplementary Fig. 7a), and the corresponding conditional
average errors:

ϵconjðnÞ decodingerror fromtheconjunctivepopulation

giventhat ithasemittedat least2nmin spikes

ϵpureðnÞ decodingerror fromthepurepopulationgiven

thateachsubpopulationhasemittedat leastnmin spikes

For the comparison between the decoding errors from the pure and conjunctive
populations to remain “fair,” the average firing rate should stay the same after
instances with few spikes are removed. That is the reason that instances when the
conjunctive population emitted <2nmin spikes were ignored.

The case nmin= 0 includes all instances because each population fired at least
zero spikes in repeated simulation. As n is increased, additional “problematic”
instances are ignored, and regime #3 disappears. For nmin= 4, the effect is
completely eliminated (any remaining blue region for nmin= 3 in Supplementary
Fig. 7b is within the error bars). In other words, regime #3 (where decoding from
conjunctive cells leads to a smaller error than decoding from pure cells) is
eliminated if instances where either of the pure sub-populations emitted less than
three spikes are not taken into account when computing the average error.

Thus we conclude that the improved accuracy of a decoder that uses the
conjunctive cells stems from the finite chance that when the number of spikes is
small, their distribution among the two pure sub-populations will be uneven,
leading to a very poor estimate.

Flight kinematics during natural orientation behavior. We analyzed the beha-
vioral data collected by Tsoar et al.26, which included a GPS tracking of 45
Egyptian fruit bats (Rousettus aegyptiacus) using lightweight GPS dataloggers. The
GPS tracking data included all the bats that were reported in Tsoar et al.26, as well
as several additional animals. Figure 5a, and Supplementary Movie 1 were made
from this data set using Google Earth Software (Google Earth Pro, desktop version:
https://www.google.com/earth/desktop/). This data set allowed us to compute the
3D coordinates of the bat’s position in space (x, y, z) at a 1 Hz sampling rate. We
first computed the direction of the bat’s heading in 3D space from the positional
estimate x, y, z. Specifically, we computed the heading-direction in azimuth (φ) and
pitch (θ) of freely flying bats using the following equations:

φ ¼ angle Δx þ iΔyð Þ ð31Þ

θ ¼ angle
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p
þ iΔz

� �
ð32Þ

where Δx, Δy, Δz are the changes in the animal’s position between consecutive
video frames; and i is the imaginary unit. The angular velocities in azimuth (vθ) and
pitch (vφ) were computed by taking the absolute values of the first derivative of the
azimuth and pitch heading-direction, respectively. The combined angular velocity

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05562-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3590 | DOI: 10.1038/s41467-018-05562-1 | www.nature.com/naturecommunications 15

https://www.google.com/earth/desktop/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


in azimuth and pitch was defined as:

vθ ´ φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2θ þ v2φ

q
: ð33Þ

We included only data-points in which the animal was flying at instantaneous
speeds larger than 0.5 m s−1 (to exclude epochs in which the animal hung
stationary on the fruit-tree). Horizontal displacement was defined as the Euclidean
distance traversed by the bat in the horizontal (x, y) plane in a time interval of 20s.

Head-direction tuning at different angular velocities. We analyzed the beha-
vioral and the electrophysiological data previously reported in Finkelstein et al.19 A
total of 266 well-isolated neurons were recorded from dorsal presubiculum of 4
crawling bats. Head-direction in azimuth and pitch in crawling bats was computed
using video tracking as described in Finkelstein et al.19 The angular velocities in
azimuth (vθ) and pitch (vφ) were computed by taking the absolute difference in the
head-direction angle (azimuth or pitch, respectively) between consecutive video
frames, and multiplying it by the frame rate. The combined angular velocity in
azimuth and pitch during crawling was computed using Eq. (33) above.

For the analysis presented in Fig. 6, we separated the behavioral data during
crawling into two bins of low or high combined angular velocity, using a cutoff
threshold of 10° s−1 (Fig. 6b). We chose this cutoff value because it could
distinguish between navigational and maneuvering modes observed during natural
behavior in the wild (Fig. 5b). We included for analysis a total of 127 cells, based on
the following criteria: (i) Each of the two angular velocity bins (slow bin [<10° s−1]
or fast bin [≥10° s−1]), included a minimum of 120 s of data; (ii) In each of these
angular-velocity bins, the cell emitted at least 50 spikes. For cells that were recorded
for two behavioral sessions, we chose the session with the largest number of spikes
for all further analyses (single session per neuron).

For the analysis presented in Supplementary Fig. 9, we used adaptive binning in
angular velocity. Specifically, we binned the behavioral distribution of angular
velocities (Fig. 6b) into 4 bins with equal occupancy (25% of the behavioral data in
each bin). Because each bin contained only a fraction of the data, we included only
cells with high spike count for this analysis (more than 400 spikes per session, n=
134 cells out of the original 266 cells). For cells that were recorded for two
behavioral sessions, we chose the session with the largest number of spikes for all
further analyses (i.e., single session per neuron). In Supplementary Fig. 9a, e, we
used 4 non-overlapping bins (each containing 25% of the behavioral data). In
Supplementary Fig. 9b–d, f, we analyzed the data continuously as a function of
angular velocity, using adaptive binning, where each bin also contained 25% of the
behavioral data (as in Supplementary Fig. 9a), but the bin was moved in small
increment steps of 1° s−1.

Head direction tuning in azimuth, pitch, or azimuth × pitch was computed as
described in Finkelstein et al.19, with the key difference being that here we
computed the tuning separately for different angular-velocity bins. Briefly, we first
constructed 1D tuning curves separately for azimuth and pitch tuning, by dividing
the number of spikes emitted by the cell in each angular bin by the time-spent in
that bin during the relevant behavioral epoch (low or high angular-velocity). The
directional tuning of the azimuth tuning was quantified by computing the Rayleigh
vector length of the circular distribution. To quantify the directional tuning to
pitch, for which we did not have a fully circular behavioral sampling, we computed
the tuning width in pitch. Tuning width for both azimuth and pitch was defined as
the tuning width at half-height, after subtracting the baseline firing rate19. To
determine whether a cell had a significant directional tuning in each angular-
velocity bin in any of the dimensions, we used shuffling analysis on the 1D tuning
curves that were computed separately for the azimuth and pitch dimensions19.
Neurons with significant tuning to only one of the dimensions (i.e., azimuth-only
or pitch-only) were classified as pure cells, whereas neurons with significant tuning
to both azimuth and pitch dimensions were classified as conjunctive cells. Note that
a neuron could have a different classification in slow or fast angular-velocity bins
(Fig. 6, Supplementary Fig. 9). In the analysis presented in Supplementary Fig. 9,
tuning curves were computed using on average 25% of the behavioral data in each
angular-velocity bin. To avoid spurious tuning due to sub-sampling, we defined a
tuning to be significant in a particular angular-velocity bin if: (i) it passed the
significance criterion according to the shuffling analysis described above—for this
particular angular-velocity bin; and (ii) was stable for the duration of the session. A
cell was considered to have a stable tuning in a particular angular-velocity bin if the
tuning curves constructed separately for odd or even seconds of the data in this bin
had a Pearson correlation coefficient of r > 0.25.

Code availability. We used MATLAB code for computer simulation. The code will
be made available on request.

Data availability
The data are archived on the Weizmann Institute of Science servers and will be made
available on request.
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